概率论与数理统计第六章样本及抽样分布}第二节:样讲义本分布函数直方图
- 格式:ppt
- 大小:370.50 KB
- 文档页数:12
第六章数理统计的基本概念数理统计与概率论是两个有密切联系的姊妹学科(基础 应用).概率论研究的是在知道随机变量分布的情况下求事件的概率.但对具体问题,如何判断某随机变量服从某种分布呢?诚然,我们可以根据经验判断出随机变量的分布,但参数又是什么呢?这些问题概率论回答不了,由数理统计来回答.数理统计是通过数据来回答这些问题的.这些数据带有随机性(不同于会计中的数据),根据数据得出的结论难免会出错,我们希望所犯错误越少越好,而这就需要使用概率论的语言来表述.数据不是从天上掉下来的,要获得数据,首先要进行观察或实验,收集整理数据,然后进行推断,这就是数理统计要研究的内容.即数理统计学是收集、分析数据,并根据数据进行推断的科学和艺术(强调它的艺术性是为着重说明统计方法需要灵活使用,很依赖于人的判断乃至灵感.强调这一点很有好处,它提醒人们不要以教条式的态度来看待数理统计方法,以为只要记住一些公式和方法,碰到什么问题套上去就行).数理统计课程着重于统计推断。
所谓统计推断,就是由样本来推断总体,或者由部分推断总体.统计估计和假设检验是统计推断的基础,以此为基础发展了许多实用的统计方法:回归分析、方差分析、时间序列分析及其他多元统计分析方法等.第一节样本与统计量一总体与个体1.总体(Population)和个体(Individual)1)【定义】把研究“对象”的全体称为总体.用X、Y、Z等表示总体.组成总体的每个元素称为个体.例如:全国英语四级考试刚刚结束,阅卷评分尚需一段时间,有关部门急于了解这次考试成绩的分布状况(应试的400万考生);另外,想了解全国大学生的身体状况;想了解用新工艺生产的一批灯泡寿命等等。
这里的“应试的考生”,“全国的大学生”“这批灯泡”等,就构成了各自的总体。
2)总体X的分布函数称为总体分布函数。
当X为离散型随机变量时,称X的概率函数为总体概率函数。
当X为连续型随机变量时,称X的密度函数为总体密度函数。
)n X +=2)i X -,S 2()iX X -21(,2N μ22(,4N μ212()22x e μ--⋅如果用X 的测试值x 估计μ1,用Y 的测试值y 估计μ2,从上面的图形可以看出,当可靠性(概率)取相同值(如90%)时,y 比x 更“接近”它的待估计量.当要求两个“接近"相同时,y 比x 的可靠性更高。
能够得到这些有价值的结论,应归功于我们知道了X 和Y 的分布.综上所述,我们需要知道统计量g (X 1,X 2,…,X n )的分布。
那么,g (X 1,X 2,…,X n )服从什么分布呢?不同的g 会有不同的结果.下面给出几种常见的分布,这些分布在统计推断中起着重要的作用。
(一)2χ分布(2χdistribution )设n X X X ,,,21 为相互独立的随机变量,它们都服从标准正态)1,0(N 分布,则随机变量221ni i X χ==∑ 服从自由度为n 的2χ分布,记作22()n χχ.)(2n χ分布的密度函数为122/210()2(/2)00n yn y e y f y n y --⎧>⎪=Γ⎨⎪≤⎩其中 )(αΓ称为伽马函数,定义为10(),0x x e dx ααα∞--Γ=>⎰。
下图描绘了)(2n χ分布密度函数在n = 1,4,10,20时的图形。
μ10.16μ20.082χ分布具有可加性:如果2211()n χχ、2222()n χχ,则 2221212()n n χχχ++2χ分布期望和方差:设22~()n χχ,则2()E n χ=,2()2D n χ=。
2χ分布分位点 对于给定的α( 0 〈 α < 1),称满足条件222(){()()}()ααn n n f y dy αχχχ+∞>==⎰P的数2()αn χ为2()n χ分布的上分位点。
教材后附表的2χ分布表给出分位点2()αn χ,可通过查表得到.如20.99(17) 6.408χ=,20.90(17)10.085χ=,20.05(17)27.587χ=等等。
第六章样本与抽样分布§6.1 数理统计的基本概念一.数理统计研究的对象例:有一批灯泡,要从使用寿命这个数量指标来看其质量,设寿命用X表示。
(1)若规定寿命低于1000小时的产品为次品。
此问题是求P(X 1000)=F(10000),求F(x)? (2)从平均寿命、使用时数长短差异来看其质量,即求E(x)?、D(x)?。
要解决二个问题1.试验设计抽样方法。
2.数据处理或统计推断。
方法具有“从局部推断总体”的特点。
二.总体(母体)和个体1.所研究对象的全体称为总体,把组成总体的每一个对象成员(基本单元)称为个体。
说明:(1)对总体我们关心的是研究对象的某一项或某几项数量指标(或属性指标)以及他们在整体中的分布。
所以总体是个体的数量指标的全体。
(2)为研究方便将总体与一个R.V X对应(等同)。
a.总体中不同的数量指标的全体,即是R.V.X的全部取值。
b.R.V X的分布即是总体的分布情况。
例:一批产品是100个灯泡,经测试其寿命是:1000小时1100小时1200小时20个30个50个X 1000 1100 1200P 20/100 30/10050/100(设X表示灯泡的寿命)可知R.V.X的分布律,就是总体寿命的分布,反之亦然。
常称总体X,若R.VX~F(x),有时也用F(x)表示一个总体。
(3)我们对每一个研究对象可能要观测两个或多个数量指标,则可用多维随机向量(X,Y,Z, …)去描述总体。
2.总体的分类有限总体无限总体三.简单随机样本.1.定义6.1 :从总体中抽得的一部分个体组成的集合称为子样(样本),取得的个体叫样品,样本中样品的个数称为样本容量(也叫样本量)。
每个样品的测试值叫观察值。
取得子样的过程叫抽样。
样本的双重含义:(1)随机性:用(X1,X2,……X n) n维随机向量表示。
X i表示第i个被抽到的个体,是随机变量。
(i=1,2,…n)(2)确定性:(x1,x2,……x n)表示n个实数,即是每个样品Xi观测值x i(i=1,2,…n)。