第十一章《三角形》复习课教学设计
- 格式:doc
- 大小:37.64 KB
- 文档页数:5
数学:第十一章《三角形》复习教案(冀教版七年级下)一、复习目标提示:1.认识三角形的概念、掌握三边之间的关系以及三角形的内角和,了解三角形的稳定性。
2.了解三角形的角平分线、高、中线,并能在具体的三角形中作出它们。
3.了解图形的全等,能利用全等图形进行简单的图案设计。
4.能准确地辨认全等三角形中的对应元素,能熟练掌握三角形全等的条件。
5.掌握直角三角形全等的判定方法,正确理解“斜边、直角边”的意义。
6.能利用尺规作一个三角形和已知三角形全等。
二、重、难点点拨:1.三角形的三边关系、及三角形的内角和。
2.三角形全等的条件、全等图形的性质及其应用。
熟练了解并掌握三角形的三边关系,三角形的内角和是解决与三角形有关问题的重要基础。
全面掌握三角形全等的条件与全等的性质可以解决线段的相等、角的相等的证明问题。
三、复习中应当注意的几个问题:1.正确理解几个概念:(1)三角形:理解三角形的概念应抓住三点:①三条线段,②不在同一直线上,③首尾顺次相接。
其表示方法:以A、B、C三点为顶点的三角形记作△ABC。
(2)三角形的外角:由三角形的一边与另一边的延长线组成的角。
(3)三角形的角平分线:一个三角形有三条角平分线,都在三角形的内部,并且相交于一点;三角形的角平分线是一条线段,而角的平分线是一条射线;每一条角平分线将每个内角分成相等的两个角。
(4)三角形的中线:三角形的中线有三条,都在三角形的内部,且相交于一点;三角形的每一条边上的中线将该边分成两条相等的线段,将三角形分成两个面积相等的三角形。
(5)三角形的高:每个三角形的每条边上都有一条高,并且垂直于该边,三角形的三条高不一定在三角形内部,但一定交于一点。
(6)全等图形:全等图形一定考虑形状和大小都完全相同,两者缺一不可;它们只和形状、大小有'''”,应将对应顶点写在对应关,和位置的摆放没有关系。
对于全等三角形其表示方法如“△ABC≌△A B C位置上,以利于找出对应边、对应角。
围 .例2 等腰三角形的周长为16,其一边长为6,求另两边长. 解:由于题中没有指明边长为6的边是底还是腰,∴分两种情况讨论:当6为底边长时,腰长为(16-6)÷2=5,这时另两边长分别为5,5;当6为腰长时,底边长为16-6-6=4,这时另两边长分别为6,4.综上所述,另两边长为5,5或6,4.变式题已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为( )2.若(a-1)2+|b-2|=0,则以a,b为边长的等腰三角形的周长为 .考点二三角形中的重要线段例3 如图,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC=8cm,求边AC的长变式题在△ABC中,AB=AC,DB为△ABC的中线,且BD将△ABC周长分为12cm与15cm两部分,求三角形各边长.例4 如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为24,求△BEF的面积.归纳:三角形的中线分该三角形为面积相等的两部分3.下列四个图形中,线段BE是△ABC的高的是()4.如图,①AD是△ABC的角平分线,则∠_____=∠____= ∠_____,②AE是△ABC的中线,则_____=_____= _____,③AF是△ABC的高线,则∠_____=∠_____=90考点三有关三角形内、外角的计算例5 ∠A ,∠B ,∠C是△ABC的三个内角,且分别满足下列条件,求∠A,∠B,∠C中未知角的度数.(1)∠A-∠B=16°,∠C=54°;(2)∠A:∠B:∠C=2:3:4.针对训练5.在△ABC中,三个内角∠A,∠B,∠C满足∠B-∠A=∠C-∠B,则∠B= .考点四多边形的内角和与外角和例7 已知一个多边形的每个外角都是其相邻内角度数的,求这个多边形的边数.归纳:在求边数的问题中,常常利用定理列出方程,进而再求得边数.例8 如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4.求∠CAD的度数.考点五本章中的思想方法方程思想例9 如图,在△ABC中,∠C=∠ABC,BE⊥AC, △BDE是等边三角形,求∠C的度数分类讨论思想例10 已知等腰三角形的两边长分别为10 和6 ,则 三角形的周长是化归思想例11 如图,求∠A +∠B +∠C +∠D +∠E +∠F +∠G 的度数.练习如图,△AOC 与△BOD 是有一组对顶角的三角形,其形状像数字“8”,我们不难发现有一重要结论: ∠A+∠C=∠B+∠D.这一图形也是常见的基本图形模型,我们称它为“8字型”图.A B CE D作业设计教材习题同步解析相关练习板书设计例题:练习教学反思。
三角形综合1三边关系定理三角形三边关系定理:三角形任意两边之和大于第三边.(推论:两边之差<第三边<两边之和)求三角形第三边的范围2中线的性质三角形中的几条重要线段:(1)三角形的中线(三条中线的交点叫重心)(2)三角形的角平分线(三条角平分线的交点叫做内心)(3)三角形的高(三条高线的交点叫垂心)3三角形内角和与外角三角形内角和定理:三角形的内角和等于180°.定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形外角定理:三角形的一个外角等于与它不相邻的两个内角的和.多边形的内角和:(n2)×1800.正n边形的单个内角为.多边形的外角和:360°.正n边形的单个外角为.多边形的对角线条4飞镖模型与“8”字模型飞镖模型:如图:∠BDC=∠A+∠B+∠C.8字模型:如图:∠A+∠D=∠B+∠C.例1.(1)下列各组线段,不能组成三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,12,13(2)若三角形的三边分别为4,x,9,则x的取值范围是______________,三角形周长的取值范围是______________.1.一个等腰三角形的两边长分别是3和7 ,则它的周长为().A.17 B.15 C.13 D.13或172.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为().A.1B.2 C.3D.43.(1)等腰三角形的腰长为6,它底边长a的范围是;(2)等腰三角形的底边长为4,则它腰长b的范围是.4.已知a ,b ,c 是△ABC 的三条边长,化简c a b c b a ----+的结果为( )A .2a+2bB .2a+2b ﹣2cC .2b ﹣2cD .2a例2.如图所示,在△ABC 中,AD 为BC 边上的中线,若AB =5cm ,AC =3cm ,则△ABD 的周长比△ACD 周长多( )A .5cmB .3cmC .8cmD .2cm例3.如图,△ABC 中,D 、E 分别为BC 、AD 的中点,S △ABC =20,则阴影部分的面积是( )A .18B .10C .5D .11.如图AD 是△ABC 的中线,DE 是△ADC 的中线,EF 是△DEC 的中线,FG 是△EFC 的中线,若S △GFC =1cm 2,则S △ABC =______________.2.如图,已知点D 、E 、F 分别是BC 、AD 、BE 的中点,S △ABC =4,则S △EFC =______________.3.如图,AD 是△ABC 的中线,DE=2AE ,若△ABC 的面积是18平方厘米,则△ABE 的面积=______________.4.如图,在△ABC 中,E 为AC 的中点,AD 平分∠BAC ,BD :CD =2:3,AD 与BE 相交于点O ,若△OAE 的面积比△BOD 的面积大1,则△ABC 的面积是( )A .8B .9C .10D .115.如图,在△ABC 中E 是AC 上的一点,EC =2AE ,点D 是BC 的中点,连接AD 、BE 交于点F ,若△ABC 的面积为36,则四边形CDFE 的面积为 .6.如图,在△ABC 中,∠BAC =90°,AB =6,AC =8,BC =10,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是( ) ①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠F AG =2∠ACF ;④AD =2.4.A .①②③④B .①②③C .①②④D .③④例4.在△ABC 中,∠A :∠B :∠C=2:3:4,则∠B= .1.已知在△ABC 中,∠A=60°,∠B ﹣∠C=40°,则∠B= .2.锐角三角形ABC 中,∠C =2∠B ,则∠B 的范围是( )A. 10°<∠B<20°B. 20°<∠B<30°C. 30°<∠B<45°D. 45°<∠B<60°例5.已知一个凸多边形的每个内角都是150°,则它的边数为. 1.一个多边形的内角和比它的外角和的3倍还多180度,求这个多边形的边数.2.已知正多边形的一个外角为40°,则这个正多边形的边数是.3.正多边形的一个外角是40°,则这个正多边形从一个顶点出发有条对角线.例6.把一副三角板按如图所示的方式摆放,则两条斜边所成的钝角x为度.1.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的:(1)图1中的∠ABC的度数为.(2)图2中已知AE∥BC,则∠AFD的度数为.例7.(1)如图1,有一个五角星ABCDE,你能说明∠A+∠B+∠C+∠D+∠E=180°吗?(2)如图2、图3,如果点B向右移到AC上,或AC的另一侧时,上述结论仍然成立吗?1.如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F=_ __.2.如图,∠O=140°,∠P=100°,BP、CP分别平分∠ABO、∠ACO,则∠A=_______.3.如图(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;如图(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.1.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:__________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系.(直接写出结论即可)例8.如图,已知∠1=48°,∠2=56°,∠3=66°,则∠4的度数为.1.如图,已知∠1=48°,∠2=56°,则∠3+∠4的度数为.例9.如图,在折纸活动中,小明制作了一张△ABC的纸片,点D、E分别是边AB、AC上的点,将△ABC沿着DE折叠压平,A与A’重合,若∠A=70°,则∠1+∠2= .1.现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使点A落在CE上,则∠1与∠A的数量关系是;研究(2):如果折成图②的形状,猜想∠1+∠2与∠A的数量关系是;研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.例10.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,求证:∠C=∠B,∠CFE=∠A.1.如图,AB⊥BD,AC⊥CE,ED⊥BD,已知∠A=35°,则∠E= .2.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,∠A=65°,则∠BCD= .3.小明在学习过程中,对教材中的一个有趣问题做如下探究:【习题回顾】已知:如图1,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.求证:∠CFE=∠CEF;【变式思考】如图2,在△ABC中,∠ACB=90°,CD是AB边上的高,若△ABC的外角∠BAG的平分线交CD的延长线于点F,其反向延长线与BC边的延长线交于点E,则∠CFE与∠CEF还相等吗?说明理由;【探究廷伸】如图3,在△ABC中,在AB上存在一点D,使得∠ACD=∠B,角平分线AE交CD于点F.△ABC的外角∠BAG的平分线所在直线MN与BC的延长线交于点M.试判断∠M与∠CFE的数量关系,并说明理由.。
《三角形复习课》教学设计
一、教学目标
1.巩固三角形的特征和分类,掌握三角形的高的画法。
2.提高学生的空间观念和图形分析能力。
3.培养学生的观察能力和动手操作能力。
二、教学重难点
1.重点:三角形的特征、分类和高的画法。
2.难点:三角形知识的综合应用。
三、教学方法
图形演示法、实践操作法。
四、教学过程
1.知识回顾
(1)展示三角形图形,回顾三角形的特征。
(2)复习三角形的分类方法。
2.画高练习
(1)教师示范画三角形的高。
(2)学生动手操作,练习画高。
3.图形辨析
(1)出示一些不同类型的三角形,让学生判断并分析。
(2)进行三角形知识的综合应用练习。
4.总结归纳
(1)总结三角形的复习要点。
(2)鼓励学生在生活中观察三角形的应用。
5.布置作业
布置一些三角形综合分析的作业。
人教版数学八年级上册三角形复习课教学设计当阳市慈化初级中学史君姣【教学目标】1进一步理解并掌握三角形及三角形的重要线段的概念,会利用三角形的内角和定理及外角公式、多边形的内角和公式及外角和计算角度。
2、复习本章内容,整理本章知识,形成知识体系,体会研究几何问题的思路和方法。
3、进一步发展推理能力,能够有条理地思考、解决问题。
【教学重点】复习本章内容并运用它们进行有关的计算和证明,构建本章知识结构【教学难点】灵活运用、解决问题【教材分析】本章主要内容有三角形的有关线段、角,多边形及内角和、镶嵌等。
这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其他图形的基础。
【学情分析】学生在学完本章知识后,对三角形的有关知识已有所了解,本节课将进一步对知识加以理解、运用。
【课型】复习课【教学时间分配】1课时【教学准备】PPT【教学方法】讲授法、谈话法、演示法、练习法【教学过程】一、情景导入、直击主题根据网上一句流行的话“世界那么大,我想去看看”带领大家出去看看。
由三哥和娇妹先带大家去往埃及金字塔,引出本节课的复习知识一一三角形。
出示金字塔照片,让学生说出熟悉的图形一一三角形,给出概念填空:由的线段相接所组成的图形叫做三角形。
出示一张路标,让学生说出特殊三角形一一等边三角形,将它放入框中。
二、复习旧知、梳理脉络让学生自由选择目的地一一法国、英国、美国,开始复习三角形的知识。
法国(卢浮宫)一一三角形的有关线段情景题:在参观卢浮宫博物馆前,三哥和娇妹决定将肚子填饱,但是由于三哥的马虎,两人只带了一个三明治,要想两人吃得同样多的三明治,应该怎么分?答:任意一边的中线。
任何一边的中线可以将三角形分成两个面积相等的三角形。
由中线引出三角形有关的线段如图:(1)若AD丄BC垂足为D,贝/ 二/ = 90 ° ;在三角形中,有咼线。
----------- ►计算面积有关(2)若/ BAE =Z CAE AE与BC相交于点E,贝线段AE是厶ABC的___________ ;(3)若AF =CF, BF与AC相交于点F,贝ABC的中线是______________ .三角形的三条中线相交于一点,交点在三角形的内部,叫三角形的重心。
新世纪教育网 精品资料 版权所有@新世纪教育网新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。
版权所有@新世纪教育网 第1页 共3页课题:第十一章章末复习课标要求教 学 目 标知识技能1.使学生进一步掌握三角形各部分名称与意义、三角形内角和、三角形分类的有关知识.2.在掌握基本知识的基础上,使学生加深对重要结论来龙去脉的理解,以及灵活运用.数学思考 引导学生开展自主复习,初步掌握复习方法,形成基本复习技能.解决问题 加强学生推理能力的培养,滲透“转化”这一重要的数学思想,引导学生多角度分析问题,一题多解.情感态度提高复习课学习兴趣,培养积极的学习态度,使学生获得成功的情感体验.重点 复习三角形单元相关基础知识,初步掌握单元复习的基本方法.难点 通过复习活动,提高学生上复习课的学习兴趣,培养学生积极的学习态度和培养推理能力、多角度分析问题的能力,并使学生获得成功的情感体验.学情 分析 通过对《三角形》这一章的学习,学生已掌握三角形的相关知识,但所学习的知识还有待于整合提高,形成知识脉络.教法 提问、归纳 学法 合作学习 教具教学程序设计教学环节教学内容师生活动设计意图一、 本章 知识 框图活动1:本章知识结构图师提问,生回答,师板书知识结构图.通过复习让学生对本章知识形成知识脉络.二、回顾 三角 形基本概念活动2:三角形定义 三条线段首尾顺次连接组成的图形。
探索三角形个数确定的基本规律:不重不漏、有顺序规律。
例1、下列图中各有多少个三角形?(1) (2)(1):10个三角形 (2):9个三角形学生小组讨论,全班汇报交流.师注重引导学生总结规律:(1)抓边定形(三角形的个数与AF 上线段的条数相等)(2)单独成形,合二为一(先一个一个得数小三角形,再将小三角形合并)在复习基本概念的基础上,引导学生在探索问题时,按照一定的规律去做,既省时有能保证正确率,探索规律是数学教学的重点内容,要在教学中贯穿始终.新世纪教育网 精品资料 版权所有@新世纪教育网新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。