惯性矩和平行移轴公式
- 格式:ppt
- 大小:1.16 MB
- 文档页数:18
§I−1 截面得静矩与形心位置如图I −1所示平面图形代表一任意截面,以下两积分(I −1)分别定义为该截面对于z 轴与y 轴得静矩。
静矩可用来确定截面得形心位置。
由静力学中确定物体重心得公式可得利用公式(I −1),上式可写成 (I −2) 或 (I −3) (I −4)如果一个平面图形就是由若干个简单图形组成得组合图形,则由静矩得定义可知,整个图形对某一坐标轴得静矩应该等于各简单图形对同一坐标轴得静矩得代数与。
即:(I −5)式中A i 、y ci 与z ci 分别表示某一组成部分得面积与其形心坐标,n 为简单图形得个数。
将式(I −5)代入式(I −4),得到组合图形形心坐标得计算公式为 (I −6)例题I −1 图a 所示为对称T 型截面,求该截面得形心位置。
解:建立直角坐标系zOy ,其中y 为截面得对称轴。
因图形相对于y 轴对称,其形心一定在该对称轴上,因此z C =0,只需计算y C 值。
将截面分成Ⅰ、Ⅱ两个矩形,则 A Ⅰ=0.072m 2,A Ⅱ=0.08m 2y Ⅰ=0.46m,y Ⅱ=0.2m§I −2 惯性矩、惯性积例题I −1图图I −1与极惯性矩如图I −2所示平面图形代表一任意截面,在图形平面内建立直角坐标系zOy 。
现在图形内取微面积d A ,d A 得形心在坐标系zOy 中得坐标为y 与z ,到坐标原点得距离为ρ。
现定义y 2d A 与z 2d A 为微面积d A 对z 轴与y 轴得惯性矩,ρ2d A 为微面积d A 对坐标原点得极惯性矩,而以下三个积分(I −7)分别定义为该截面对于z 轴与y 轴得惯性矩以及对坐标原点得极惯性矩。
由图(I −2)可见,,所以有(I −8) 即任意截面对一点得极惯性矩,等于截面对以该点为原点得两任意正交坐标轴得惯性矩之与。
另外,微面积d A 与它到两轴距离得乘积zy d A 称为微面积d A 对y 、z 轴得惯性积,而积分(I −9)定义为该截面对于y 、z 轴得惯性积。
材料力学笔记一、截面对形心轴的轴惯性矩矩形、实心圆、空心圆、薄壁圆截面的轴惯性矩分别为(B.3-4)(B.3-5)(B.3-6)式中,d —实心圆直径和空心圆内径,D —空心圆外径,R 0—薄壁圆平均半径。
t —薄壁圆壁厚。
惯性矩I 量纲为长度的四次方(mm 4),恒为正。
二、截面抗弯刚度EI z和抗弯截面模量Wz(a )上式代表距中性层为y 处的任一纵向“纤维”的正应变,式中的ρ对同一横截面来说是个常数, 所以正应变ε与y 成正比(上缩下伸),与z 无关。
式(a)即为横截面保持平面,只绕中性轴旋转的数学表达式,通常称为几何方面的关系式。
(b )式(b )表示横截面上正应力沿梁高度的变化规律,即物理方面的关系式。
由于式中ρ对同一横截面来说是个常数,均匀材料的弹性模量E 也是常数,所以横截面上任一点处的正应力与y 成正比(上压下拉) 。
显然中性轴上的正应力为零,而距中性轴愈远,正应力愈大,最大正应力σmax发生在距中性轴最远的上下边缘(图7.2-4)。
图7.2-4 弯曲正应力分布微内力对中性轴z之矩组成弯矩M,即(e)代入式(b ),并将常数从积分号中提出,得。
令,称为横截面对z轴的惯性矩,它只取决于横截面的形状和尺寸,其量纲是长度的四次方,此值很容易通过积分求出。
于是得出(7.2-1)上式确定了曲率的大小。
式中EIz称为截面抗弯刚度(stiffness in bending)。
到此为止,式(a)中的y和ρ已经确定。
联合式(b)及式(7.2-1),得出(7.2-2)上式即为对称弯曲正应力公式。
当y=ymax时,得出最大正应力公式,即(7.2-3)式中称为抗弯截面模量(section modulus in bending),其量纲是长度的三次方。
表7.2-I列出了简单截面的Iz 和Wz计算公式。
表中 =d/D,R为薄壁圆平均半径。
三、平行轴间惯性矩的移轴公式图B.3-3如图B.3-3所示,设y0、z为截面的一对形心轴,如果截面对形心轴的惯性矩为和,则截面对任一平行于它的轴y和z的惯性矩为:,(B.3-7)上式称为惯性轴的移轴公式或称平行轴定理(Parallel axis theorem)。
第6章 平面图形的几何性质6.3 惯性矩和惯性积的平行移轴公式 主轴和主惯性矩6.3.1 惯性矩和惯性积的平行移轴公式任一平面图形如图6.9所示,其面积为A ,形心为C ,坐标轴y c 和z c 为形心轴。
正交坐标轴y 、z 与形心轴y c 、z c 平行,两对平行轴之间的间距分别为a 和b 。
截面对y c 轴、z c 轴的惯性矩I y c、I z c 及惯性积I y z c c 为已知,现求图形对y 、z 轴的惯性矩和惯性积。
图中任一点在两坐标系下的坐标关系为=+z z a c =+y y b c由式(6.5)⎰⎰⎰⎰==+=++I z A z a A z A a z A a AAAAy c c c d ()d d 2d 2222其中⎰=z A I Ac y cd 2,⎰=A A Ad ,⎰=z A S Ac y cd 。
因y c 为形心轴,所以=S y c 0,于是可得同理 ⎭⎪=+⎪⎬=+⎪⎪=+⎫I I abA I I b A I I a A yz y z z z y y c c c 22c (6.9)上式即为惯性矩和惯性积的平行移轴公式(parallel-axis theorem )。
因为a A 2和b A 2均为正,所以在所有相互平行的轴中,同一图形对形心轴的惯性矩最小。
在应用公式(6.9)时需注意,a 、b 是图形的形心C 在yOz 坐标下的坐标,有正、负之分。
同时,y c 、z c 轴一定是形心轴。
6.3.2 主轴和主惯性矩由式(6.6)可知,同一图形对不同的一对直角坐标轴的惯性积是不同的,若图形对某一对直角坐标轴的惯性积等于零,则该直角坐标轴称为主惯性轴,或简称为主轴(principal axes )。
图形对主轴的惯性矩称为主惯性矩(principal moment of inertia )。
通过图形形心的主轴称为形心主轴(centroidal axis ),图形对形心主轴的惯性矩称为形心主惯性矩(principal moment of inertia for an area )。
1.外力偶矩计算公式〔P功率,n转速〕2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式〔杆件横截面轴力F N,横截面面积A,拉应力为正〕4.轴向拉压杆斜截面上的正应力与切应力计算公式〔夹角a 从x轴正方向逆时针转至外法线的方位角为正〕5.纵向变形和横向变形〔拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1〕6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律〔切变模量G,切应变g 〕16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩〔a〕实心圆〔b〕空心圆18.圆轴改变时横截面上任一点切应力计算公式〔扭矩T,所求点到圆心间隔r〕19.圆截面周边各点处最大切应力计算公式20.改变截面系数,〔a〕实心圆〔b〕空心圆21.薄壁圆管〔壁厚δ≤ R0 /10 ,R0为圆管的平均半径〕改变切应力计算公式22.圆轴改变角与扭矩T、杆长l、改变刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同〔如阶梯轴〕时或24.等直圆轴强度条件25.塑性材料;脆性材料26.改变圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴外表某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式〔形心轴z c与平行轴z1的间隔为a,图形面积为A〕42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式〔为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度〕46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载结合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸〔压缩〕59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪实在用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.68.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的平安系数法72.压杆稳定性计算的折减系数法73.关系需查表求得3 截面的几何参数4 应力和应变5 应力状态分析6 内力和内力图7 强度计算8 刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、 拉压 []σσ≤=maxmax AN2、 剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、 圆轴改变 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t max max σσ≤=y I M ztmax c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉〔压〕弯组合 []σσ≤+=maxmax zW M A N[]t max t zmax t σσ≤+=y I M A N z[]c max c z z max c σσ≤-=A N y I M 注意:“5〞与“6〞两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z2n2w 2n2wr34W M M②第四强度理论[]στσσ≤+=+=z2n2w 2n2wr475.03W M M二、变形及刚度条件1、 拉压 ∑⎰===∆LEAxx N EALN EANL L d )(ii2、 改变 ()⎰=∑==Φpp i i p GI dxx T GI LT GI TL πφ0180⋅=Φ=p GI T L 〔m / 〕3、 弯曲(1)积分法:)()(''x M x EIy = C x x M x EI x EIy +==⎰d )()()('θ D Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)根本变形表(注意:以下各公式均指绝对值,使用时要根据详细情况赋予正负号)EI ML B =θ EI PL B 22=θ EIqL B 63=θEIML f B 22=EI PL f B 33= EI qL f B 84=EI ML B 3=θ,EI ML A 6=θ EI PL A B 162==θθ EIqL A B 243==θθEI ML f c 162=EI PL f c 483= EIqL f c 3844= (4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==ii i EI L M 22∑=()⎰EIdx x M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)=∂∂=∆i i P U()()⎰∂∂∑dx P x M EI x M i三、应力状态与强度理论 1、 二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=2、 二向应力状态极值正应力及所在截面方位角22min max )2(2xyy x y x τσσσσσσ+-±+=yx xyσστα--=22tg 0PAB MAB A BqL LLLL3、 二向应力状态的极值剪应力22max )2(xyyx τσστ+-=注:极值正应力所在截面与极值剪应力所在截面夹角为450 4、 三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律〔1〕、表达形式之一〔用应力表示应变〕)(1y x x Eμσσε-= )(1x y y Eμσσε-= )(y x z Eσσμε+-= Gxy xy τγ=〔2〕、表达形式之二〔用应变表示应力〕)(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ=6、三向应力状态的广义胡克定律()[]z y x x Eσσμσε+-=1()z y x ,,Gxyxy τγ=()zx yz xy ,,7、强度理论 〔1〕[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤[]bb n σσ=〔2〕[]σσσσ≤-=313r()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []ss n σσ=8、平面应力状态下的应变分析 〔1〕αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫⎝⎛---++=xyyx y x+-=⎪⎭⎫ ⎝⎛-αεεγα2sin 22yx αγ2cos 2⎪⎪⎭⎫ ⎝⎛-xy 〔2〕22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x yx γεεεεεεyx xyεεγα-=02tg四、压杆稳定1、临界压力与临界应力公式〔假设把直杆分为三类〕①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE=②中长受压杆 s p λλλ≥≥ λσb a -=cr③短粗受压杆s λλ≤ “cr σ〞=s σ或 b σ2、关于柔度的几个公式 i Lμλ= p2p σπλE=ba s s σλ-=3、惯性半径公式AI i z= 〔圆截面4di z =,矩形截面12min b i =〔b 为短边长度〕〕五、动载荷〔只给出冲击问题的有关公式〕 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK 〔自由落体冲击〕st20d ∆=g v K 〔程度冲击〕六、截面几何性质1、 惯性矩〔以下只给出公式,不注明截面的形状〕⎰=dA I P 2ρ=324d π ()44132απ-D Dd =α ⎰==6442d dA y I z π ()44164απ-D 123bh123hb 323maxd y I W zz π==()43132απ-D62bh62hb2、惯性矩平移轴公式A a I I 2zc z +=。