第二章解析函数演示文稿
- 格式:ppt
- 大小:1.41 MB
- 文档页数:34
第二章解析函数§1 解析函数的概念§2 函数解析的充要条件§3 初等函数一、重点与难点重点:难点:1. 解析函数的概念;2. 函数解析性的判别1. 解析函数的概念;2. 初等函数中的多值函数及主值的概念二、内容提要复变函数导数微分解析函数初等解析函数指数函数三角函数对数函数幂函数性质解析函数的判定方法可导与微分的关系可导与解析的判定定理双曲函数§1 解析函数的概念1.复变函数的导数与微分2.解析函数的概念1. 复变函数的导数与微分•存在, 则就说f (z)在z0可导, 此极限值就称为f (z)在z0i ) 导数的定义定义设函数w=f (z)定义于区域D, z0为D中一点, 点的导数,记作不出D的范围。
如果极限也就是说, 对于任给的时, 有, 存在, 使得当若f (z )在D 内处处可导, 就说f (z )在D内可导。
•应当注意, 定义中任意的, 定义中极限值存在的要求与无关, 也就是说, 当都趋于同一个数。
(即)的方式是的方式在区域D 内以任何方式趋于z 0时, 比值例1求f (z)=z2 的导数。
[解] 因为所以例2问f (z)=x + 2yi 是否可导?[解]设沿着平行于x轴的直线趋向于z,因而这时极限设沿着平行于x轴的直线趋向于z ,因而这时极限设沿着平行于y轴的直线趋向于z,因而这时极限所以f (z)=x + 2yi 的导数不存在。
ii)可导与连续容易证明, 在z0点可导的函数必定在z0点连续。
事实上, 由在z0点可导的定义,对于任给的相应地有一个令则,, 使得当时, 有由此得所以即在连续。
iii) 求导法则与实函数相同, 复变函数也有类似的求导公式与法则,罗列如下:, 其中c为复常数。
, 其中n为正整数。
, 其中c为复常数。
, 其中n为正整数。
,其中。
,其中w = f (z)与是两个互为反函数的单值函数,且。
iv) 微分的概念小量, 而设函数w =f (z )在z 0可导, 则有其中因此, 如果函数在z 0的微分存在, 则称函数f (z )在z 0可微。
1第二章 解析函数§2.1解析函数的概念1.复变函数的导数1)定义 2.1.1:设函数)(z f w =在点0z 的某个邻域)(0z N 内有定义,)(00z N z z z ∈∆+=,若极限zz f z z f z z z f z f z z z z ∆-∆+=--→→)()(lim)()(lim000000存在,且极限值为有限复数,则称函数)(z f w =在点0z 可导或可微,极限值称为)(z f 在点0z 的导数或微商,记为)(0z f '或0z z dz df =,或0z z dz dw=,即zz f z z f z z z f z f z f z z z z ∆-∆+=--='→→)()(lim)()(lim)(0000000。
若)(z f 在区域D 内每点z 均可导,则称)(z f 在区域D 内可导。
这时对于区域D 中的任一z ,都对应着)(z f 的一个确定的导数值,这样就构成了一个新的函数)(z f ',称之为原来函数)(z f 的导函数,有时也称为导数。
若导数)(z f '又可导,定义)()(z f dz d z f '='',称为二阶导数,一般地,称)()()1()(z f dzd z f n n -=为)(z f 的n 阶导数。
复变函数的微分概念在形式上与一元实变函数的微分概念类似。
2)可导和连续的关系:我们知道,若复变函数在某点连续,则该函数在该点极限一定存在,反之不一定成立。
那么可导与连续有何关系?设函数)(z f w =在点0z 处可导,则由定义,对于任给的0>ε,对应存在0>δ,使得当δ<∆<z 0时,有ε<'-∆-∆+)()()(000z f zz f z z f成立。
令)()()(000z f zz f z z f '-∆-∆+=α那么0lim 0=→∆αz由此得到z z z f z f z z f ∆+∆'=-∆+α)()()(000即0])([lim )]()([lim 00000=∆+∆'=-∆+→∆→∆z z z f z f z z f z z α故有)()(lim 000z f z z f z =∆+→∆2【注】:与极限情况类似,尽管复函数导数的定义形式与一元实函数导数定义完全相同,但实际上复函数在一点可导的定义比实函数的要荷刻得多。
第二章解析函数第一讲解析函数的概念及其判定1 2 复变函数的导数及其微分导数举例及求导法则13 解析函数的概念4 判定函数在一点可导的方法5 判定函数在区域内解析的方法1 2 复变函数的导数及其微分导数举例及求导法则13 解析函数的概念4 判定函数在一点可导的方法5 判定函数在区域内解析的方法回顾 实变函数的导数与微分的概念 一元函数 0()f x '=000()()lim x f x x f x x∆∆∆→+-=0lim x y x∆∆∆→0d ()d y f x x'=()()()000()f x x f x f x x x x∆∆ρ∆∆'+-=+极限存在 连续 可导 可微1 复变函数的导数及其微分复变函数的导数若极限 ()00000()()d lim d z z z f z z f z w f z z z∆∆∆=→+-'==设函数 定义于区域 ()w f z =,D C ⊆存在,则称 在点可导, 并把这个极限值称为 0z z =()f z 000000()()()()lim =lim z z z f z z f z f z f z z z z ∆∆∆→→+---在 点的导数,记做 ()f z 0z z =若 在区域 D 内每一点都可导, 则称()f z 在区域 D 内可导. ()f z可导与连续 ()0000()()lim z f z z f z f z z ∆∆∆→+-'= 0,0, 0z εδ∆δ∀>∃><<当时,恒有()000()()f z z f z f z z∆ε∆+-'-<()()000()()f z z f z z f z z∆ρ∆∆+-'=-令()0lim 0,z z ∆ρ∆→=则()()()000()-f z z f z f z z z z∆∆ρ∆∆'+=+由此得,例1 考察的连续性与可导性. ()f z z =解 ()0()()lim z f z z f z f z z∆∆∆→+-'=0lim z z z z z∆∆∆→+-=0lim z x i y x i y ∆∆∆∆∆→-=+0lim x x ik x x ik x ∆∆∆∆∆→-=+y k x∆∆=11ik ik-=+极限不存在,虽处处连续,但处处不可导.复变函数的微分 记作 令 设函数在 可导, ()w f z =0z D ∈()()000()() f z z f z z f z z∆ρ∆∆+-'=-则 ()()000()()+w f z z f z f z z z z∆∆∆ρ∆∆'=+-=其中, ()0lim 0.z z ∆ρ∆→=()0d w f z z ∆'=且 是关于 ()0,z z z ∆ρ∆∆→z ∆为函数在 处的微分,()0f z z ∆'()w f z =0z 若函数在 的微分存在,则称函数在 z 0 可微. ()w f z =0z 的高阶无穷小,则称 ()0d f z z '=若在区域 D 内每一点都可微, 则称 在区域 D 内可微. ()f z ()f z 极限存在 连续 可导 可微1 2 复变函数的导数及其微分导数举例及求导法则13 解析函数的概念4 判定函数在一点可导的方法主要内容5 判定函数在区域内解析的方法2 导数举例及求导法则例2 求的导数. 解 一般的, 2()f z z =()220lim z z z z z ∆∆∆→+-=02lim 2z z z z z∆∆∆→==()0()()lim z f z z f z f z z∆∆∆→+-'=()1,n n z nz n Z -+'=∈例3 讨论可微性. 解 故处处不可导,从而处处不可微. 对于一个复变函数,即使实部和虚部都可微,但也可能处处不可微.21ik ik -=+()2f z x yi =-02lim x y k xx ik x x ik x ∆∆∆∆∆∆∆→=-=+()()0lim z f z z f z z∆∆∆→+-002-lim x y x i y x i y ∆∆∆∆∆∆→→=+()2f z x yi =-求导公式与法则其中c 为复常数.其中n 为正整数. (1) ()0, c '=1(2) (),nn z nz -'=[](3) ()()()().f zg z f z g z '''±=±[](4) ()()()()()().f z g z f z g z f z g z '''=+2()()()()()(5) ,(()0).()()f z f z g z f z g z g z g z g z '''⎡⎤-=≠⎢⎥⎣⎦其中 其中 ()w f z =与 ()z w ϕ=互为反函数且都是单值函数.().w g z =1(7)(),()f z w ϕ'='{}(6)[()]()(),fg z f w g z '''=1 2 复变函数的导数及其微分导数举例及求导法则13 解析函数的概念4 判定函数在一点可导的方法主要内容5 判定函数在区域内解析的方法函数在一点解析的定义设 ,若存在 的一个邻域,使得 在此邻域内 ()f z 0z 0z D ∈若在 不解析,则称为 的奇点. ()f z 0z ()f z 处处可导, 则称在 处解析. ()f z 0z 也称 是 的解析点. 0z ()f z 如果在区域 D 内处处解析,则称 在D 内解析. ()f z ()f z 定理 1若 在区域D 内可导,则 在区域D 内解析. ()f z ()f z 3 解析函数的概念(1)有没有这样一个函数,只在一点解析,而在这点的邻域 内不解析?思考题(2)闭区域解析与闭区域可导是否等价?(3)如果函数在曲线C 上可导,是否在该曲线上解析? ()f z 结论: 函数在一点解析与在一点可导不等价,解析要求高.函数区域内解析与区域内可导是等价的.特别地,结论:(除去分母为0的点)在区域D 内解析. (2)有理分式在复平面内除分母为零的点之外解析.(1)多项式在全平面内解析. ()p z ()()()(), ()(),f z f zg z f z g z g z ±设函数 在区域D 内解析, 则 (),()f z g z例4 研究下列函数的解析性.解 处处可导,处处解析;由例3知,处处不可导,处处不解析;()()21 0z z zϕ'=-≠()()22g z x yi =-()()12,f z z '=()()()()()()()()221; 22;13; 4.f z z g z x yi z h z z zϕ==-==()()13,z z ϕ=()f z 除去的复平面内处处解析. 0z =当时,上述极限存在且为0. 11ik ik -=+()z z z z zz z ∆∆∆++-=()()h z z h z z ∆∆+-()()24h z z =z z z z z ∆∆∆=++0z =0lim x y k xx ik x x ik x ∆∆∆∆∆∆∆→=-=+00lim x y x i y x i y ∆∆∆∆∆∆→→-+0lim z z z ∆∆∆→= 仅在 处可导,故处处不解析. 0z =()h z 0z ≠当时,1 2 复变函数的导数及其微分导数举例及求导法则13 解析函数的概念4 判定函数在一点可导的方法主要内容5 判定函数在区域内解析的方法可微的定义 (),z fx y =()00,U x y 设 在 内有定义,且若 则称 在 处可微.,,x y ∆∆∀()()0000,,x x y y U x y ∆∆++∈(),z fx y =()00,x y 0000(,)(,)z f x x y y f x y ∆∆∆=++-12()a x a y o ∆∆ρ=++回顾 二元实变函数微分的概念 可微的充分条件 (),,.z zz f x y x y∂∂=∂∂当连续时,可微=()()()(),w f z z f z f z z z z ∆∆∆ρ∆∆'+-=+假设在点 可微,有 z x iy =+()w f z =(),f z a ib '=+ ()(),f z z f z u i v ∆∆∆+-=+令0lim ()0,z z ∆ρ∆→=w u i v ∆∆∆=+12() ,z i ρ∆ρρ=+12()a xb y x y ∆∆ρ∆ρ∆=-+- ()x i y ∆∆⋅+()a ib =+()x i y ∆∆⋅+12()i ρρ++21()i b x a y x y ∆∆ρ∆ρ∆++++w u i v ∆∆∆=+12()a xb y x y ∆∆ρ∆ρ∆=-+- ()x i y ∆∆⋅+()a ib =+()x i y ∆∆⋅+12()i ρρ++21()i b x a y x y ∆∆ρ∆ρ∆++++21.v b x a y x y ∆∆∆ρ∆ρ∆=+++12 ,u a x b y x y ∆∆∆ρ∆ρ∆=-+-于是()120,00,0x y ρρ∆∆∴→→→→12() , z i ρ∆ρρ=+0lim ()0,z z ∆ρ∆→=21.v b x a y x y ∆∆∆ρ∆ρ∆=+++12 ,u a x b y x y ∆∆∆ρ∆ρ∆=-+-于是()120,00,0x y ρρ∆∆∴→→→→12() , z i ρ∆ρρ=+0lim ()0,z z ∆ρ∆→=0→故 是可微的,且 ()f z a ib '=+()12x y o ρ∆ρ∆ρ∴-=,.u ua b x y∂∂==-∂∂1212220x yx y ρ∆ρ∆ρρ∆∆-<<++(,)u x y ()u u f z ix y∂∂'=-∂∂⇑于是得到, 在任意一点可微(即可导)的必要条件是 ()(,)(,)w f z u x y iv x y ==+ , .u v u vx y y x∂∂∂∂==-∂∂∂∂,.v v b a x y ∂∂==∂∂, .u v u v x y y x∂∂∂∂==-∂∂∂∂ z x iy =+同理是可微的,且 (,)v x y 在处都可微,且满足Cauchy-Reiman (,),(,)u x y v x y (,)x y 复变函数方程, ,.u ua b x y∂∂==-∂∂在任意一点处可微(即可导)的充分必要条件是 ()(,)(,)w f z u x y iv x y ==+, .u v u vx y y x∂∂∂∂==-∂∂∂∂ z x iy =+在处都可微,且满足Cauchy-Reiman (,),(,)u x y v x y (,)x y 定理1 复变函数方程, 推论1注意定理的条件v u i y y ∂∂=-∂∂()u v f z i x x∂∂'=+∂∂u u ix y ∂∂=-∂∂v v i y x∂∂=+∂∂例5 证明函数在点 满足C -R 方程,但 在点 不可导. 解 ()0,00,v x∂∴=∂u xy =()f z xy =()0,00.u y∂=∂ 0z = 0z =000lim 0.x x→-==()(),00,0limx u x u x→-=()0,0u x ∂∂(),0,v x y =同理,()0,00.v y∂=∂故 u (x ,y ) 在 (0,0) 点不可微,从而 f (z ) 在 z = 0 不可导.()()()0,0,00,0limx y u x y u x u yρρ→--2200limx y xy x y→→=+2220limx y kxx kx x k x→=⋅=+u xy=2.1k k=+1 2 复变函数的导数及其微分导数举例及求导法则13 解析函数的概念4 判定函数在一点可导的方法主要内容5 判定函数在区域内解析的方法在任意一点处可微(即可导)的充分必要条件是 在处都可微,且满足Cauchy-Reiman ()(,)(,)w f z u x y iv x y ==+(,),(,)u x y v x y , .u v u v x y y x∂∂∂∂==-∂∂∂∂ z x iy =+(,)x y 定理1 复变函数方程,在区域 D 内可微(即可导)的充分必要条件是在 内可微,且在 D 内满足Cauchy-Reiman()(,)(,)w f z u x y iv x y ==+(,),(,)u x y v x y , .u v u v x y y x∂∂∂∂==-∂∂∂∂D 定理2 复变函数方程, 推论2 如果 u ( x , y ) 和 v ( x , y ) 在区域 D 内各个一阶偏导数连续 (从而可微), 并且满足 C -R 方程, 则函数 f ( z ) 在区域 D 解析.注意:在讨论函数的极限与连续问题时, ()()(),,f z u x y iv x y =+等价于讨论两个二元实变函数的极限与连续问题,对 U 和 V 之间的关系没有任何要求. 但在讨论可导与解析性时,即使U 和 V 均可导,f ( z )也未必可导当然更未必解析。