第2章解析函数
- 格式:doc
- 大小:890.50 KB
- 文档页数:18
第二章解析函数•复变函数的导数•解析函数的概念•初等解析函数复函数的求导法则由于复变函数中导数的定义与一元实变函数中导数的定义在形式上完全一致, 并且复变函数中的极限运算法则也和实变函数中一样, 因而实变函数中的求导法则都可以不加更改地推广到复变函数中来, 且证明方法也是相同的.例2证明()2f z x yi =+在复面内处处连续,但处处不可导.证明对复平面内任意点z , 有()()f z z f z +Δ−2.x yi =Δ+Δ()2()2x x y y i x yi =+Δ++Δ−−故0lim[()()]0.z f z z f z Δ→+Δ−=这说明()2f z x yi =+在复面内处处连续.000()()() (), f z z f z f z z z z ρ′+Δ−=Δ+ΔΔ,)()(lim 000z f z z f z =Δ+→Δ所以lim ()0,z z ρΔ→Δ=再由即()f z 在0z 处连续.反之, 由例2知, 处处不可导,()2f z x yi =+但处处连续。
例5问题:对函数f (z ) = u (x ,y ) + iv (x ,y ),如何判别其解析(可导)性?换句话说:()(),f z u v 的解析可导与的偏导数之间有什么关系?解析函数的性质:(1)两个解析函数的和、差、积、商仍为解析函数;(2)两个解析函数的复合函数仍为解析函数;(3)一个解析函数不可能仅在一个点或一条曲线上解析;所有解析点的集合必为开集。
证明必要性. 若存在,设0()f z ′0()f z a ib ′=+(a , b 是实常数). 因此000()()()f z z f z f z z z α′+Δ−=Δ+Δ12()()()()a ib x i y i x i y αα=+Δ+Δ++Δ+Δ12()a xb y x y αα=Δ−Δ+Δ−Δ21(,i b x a y x y αα+Δ+Δ+Δ+Δ其中12Re , Im .αααα==且当时,0z Δ→120, 0.αα→→0000(,)(,),u u x x y y u x y Δ=+Δ+Δ−0000(,)(,),v v x x y y v x y Δ=+Δ+Δ−则于是有00()().f z z f z u i v +Δ−=Δ+Δ12()u i v a x b y x y ααΔ+Δ=Δ−Δ+Δ−Δ21().i b x a y x y αα+Δ+Δ+Δ+Δ由两个复数相等的条件可得设21.v b x a y x y ααΔ=Δ+Δ+Δ+Δ12,u a x b y x y ααΔ=Δ−Δ+Δ−Δ于是,1(,),(,)..a u x y v x y C R =−−当时,满足条件,().f z z 从而在平面上处处可微,处处解析1(,),(,)0..a u x y v x y y C R ≠−=−当时,仅在直线上满足条件,().f z z 故在平面上处处不解析()00.f z y y =≠从而仅在上可微,在上不可微作业3第89页,第二章习题(一):2;4(1)(3);5(2)(4);7;8(2)(4);9; 11(1)(3)。
第2章、解析函数第⼆章解析函数本章介绍复变函数中⼀个重要的概念:解析函数,并给出⼀个重要的判定⽅法:柯西黎曼条件。
最后分别介绍⼀些重要的单值初等解析函数及多值初等函数的分⽀解析。
第⼀节解析函数的概念与柯西-黎曼条件1、复变函数的导数:设()w f z =是在区域D 内确定的单值函数,并且,0z D ∈。
如果极限()000()lim z z f z f z z z →-- 存在,为复数a ,则称)(z f 在0z 处可导或可微,极限a 称为)(z f 在0z 处的导数,记作0()f z ',或0z z dw dz =。
2、解析函数:定义:如果)(z f 在0z 及0z 的某个邻域内处处可导,则称)(z f 在0z 处解析;如果)(z f 在区域D 内处处解析,则我们称)(z f 在D 内解析,也称)(z f 是D 的解析函数。
解析函数的导(函)数⼀般记为)('z f 或z z f d )(d 。
注1、此定义也⽤εδ-语⾔给出。
注2、可导必连续注3、解析必可导性,在⼀个点的可导不⼀定解析,可导性是⼀个局部概念,⽽解析性是⼀个整体概念;解析函数的四则运算:()f z 和()g x 在区域D 内解析,那么)()(z g z f ±,)()(z g z f ,)(/)(z g z f (分母不为零)也在区域D 内解析,并且有下⾯的导数的四则运算法则:(()())()()f z g x f z g z '''±=±[()()])()()()()f zg x f z g z f z g z ''=+2()()()()()()(()0)()()f z f z g z f z g z g z g z g z ''-'=≠复合求导法则:设)(z f =ζ在z 平⾯上的区域D 内解析,)(ζF w =在ζ平⾯上的区域1D 内解析,⽽且当D z ∈时,1)(D z f ∈=ζ,那么复合函数)]([z f F w =在D 内解析,并且有z z f F z z f F d )(d d )(d d )]([d ζζ=求导的例⼦:(1)如果()f x a =(常数),那么;()0df z dz= (2)z 的任何多项式 n n z a z a a z P +++=...)(10在整个复平⾯解析,并且有 121...2)('-+++=n n z na z a a z P(4)、在复平⾯上,任何有理函数,除去使分母为零的点外是解析的,它的导数的求法与z 是实变量时相同。
基本要求:1 掌握函数在一点处(区域)可导,一点处解析(区域)的概念及相互之间的联系;2掌握函数在一点处可导的充分必要条件;3 掌握函数 解析性的判定方法,掌握解析函数与调和函数之间的关系。
第二章 解析函数解析函数是本课程讨论的中心,是复变函数研究的主要对象,它在理论和实际问题中有着广泛的应用。
本章先引入复变函数的导数的概念,然后讨论解析函数,介绍函数解析的一个充分必要条件,它是用函数的实部和虚部所具有的微分性质来表达的。
最后介绍一些常用的初等函数,并讨论它们的解析性。
§1 解析函数的概念1.1 复变函数的导数定义1.1区域D , 0Z 为D 中一点,点0Z +z 不出D 的范围。
如果极限0+0z 0(z -(lim zf z f z )) 存在,则称f(Z)在0Z 处可导,这个极限值称为(z)f )在0Z 处的导数,记作()00 z=z |'=d f dz z ω= 0+0z 0(z -(lim z f z f z →)), (2.1)也就是说,对于任给的ε>0,相应地有δ(ε)>0,使得当0<|Δz|<δ时,有| 0+0(z -(zf z f z ))—()0'f z | < ε. 如果()f z 在区域D 内处处可导,则称()f z 在D 内可导. 也称()df z = ()0z 'f z 或()0z 'd f z 为()f z 在0z 处的微分.例1.1 求()2=f z z 的导数.解 因为0+0z 0(z -(lim z f z f z →))=+22z 0(z -z lim zf z →)=z 0 lim (2z+z)=2z → 所以'(z)=2z f .例 1.2 问(z)f =x+2yi 是否可导? 解 +z 0(z -(lim zf z f z →))=z 0(+- (y+y i--2yi lim zf x x f x →)) = z 0+2yilim +yi x x →若z+Δz 沿平行于x 轴的方向趋向于z ,则Δy=0,z 0+2yi lim +2yi x x →=z 0lim x x →=1.若z+Δz 沿平行于y 轴的方向趋向于z ,则Δx=0,z 0+2yi lim +yix x →= z 02lim yi yi →=2. 故(z)f = +2x yi 的导数不存在.由例1.2可见,函数(z)f = +2x yi 在复平面内处处连续但处处不可导,然而,反过来容易证明在0z 可导的函数必定在0z 连续.事实上,由(z)f 在0z 可导的定义,对于任给的ε>0,有δ>0,当0<|Δz|<δ时,有 |0+0(z -(z f z f z ))—()0'f z | < ε.令()z ρ=0+0(z -(z f z f z ))—()0'f z , 则0+0(z )-(z )z f f =0+z z '(z )()z f ρ.(2.2)而z z 0lim =0ρ→(), 所以+z 0z 0lim =(z )f f →0(z ).即(z)f 在0z 连续.由导数的定义和极限运算法则,不难得出如下的求导公式与法则:(1) (C )’=0,其中C 为复常数.(2) (nz )’=n n-1z ,其中n 为正常数. (3) [(z)g(z)]'='(z)g'(z).f f ±±(4) [(z)g(z)]'='(z)g(z)+(z)g'(z)f f f .(5) 2(z)1[]'=['(z)g(z)-(z)g'(z)],g(z)0.(z)g (z)f f fg ≠ (6) {[(z)]}'='()g'(z)f g f ω,其中ω=(z)g .(7) '(z)f =1'ϕω(),其中=(z)f ω与z=ϕω()是两个互为反函数的单值函数,且'ϕω()≠0.1.2 解析函数的概念定义1.2 如果(z)f 在0z 及 0z 的邻域内处处可导,则称(z)f 在0z 处解析;如果(z)f 在区域D 每一点解析,则称(z)f 在D 内解析,或说(z)f 是D 内的解析函数.如果(z)f 在0z 不解析,则称0z 为(z)f 的奇点.若函数在一点解析,则一定在该点可导,但过来不一定成立.函数在一点解析和在一点可导是两个不等价的概念.但是函数在区域内解析与在区域内可导是等价的.例1.2 研究函数(z)f =2z ,g(z)=+2x yi , 2h(z)=|z |的解析性.解 例1.1知(z)f =2z 在复平面内处处解析,由例1.2知g(z)=+2x yi 处处不解析.下面研究2h(z)=|z |的解析性. .由于0+0h(z -h(z z z ))=0+220|z|-||zz z =00000+z z +z -z z =z +z+z zz z z ()(), (i ) 若0z =0,当z →0时,上式的极限是零.(ii ) 若0z 0≠,当0+z z 沿平行于x 轴方向趋于0z 时,y =0, 0z 00z -lim =lim =lim =1z +z x x yi x x yi x →→→. 当0+z z 沿平行于y 轴方向趋于0z 时,x =0, 0z 00z --lim =lim =lim =-1z +z x x yi yi x yi yi→→→. 从而0+000z -()z =z +z+z zz z z h ()h , 当z →0时,极限不存在.由(i ),(ii )可知,2h(z)=|z |仅在z=0处可导,而在其他点都不可导,从而它在复平面内处处不解析。
第2章 解析函数2.1 单项选择题2-1 函数)(z f w =在0z 点可导是可微的( )。
(A )必要但非充分条件 (B )充分但非必要条件(C )充分必要条件 (D )既非充分条件,也非必要条件 2-2 复变函数)(z f w =在0z 点可导是连续的( )。
(A )必要但非充分条件 (B )充分但非必要条件(C )充分必要条件 (D )既非充分条件,也非必要条件2-3 设),,(),()(y x iv y x u z f +=则在),(00y x 点,v u ,均可微是)(z f 在000iy x z +=点可微的( )。
(A )必要但非充分条件 (B )充分但非必要条件(C )充分必要条件 (D )既非必要条件,也非充分条件 2-4 )(z f 在000iy x z +=点可导的充分必要条件是( )。
(A ) 在),(00y x 点v u ,可导,且满足C-R 条件,既xvy u y v xu ∂∂-=∂∂∂∂=∂∂,在),(00y x 成立(B ) )点的一个邻域内可导在(00,)(y x z f(C )条件可微,且满足)点在(R C v u y x -,,00(D ) 条件满足具有连续的偏导数,且)点在(R C v u y x -,,002-5 设那么()。
,2)(2ix xy z f -=(A )处处可微)(z f ( B )处处不可导)(z f(C )仅在原点可导)(z f (D )轴上可导仅在x z f )(2-6则若,)( xy,y)(x, v ,0x ,00 x ),(2222220iv u z f y y y x xy y x u o +===⎪⎩⎪⎨⎧=+≠++=函数)(z f ( )。
(A )仅在原点可导 (B )处处不可导(C )除原点处处可导 (D )处处可微 2-7 若 ). )((,)(z f z z f 则=)仅在虚轴上可导()处处解析()仅在原点可导(处处不可导D C B )(A2-8若f(z)=(by ax y x +++22)+)23(y x cxy i ++处处解析,则(),,(=c b a ) (A) (3,2,2) (B) (-2,-3,2) (C) (2,-2,2)(D) (-2,3,2)2-9 u(x,y)与v(x,y)在(00,y x )点可且满足C-R 条件是)(z f 在000iy x z +=点可导的( )(A )充分条件(B )必要但非充分条件(C )充分但非必要条件(D )既非必要也非充分条件2-10 u, v 在),(00y x 点具有连续的偏导数,且满足C-R 条件是)(z f 在000iy x z +=点可导的( )(A )充要条件 (B )必要但非充分条件(C )充分但非必要条件 (D )既非必要也非充分条件2-11 函数)Im()Re()(z z z f ⋅=在原点( )(A )可导且连续 (B )连续但不可导(C )可导但不连续(D )既不连续也不可导2-12 若y ix xy z f 22)(+=则)(z f ( )(A )仅在直线x y =上可导 (B )仅在直线x y -=上可导(C )仅在)0,0(点解析 (D )仅在点可导)0,0(2-13 若)(,)(22z f iy x z f 则+=( ) (A )在全平面上解析(B )仅在直线上可导y x =(C) 仅在直线上可导y x -= (D )仅在)点可导,(00 2-14 设)()3(3)(2223z f y y x i xyx z f 则-+-=()(A )处处解析 (B )仅在实轴上可导 (C) 仅在直线上可导32=y (D )仅在直线上可导或320==y y2-15 若的导数问题是则关于发)(),3(3)(3223z f y y x i xy x z f -+-=((A )0)0()(='f z f 仅在原点可导且(B )xy i y x z f z f 633)()(22+-='处处解析,且(C )xy i y x z f z f 633)()(22--='处处解析,且(D )xy i x y z f z f 633)()(22+-='处处解析,且2-16 方程,1-=z e 则此方程解为() (A )空集(B ))12(-=k z π(k 为整数)(C )I K Z π)12(-= (D )πI Z = 2-17 若21z z e e =,则( )(A) =2z (B)π 1z =2z +2k π (C) 1z =2z +ik π (D) 1z =2z -2ik π 2-18关于复数的对数函数,下面公式正确的是()(A )Ln (1z 2z )=Ln 1z + Ln 2z (B) Ln (1z 2z )=Ln 1z + Ln 2z (C) Ln =2z 2Ln z (D) Ln =2z 2Ln z 2-19Ln(-1)和它的主值分别是()(A ) Ln(-1)=(k+1/2)πi,(k 为整数)主值Ln(-1)=0 (B ) Ln(-1)=(2k-1)πi, 主值Ln(-1)=πi (C ) Ln(-1)=(2k-1)πi, 主值Ln(-1)=-πi (D ) Ln(-1)=Ln1+iArg(-1), 主值Ln(-1)=πi 2-20 下面等式正确的是()(A) Ln(i)=(2k π-2π)i,Ln I=2πi(B) Ln(i)=(2k π+2π)i,Ln I=-2πi(C) Ln(i)=(2k π-2π)i,Ln I=2πi (D) Ln(i)=(2k π+2π)i,Ln I=2πi2-21 下面等式正确的是()(A) Ln(-2)=Ln2+i (2k-1) πi,Ln(-2)=Ln2 (B) Ln(-2)=Ln2+i (2k+1) πi,Ln(-2)=Ln2 (C) Ln(-2)=Ln2+i (2k-1) πi,Ln(-2)=Ln2+i π (D) Ln(-2)=Ln2+i (2k-1) πi,Ln(-2)=Ln2-i π 2-22设k 为整数,则方程sin z=0的根是() (A ) z=k πi (B ) z=2k π (C ) z=k π (D ) z=2k π2-23 若k 为整数,则cos z =0的根是()(A) 2k π+2π(B) k π+2π(C) k π+i2π(D) 2k π+i2π2-24 若k 为整数,则的根是0=shz ( )(A) πk 2 (B) πk (C) πik 2 (D) πik 2-25 若k 为整数,则的根是0=chz ( )(A )i k π2 (B )i k π (C )i k π)12(- (D )π)12(-k 2-26 设=++)2(,12i w z 则( ) (A )822πie (B )822πie± (C )8452πie(D )8452πie±2-27 设421-=z ω,并规定21)0(i -=ω,则ω(0)=( )。
A. i 43-B.i 43C.43D.43-2-28 k 为整数,i i =( ). A. )22(ππk i e +- B )21(k e+-π C )21(k i e+-π D )41(2k e+-π2-29 k 为整数,i)1(-=( ). A π)12(--k eB )2(ππ+-k eC ππ--i k e2 D 22ππ+-k i e2-30 下面说明:1. 函数)(z f =ω在点z 0解析,即)(z f 在点z 0可导。
2. )(z f 在点z 0可导即)(z f 在z 0可微。
3. )(z f 在某区域内可导即)(z f 在此区域内解析,那么( )。
A 1.2.3.都正确B 只有2.正确C 只有2.3.正确D 只有3.正确 2-31 设k 是整数,则函数Lnz 在ie z =点的值为( )。
A i k )12(+π B i k π2 C i k )12(-π D i k π)12(+2-32 i )1(-的主值是()。
A 2πe B 2π-eC πeD π-e2-33 在区域内解析,则对于命题 1 若f(z)恒取f(z)是常数2 若)(z f 在G 内解析,则f(z)是常数3 )(z f 在G 内是常数,则f(z)是常数4 f (z)=0 则f(z)是常数 正确的有()A 4个B 3个C 2个D 1个 2-34 函数z z z f =)(( ).A 在全平面解析B 仅在原点解析C 在原点可导但不解析D 处处不可导2_35 若)(z f 在区域D 内解析,且arg )(z f 在G 内是常数,则( )。
A 这样的 函数不存在B f(z)=u(x,y)+),(y x u i θ,u 是任意二阶可导函数,θ是常实数C f(z)是不取0值的常数D , ),(),()(x y iu y x u z f +=,u(x,y)是任一具有二阶导数的实数 2-36 设34)(-='z z f ,且i i f 3)1(-=+,则=)(z f ( ). A i z z --322B i z z 3322-- C i z z 43322+-+ D i z z 43322-+- 2-37 函数z z f =)(的解析区域是( )。
A 全复平面B 除原点外的复平面C 除实轴外的全平面D 除原点和负实轴外的全平面2-38 设),(),()(y x iv y x u z f +=是平面流速场),(),(y x i y x v θρ+=的复势函数,则( )。
A )(z f v '=B )(z v f '=C )(z v f '=D )(z f v '= 2-39 设)(z f 为平面静电场的复势函数,E 为该电场的场强,则( )。
A )(z f i E '=B )(z f E '=C )(z f i E '-=D )(z fE '-=2.2 非客观题 2.2.1解析函数的概念及条件2-40 用导数的定义证明下列公式: (1) 1)(-='n n nz z (n 是正整数) (2) 21)1(zz -=' (0≠z )2-41 用定义证明:若在可导,则在点连续,反之不一定成立。
2-42 证明:函数),(),()(y x iv y x u z f +=可导(在iy x z +=点)的必要条件是u,v的一阶导数存在,且满足C-R 条件:.,y ux v y v xu ∂∂-=∂∂∂∂=∂∂ 2-43 证明()iv u z f +=,在iy x z +=点可导的充要条件是u ,v 在()y x ,点可微,且满足C-R 条件。