利用比例尺和实际距离求图上距离
- 格式:doc
- 大小:40.00 KB
- 文档页数:7
信息窗3 利用比例尺和实际距离求图上距离教学内容:青岛版教材六年级下册第四单元信息窗3教材分析:本信息窗呈现的是足球场平面图,并标出了该图的比例尺。
平面图下面介绍了雏鹰少年足球队上半场进攻的方向和进球的位置。
拟引导学生通过解决如何标出进球位置的问题,引入利用比例尺和实际距离求图上距离知识的学习。
教学目标:1、使学生在理解比例尺含义的基础上能结合具体情境,根据实际距离和比例尺求出图上距离。
2、结合实际经历提出问题、分析问题、解决问题的过程,初步学会数学地思维,培养问题意识和解决问题的能力。
3、在自主探索解决现实问题的过程中,感受数学与生活的密切联系,发展应用意识,体验成功的乐趣。
教学重点:利用比例尺和实际距离求图上距离的方法教学难点:感知不同领域数学内容的内在联系,培养学生灵活应用知识的能力。
教学过程:一、创设情境、激趣导入师:(出示足球场地图)这是一个足球比赛场地,谁能对它作以介绍?学生交流师总结:足球比赛场地是长方形的,两条较长的边界线是边线,另两条较短的线是底线,比赛场地被中线划分为两个半场。
左、右半场是经观众来定位的,左、右边线是以场上进攻队员来定位的。
师:下面我们就一起来看一下雏鹰队在足球场上的精彩回放。
(出示情境图中的文字介绍)[设计意图: 创设情境,让学生感受数学与生活的密切联系。
使学习、研究数学方法成为一种生活的需要,吸引学生进入到主动探索的学习状态。
]二、自主探究、获取新知:(一)提出问题:你能在上图中标出10号队员的起脚位置吗?(二)解决问题1、确定解决问题的思路师:大家先想一想,10号队员起脚的大体位置在哪里?学生根据自己的理解进行交流师:那我们怎样才能知道10号队员起脚的准确位置?学生小组讨论,明确解决问题的思路:要想在图上标出10号队员的起脚位置,就要先算出10号队员距底线10米,右边线25米在图上的距离,然后根据方向和距离确定10号队员在图上起脚的具体位置2、根据比例尺和实际距离求图上距离(1)学生尝试做(2)班内交流,交流时,具体向学生讲明:A、求10米、25米的图上距离,要用两个方程,由于这两个方程在同一个问题里,不同的未知数应该用不同的字母来表示,可以分别用x、y表示两个图上距离。
小升初真题汇编操作题(二)2022-2023学年六年级下册数学必考易错题苏教版(江苏专用)1.(2021•邗江区)下面每个小方格表示边长1厘米的正方形,请根据要求作图并在横线上填上合适的答案。
(1)如果将图中的原长方形先向平移格,再向平移格,那么平移后长方形的顶点A就位于(8,1)处。
(不画图)(2)将图中的三角形绕B点逆时针旋转90°,画出旋转后的图形。
(3)如果将三角形按2:1的比放大,放大后三角形的面积是平方厘米。
(4)图中C点在B点的偏方向。
2.(2021•盐都区)李红在方格纸上探索平行四边形面积的计算方法。
在平行四边形中画了一条高,将平行四边形分成一个三角形和一个梯形(如图)。
(1)用数对表示垂足A的位置(,)。
(2)将三角形向右平移5格,画出平移后的三角形。
(3)在方格图中画一个梯形,使它与平行四边形的面积相等。
3.(2021•淮安)填空并作图。
(1)把图中的长方形绕B点按逆时针方向旋转90°,画出旋转后的图形。
旋转后D点的位置,用数对表示是。
(2)在三角形的右边,按1:2的比画出三角形缩小后的图形。
(3)把圆O向先右平移4格,再向下平移3格,画出平移后的图形。
4.(2021•仪征市)(1)把图中圆的圆心平移到(10,7)的位置,画出按2:1放大后的圆。
(2)把长方形绕A点逆时针旋转90°,画出旋转后的图形。
(3)画出最右边图形的另一半,使它成为一个轴对称图形。
5.(2021•灌南县)顾英收集了本班20名女生50米跑的测试成绩并制成了条形统计图,请你根据的信息在答题卡上完成一幅扇形统计图。
6.(2022•伊川县)小明家在学校的北偏东45°方向1500米处。
(1)在如图中表示出小明家的位置。
(2)学校北面1千米处是“公园路”,与学院路垂直,在图中画出公园路的位置。
7.(2022•宝应县)下面是小丽以自己家为观测点,画出的一张平面图。
(1)商店在小丽家偏(,)°方向米处。
比例的应用【知识梳理】1.比例尺。
(1)意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺或实际距离图上距离=比例尺 (2)分类:①按表现形式分,可以分为数值比例尺和线段比例尺;② 按将实际距离缩小还是放大分,可以分为缩小比例尺和放大比例尺。
(3)已知图上距离和实际距离,求比例尺的方法。
先把图上距离和实际距离统一单位,再用图上距离比实际距离,然后把它化简成前项是1或后项是1的比,得出比例尺。
(4)已知比例尺和图上距离,求实际距离的方法。
可以根据“实际距离图上距离=比例尺”用解比例的方法求出实际距离,也可以利用“实际距离=图上距离÷比例尺”直接列式计算。
(5)已知比例尺和实际距离,求图上距离的方法。
可以根据“实际距离图上距离=比例尺”用解比例的方法求出图上距离,也可以利用“图上距离=实际距离×比例尺”直接列式计算。
(6)应用比例尺画图。
①确定比例尺;②根据比例尺求出图上距离;③画图;④ 标出所画图的名称和比例尺。
要点提示:①比例尺是一个比,表示两个同类量间的倍比关系,不能带单位名称。
②图上距离一般用厘米作单位,实际距离一般用米或千米作单位,计算比例尺时一定要先统一单位。
③为了计算方便,一般把比例尺写成前项或后项是1的形式。
2.图形的放大与缩小。
(1)特点:形状相同,大小不同。
(2)将图形放大或缩小的方法。
一看,看原图形各边占几格;二算,按已知比计算出放大图或缩小图的各边占几格;三画,按计算出的边长画出原图形的放大图或缩小图。
要点提示:把图形每条边按相同倍数放大(或缩小)后,形状不变,相对应的角的度数也不变。
3.用比例解决问题。
根据问题中的不变量找出两种相关联的量,并判断这两种相关联的量成什么比例关系,再根据正、反比例关系列出相应的比例并求解。
要点提示:用正、反比例解决问题的关键是确定成什么比例关系。
【诊断自测】1.填空。
(1)在比例尺是1:2000000的地图上,量得两地距离是38厘米,这两地的实际距离是( )千米。
利用比例尺和实际距离求图上距离一、教学目标1. 让学生理解比例尺的概念,知道比例尺的应用。
2. 让学生掌握利用比例尺和实际距离求图上距离的方法。
3. 培养学生的实际应用能力和解决问题的能力。
二、教学重点与难点1. 教学重点:比例尺的概念,利用比例尺和实际距离求图上距离的方法。
2. 教学难点:比例尺的应用,求图上距离的计算方法。
三、教学准备1. 教具准备:比例尺图例,实际距离与图上距离的对照图。
2. 学具准备:学生尺子,计算器。
四、教学过程1. 导入新课1.1 教师出示比例尺图例,引导学生观察并说出比例尺的含义。
1.2 学生分享观察到的比例尺信息,教师总结并讲解比例尺的概念。
2. 探究新知2.1 教师出示实际距离与图上距离的对照图,引导学生发现实际距离与图上距离的关系。
2.2 学生通过观察对照图,发现实际距离与图上距离的比例关系。
2.3 教师引导学生总结利用比例尺和实际距离求图上距离的方法。
3. 课堂练习3.1 教师出示练习题,学生独立完成,检验自己对利用比例尺和实际距离求图上距离方法的掌握。
3.2 教师选取部分学生的作业进行讲解和评价,指出作业中的优点和不足。
4. 拓展延伸4.1 教师出示一个实际问题,引导学生利用比例尺和实际距离求解图上距离。
4.2 学生分组讨论,共同解决问题,教师巡回指导。
5. 总结与反思5.1 教师引导学生总结本节课所学的知识点,巩固比例尺的概念和利用比例尺求图上距离的方法。
5.2 学生分享自己的学习收获,教师给予评价和鼓励。
五、课后作业1. 请学生运用比例尺和实际距离,求解家到学校的图上距离,并绘制出家到学校的路线图。
2. 学生家长协助检查作业完成情况,家长在作业本上签字确认。
教学反思:六、教学评价1. 评价目标:通过课后作业和课堂练习,评价学生对比例尺概念的理解和利用比例尺求图上距离的掌握程度。
2. 评价方法:教师对课后作业进行批改,观察学生的作业完成情况,对课堂练习的回答情况进行记录和评价。
图上距离应该等于什么
实际距离=图上距离÷比例尺,图上距离=实际距离×比例尺。
在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。
这时,就要确定图上距离和相对应的实际距离的比。
扩展资料
比例尺公式
图上距离=实际距离×比例尺。
实际距离=图上距离÷比例尺。
比例尺=图上距离÷实际距离.(在比例尺计算中要注意单位间的`换算)。
(1公里=1千米=1×1000米=1×100000厘米)。
单位换算:图上用厘米,实地用千米,厘米换千米,去五个零;千米换厘米,在千的基础上再加两个零。
比例地图
国家测绘部门将1∶5000、1∶1万、1∶2.5万、1∶5万、1∶10万、1∶25万、1∶50万和1∶100万八种比例尺地形图规定为国家基本比例尺地形图,简称基本地形图,亦称国家基本图,以保证满足各部门的基本需要。
其中:
大比例尺地形图:1∶5000至1∶10万的地形图;
中比例尺地形图:1∶25万和1∶50万地形图;
小比例尺地形图:1∶100万地形图。
生活中的比例尺
如:地图,绘图、测量、田地、航空、公路、航海,建筑。
第3课时比例尺的应用◆教学内容冀教版小学数学六年级上册第81~83页。
◆教学提示根据比例尺和图上距离,可以利用“实际距离=图上距离÷比例尺”直接列式计算,也可根据“图上距离:实际距离=比例尺”列比例式来求,还可利用线段比例尺来求,计算过程中应注意单位的统一。
教学中注意引导学生在地图上若已知比例尺和图上距离,求实际距离时,可根据比例尺的意义,设实际距离为χ,列出方程并求解;也可以用图上距离÷比例尺求出实际距离。
◆教学目标1.结合具体事例,经历测量图上线段长度并根据比例尺按要求计算实际距离的进程。
2.进一步认识比例尺,会根据示意图图上线段的长度和比例尺求实际长度。
3.感受“比例尺”在日常生活中的应用,增强学好数学的自信心。
重点、难点重点理解比例尺的概念,根据比例尺的意义求比例尺、实际距离和图上距离。
难点从不同的角度理解比例尺的意义,利用比例尺、图上距离求实际距离。
◆教学准备教师准备:多媒体课件一套。
学生准备:作业纸,尺子。
◆教学过程(一)复习导入:一、复习导入(投影出示下图)下面是育新小学的平面图。
师:上节课我们学习了比例尺的有关知识,看此图谁来说说图中的比例尺1:3000是什么意思?生1:比例尺l:3000表示图上距离与实际距离的比是1:3000。
生2:比例尺1:3000的意思是图上的1厘米表示实际的3000厘米。
师:同学们真棒,完全理解了比例尺的含义。
你们能解决这个问题吗?(投影出示问题)已知校园的图上距离长8厘米、宽5厘米。
校园的实际长和宽分别是多少米?校园占地面积是多少平方米?学生独立解答,全班交流,集体订正。
师:同学们都能根据比例尺的知识解决和平面图形有关的实际问题。
这节课我们将继续学习有关比例尺的知识。
(板书课题:比例尺的应用)设计意图:复习旧知、铺垫新知,自然地向学生渗透,激发学生学习的积极性。
(二)新授:二、探究新知l,认识和应用线段比例尺。
(1)认识线段比例尺。
六年级下册-打印版
根据比例尺和实际距离求图上距离
问题导入A城到B城的实际距离是120 km,画在比例尺为1 :1000000的图纸上,应画多少厘米?
过程讲解
1.理解题意
根据题意可知比例尺是1:1000000,实际距离是120 km,求图上距离。
2.探究解题方法
解法一
分析根据“=比例尺”可以列方程求解。
因为所设的图上距离的单位是厘米,所以要先把实际距离转化成以厘米为单位的数,再列方程。
解答解:设应画x厘米。
120 km=12000000 cm
=
1000000x=12000000
x=12
解法二
分析要求图上距离是多少厘米,可以把120 km转化成以厘米为单位的数,再利用“实际距离×比例尺”直接求出图上距离。
解答 120 km= 12000000 cm
12000000×=12( cm)
答:应画12 cm。
归纳总结
已知比例尺和实际距离,求图上距离的方法:可以根据“=比例尺”列方程解答,也可以利用“图上距离=实际距离×比例尺”直接列式计算。
比例尺分放大比例尺和缩小比例尺,放大比例尺就是把一些很小的东西数据放大画在图纸上(因为把那么小的东西画在图纸上,很难观察清楚),一般用于一些特别小的零件上,比如一个手表里的一个零件长3毫米,放大10倍画在图纸上的话,那么,写成放大比例尺就是10:1;而缩小比例尺就是把一个很大的东西画在图纸上(比如房子、汽车、飞机,这么大的东西,图纸怎么够画呢,当然要缩小画在图纸上啦),比如一栋房子长10米,宽10米,高50米(我是举例),要缩小100倍画在图纸上,写成比例尺就是10:100。
比例尺公式:图上距离=实际距离*比例尺
实际距离=图上距离/比例尺比例尺=图上距离/实际距离
已知比例1:10000
地图距离a厘米
实际距离a×10000厘米
记住1:10000表示的就是地图上1厘米代表实际10000厘米。
第三节地图热点考点聚焦联系实际考查比例尺大小与地图内容详略关系,在地图上辨方向。
从地形图、地形剖面图、等高线图上提取所需信息,判断地势特征、坡度陡缓、地形类型,量距离辩方向。
【例1】(2003·淄博)读图1.3-16分析,上下两图中对应各位置准确的一组是A、1、2、3B、4、5、6C、1、5、6D、2、3、4分析:此题主要考查等高线绘制,稀疏与坡度关系。
从实物图可看出2、3点海拔相同,应在同一条高线上,可排除A、D选项。
1点位置、方向有明显错误,可排除C项。
此题通过实际联系考查教材知识点,是今后命题的方向。
答案:B【例2】在一张长为62厘米,宽为56厘米的纸上绘制中国政区图,要求图幅边缘各留2厘米。
已知我国领土南北长约5500千米,东西宽约5000千米,则该图最适合的比例尺是()。
A:1:1000000 B:1:5000000剖析:此题要求掌握比例尺的含义,并通过简单的计算,再选择与计算结果接近的比例尺。
要表示的实地距离为5500千米和5000千米,图上要表示的距离长=62-2×2=58(厘米),宽=56-2×2=52(厘米),则长和宽的比例尺为:长,58厘米/5500千米=58厘米/550000000=1/9480000,宽:52厘米/5000千米=52/500000000=1/9620000。
在选定一幅图的比例尺时,应以小比例尺为准,故应以1/9620000为参照标准。
答案:D典型例题剖析【例1】读图1.3-17判定各字母代表的山地部位:A B CD E F剖析:此题考查内容为等高线地形图的阅读。
由等高线数值变化可推断A 为山顶,B 为鞍部。
C 处等高线向山顶弯曲,故为山谷;而D 处等高线的弯曲方向C 相反,故为山脊。
E 处等高线稀疏,为缓坡;F 处等高线密集,故为陡坡。
答案:山顶 鞍部 山谷 山脊 缓坡 陡坡金钥匙:①在同一等高线地形图上,等高线密集,坡度陡;等高线稀疏,坡度和缓。