复变函数第二章解析函数的概念
- 格式:pdf
- 大小:612.73 KB
- 文档页数:52
第二章 解析函数解析函数是本课程讨论的中心,是复变函数研究的主要对象.它在理论和实际中有着广泛的应用.本章在先学习复变函数概念的基础上,讨论解析函数.学习函数解析的的一个充要条件,以及如何用实部、虚部所具有的微分性质表达函数的解析.学习常用的初等复变函数.§2.1 解析函数的概念教学目的:1.理解并掌握复变函数可微和解析的定义,以及复变函数在一点和闭区域上解析的含义;能正确判断所给函数在一点或在一个区间上的可导性与解析性.2.能理解并掌握复变函数可微、解析与实、虚部两个二 元实函数的关系(C —R 条件);正确运用解析的充要条 件判断函数的解析性.3.熟练掌握几类初等单值解析函数,并了解几类典型的 初等多值解析函数.重难点:证明函数的可导性与解析性;掌握函数可导与解析的联系 与区别.教学方法:启发式讲授与指导练习相结合教学过程:§2.1.1 复变函数的导数解析函数是复变函数论的主要研究对象, 它是一类具有某种特性的可微函数.首先, 我们类似于实函数的导数引进复变函数的导数.【定义2.1】设)(z f w =在某0()U z 内有定义,记0z z z -=∆且对 00()z z z ∀+∆∈,)()(0z f z f w -=∆)()(00z f z z f -∆+=, 如果z w z ∆∆→∆0lim00)()(lim 0z z z f z f z z --=→(A =≠∞的常数)存在 (即对0ε∀>, 0δ∃>,..s t 当D z ∈且0z z δ-<时, 总有 ε<---A z z z f z f 00)()(), 则称)(z f 在0z 可导或可微(其中D 为)(z f 的定义域).A 称为)(z f 在0z 的导数, 记为)(0z f A '=或0|z z dw A dz ==,即 A =zw z f z ∆∆='→∆00lim )(00)()(lim 0z z z f z f z z --=→. 如果z w z ∆∆→∆0lim 00)()(lim 0z z z f z f z z --=→不存在, 则称)(z f 在0z 不可导或不可微.如果)(z f 在区域D 内每一点都可微, 则称)(z f 在D 内可微.注:10. 由于复变函数导数的定义与实函数导数的定义形式一致,容易验证, 实函数求导的基本公式大多可不加更改地移植到复变函数上来.20.由定义2.1易得, 若函数)(z f 在0z 可导, 则)(z f 在0z 连续(即连续是可导的必要条件) .例1 讨论z z f =)(在z 平面上的可导性.解 在复平面上任取一点z ,由于当0→∆z 时,zz z z f z z f ∆∆=∆-∆+)()(的 极限不存在, 所以 z z f =)(在点z 不可导.再由z 的任意性, z z f =)(在z 平面上处处不可导.(注意z zz z f z z f ∆∆=∆-∆+)()(的极限不存在图2 .1)例2 证明 函数2()f z z =在 0z =点可导,且导数等于0. 证明 由于 0000()()()(0)lim lim 0z z z f z f z f z f z z z →→--=--200lim lim 0z z zz z →→===,故函数2()f z z =在 0z =点可导,且导数等于0.例3 设()Re f z z =,证明 ()f z 在全平面处处不可导. 证明 因为对平面上任意一点0z ,000000()()Re Re Re()f z f z z z zz z z z z z z ---==---,考虑当z 沿直线0Im Im z z =趋于0z 时00000000Im Im Im Im ()()Re()lim lim 1z z z z z z z z z z f z f z z z z z z z →→∈=∈=--==-- 考虑当z 沿直线0Re Re z z =趋于0z 时00000000Re Re Re Re ()()Re()lim lim 0z z z z z z z z z z f z f z z z z z z z →→∈=∈=--==-- ;所以当0z z →时,极限000Re()limz z z z z z →--不存在, 即()f z 在0z 没有导数. 由0z 的任意性知函数()f z 在全平面处处不可导.例4 证明: 函数nz z f =)(在z 平面上处处可导, 且 1)(-='n n nz z (n 为正整数) .证明 在z 平面任取一点z , 因为()()()n nf z z f z z z z z z+∆-+∆-=∆∆121(1)2n n n n n nz z z z ----=+∆++∆ 所以 0lim →∆z 1)()(-=∆-∆+n nz z z f z z f , 即n z z f =)(在点z 可 导,且1)(-='n n nz z . 由点z 的任意性知, 结论成立.练习:试说明函数 224(),0()0,0xy x iy z f z x y z ⎧+≠⎪=+⎨⎪=⎩在原点不可导.提示: 22224200()(0)lim lim 01y y x ky x kyf z f xy k z x y k →→==-==-++ 则()f z 在原点的导数随k 而变化,故结论成立.§2.1.2 解析函数的概念与求导法则1.【定义2.2】如果)(z f 在点0z 的某邻域内处处可导, 则称)(z f 在点0z 解析;如果)(z f 在区域D 内可微(即)(z f 在D 内每一点都可导), 则称)(z f 在区域D 解析; 如果)(z f 在区域G 内解析, 而闭区域G D ⊂,则称)(z f 在闭区域D 上解析.如果)(z f 在0z 处 不解析,则称0z 为)(z f 的奇点.(如图2 .2)说明: 由定义2.2知,10.函数解析一定是与相关区域联系在一起的.即函数在一点解 析不是函数在该孤立点的性质. 函数在一点可导与在一点解析不等价;指函数在此点的某邻域内可导;20. 函数在一个区域D 内解析有时也称此函数为区域D 上的全纯函数或正则函数.函数在区域D 内解析等价于函数在区域D 内处处可导(即在区域D 内每一点都解析).函数在某闭区域上解析是指函数在包含此闭区域的更大的区域内解析.2.类似于实函数的求导法则, 关于解析函数我们有如下法则:1) 四则运算:如果)(z f , )(z g 都在区域D 内解析, 则他们的和、 差、乘积以及商(商的情形要求分母函数不为零)在区域D 内仍解析, 并且 [()()]()()f z g z f z g z '''±=± ;[()()]()()()f z g z f z g z f z g z'''⋅=+⋅;2()()()()()[](()0)()()f z f z g z f z g z g z g z g z ''⋅-⋅'=≠.另:(1)常数的导数为零.(2)()1n n z nz -'=(n 为正整数);(3)[()]()kf z kf z ''=(k 为常数).(4)多项式函数n n n a z a za z P +++=- 110)(在z 平面上解析, 且12110)1()(---++-+='n n n a za n z na z p (5)而有理函数m m n nb z b a z a z R ++++=00)(在z 平面上使分母不为零点处处都是解析的. 2) 复合函数求导法则:设()f z ξ=在z 平面上的区域D 内解析, ()w g ξ=在ξ平面上的区域G 内解析, 并且()f D G ⊂, 则复合 函数[()]w g f z =在区域D 内也解析, 并且{[()]}()()[()]()g f z g f z g f z f z ξ'''''=⋅=⋅.3) 反函数求导法则:设函数()w f z =在区域D 内为解析函数且 ()0f z '≠,又反函数1()()z f w w ϕ-==存在且连续,则 ()11()|()(())z w w f z f w ϕϕϕ='==''. 提问:1.设41()(1)4f z z i z =-+,则方程 ()0f z '=的全部解为 . 答案: 32244(1)0sin )33k k z i z i ππππ++-+=⇒==+(其中 0,1,2)k =2.若0z 是函数 ()f z 的奇点,则()f z 在点0z 不可导.( × )3.若0z 是函数 ()f z 的解析点,则()f z 在点0z 可导. ( √ )4.0()f z '存在,则()f z 在点0z 解析. ( × ) 例5 设212)23()(+-=z zz f , 由上述法则知, 2202()21(32)(32)f z z z z z ''=-+-+22021(32)(61)z z z =-+-.例6 求函数 5223()41z z f z z -+=+的解析性区域以及在该区域上的导数.解 设52()23,()41P z z z Q z z =-+=+,则P(z) , Q(z)在全平面上 解析,再由商的求导法则知()0Q z ≠时, ()()()P z f z Q z =在平面上解析,由()0Q z =得2i z =±;故函数)(z f 的解析区域是全平面除点2i z =±外的区域.且由商式求导公式得4222246104241()(41)z z z z f z z ++--'=+. §2.1.3 解析函数的一个充要条件(柯西—黎曼条件)与判别从形式上,复变函数的导数及其运算法则与实函数几乎没有什么差别,但实质上它们之间存在很大的的差异.下面,我们来研究复变函数的可微和解析与其实部、虚部两个二元实函数之间的关系.【定理2. 1】(可微的充要条件)设),(),()(y x iv y x u z f +=定义在区域D 上,则)(z f 在点D iy x z ∈+=可微(可导)的充要条 件是 :(1) ),(),,(y x v v x u 在点iy x z +=可微;(2) ),(),,(y x v v x u 在点iy x z +=满足x v y u y v x u ∂∂-=∂∂∂∂=∂∂, ( 柯西—黎曼条件也称为C R -方程 ).证明 必要性:若 )(z f 在点D iy x z ∈+=可微记ib a z f +=')(,v i u w ∆+∆=∆, y i x z ∆+∆=∆, 其中 (,)(,)u u x x y y u x y ∆=+∆+∆-,(,)(,)v v x x y y v x y ∆=+∆+∆-由导数的定义知()()()()()w f z z o z a ib x i y o z '∆=∆+∆=+∆+∆+∆()0()(0)a x b y i b x a y z z =∆-∆+∆+∆+∆∆→比较上式两边的实部、虚部得 ),(),(y x u y y x x u u -∆+∆+=∆y b x a ∆-∆=()o z +∆)(0z ∆→)),(),(y x v y y x x v v -∆+∆+=∆)()b x a y o z =∆+∆+∆(0z ∆→)再由实函数中二元实函数可微的定义知, ),(),,(y x v v x u 在点iy x z +=可微, 且xv b y u y v a x u ∂∂-=-=∂∂∂∂==∂∂,. 充分性: 记xv b y u y v a x u ∂∂-=-=∂∂∂∂==∂∂,, 且),(),,(y x v v x u 在点iy x z +=可微,所以 w u i v ∆=∆+∆[()][()]x y x y u x u y o z i v x v y o z ''''=∆+∆+∆+∆+∆+∆ ()()()]x x y y u i v x u i vy o z ''''=+∆++∆+∆ ()()()a b i x b i a y o z=+∆+-+∆+∆ ()()()a b i x i a b i y o z =+∆++∆+∆()()()a b i x i y o z =+∆+∆+∆ ()()f z z o z '=∆+∆. 所以 00()lim lim ()x x o z w a bi f z z z∆→∆→∆∆'=++=∆∆. 说明:10. 定理2.1中条件xv y u y v x u ∂∂-=∂∂∂∂=∂∂,称柯西—黎曼条件或柯西—黎曼方程或C R -方程.20. 由定理2.1的证明知,如果),(),()(y x iv y x u z f +=在 点iy x z +=可微, 则有导数公式 yu i y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=')(. (由C R -方程还可以写出其它形式)30.特别注意:C R -方程是函数可导的必要而非充分条件.例如:函数 2222220(,)(,)00xy x y x y u x y v x y x y ⎧+≠⎪+==⎨⎪+=⎩令 ()(,)(,)f z u x y iv x y =+,则()f z 在点0z =处满足C R -方程即0,0u v u v x y y x∂∂∂∂===-=∂∂∂∂, 但是由于()f z 在点0z =处不连续,所以函数在0z =处不可导. 在实函数中,我们知道由二元实函数具有一阶连续的偏导数可以 推得二元函数可微, 由此可得【推论】※ (可微的充分条件) 设),(),()(y x iv y x u z f +=定义在 区域D 上,则)(z f 在点D iy x z ∈+=可微的充分条件是(1) ),(),,(y x v v x u 在点iy x z +=处具有一阶连续的偏导数;(2) ),(),,(y x v v x u 在点iy x z +=满足C —R 条件.将上述定理1及其推论运用到区域D 的每一点上,可得函数解析的充要条件.【定理2.2】 设),(),()(y x iv y x u z f +=定义在区域D 上,则)(z f 在D 内解析的充要条件是(1) ),(),,(y x v v x u 在D 内处处可微;(2) ),(),,(y x v v x u 在D 内满足C R -方程xv y u y v x u ∂∂-=∂∂∂∂=∂∂,. 【推论】设),(),()(y x iv y x u z f +=定义在区域D 上, 则)(z f 在D 内解析的充分条件是 (1) ),(),,(y x v v x u 在D 内具有一阶连续的偏导数; (2) ),(),,(y x v v x u 在D 内满足C —R 方程. 注: 定理2.2的充分性由推论立即可得, 但必要性的证明需要用到第三章中的解析函数的无穷可微性.例7 讨论下列函数的可导性与解析性.(1)()Re f z z =解: 设iy x z +=, 则有()Re f z z x ==,记 (,)u x y x =, 0),(=y x v . 因1,0u u x y∂∂==∂∂, 0,0=∂∂=∂∂y v x v , 显然它们不满足C —R 条件, 所以 由定理1知, ()Re f z z =在z 平面上处处不可导且处处不解析.(2)2)(zz f =.解: 设iy x z +=, 则有222)(y x zz f +==, 记 22),(y x y x u +=, 0),(=y x v . 因y y u x x u 2,2=∂∂=∂∂, 0,0=∂∂=∂∂yv x v , 显然它们都是连续的.要使C —R 条件满足, 只需0,0==y x 即可,所以 2)(zz f =仅在原点可导, 但在z 平面上处处不解析. (3)()(cos sin )x f z e y i y =+.解:设iy x z +=,),(),()(y x iv y x u z f +=,则有 cos ,sin x xu e y v e y ==因为 cos ,sin x x x y y x u e y v u v e y ''''===-=,且四个偏导数存在且连续,所以 ()f z 在z 平面上处处可导且处处解析且)()(z f z f =' ()(cos sin )()x z u v f z i e y i y e f z x x∂∂'=+=+==∂∂. 注: 满足此例题条件的解析函数称为复指数函数.说明:在讨论具体函数的可导性和解析性时, 可先找出实部和虚部实函数,再验证定理2.2或者推论的条件(1)和(2)得出可导性. 但在回答解析性时一定要慎重, 必须再考虑函数在可导点的邻域内的可导性后才能给出正确的回答.若C —R 方程不成立,则函数一定不可导.用推论有时更方便.提问:5.函数 22()f z x iy =+在点1z i =+处是(B )(A )不可导的. (B) 可导的. (C) 解析的. (D)既不可导也不解析. 解 由C-R 方程可推出在 x y =上()f z 可导,在复平面上处处不 解析.6.若)(z f 在曲线C 上每点不解析,则)(z f 在C 上不可导.( ⨯ )7.若)(z f 在曲线C 上每点可导,则)(z f 在C 上每一点解析.( ⨯ ) 练习:(1)讨论函数iy xz f -=2)(的可微性与解析性. 解 记2),(x y x u =, y y x v -=),(,因0,2=∂∂=∂∂y u x x u , 1,0-=∂∂=∂∂yv x v ,显然它们都是连续的.要使C —R 条件满足, 只需,12-=x 即21-=x , 所以 iy x z f -=2)(仅在直线21-=x 上可导, 但在z 平面上处处不解析.(2) 讨论函数 3232()3(3)f z x xy i y x y =+++的可导性与解析性. 解 记 32(,)3u x y x xy =+, 32(,)3v x y y x y =+, 因 2233,6u u x y xy x y ∂∂=+=∂∂, 226,33,v v xy y x x y∂∂==+∂∂,显然它们都是连续的. 要使C —R 条件满足, 只需0xy = 即()f z 仅在x 轴或y 轴上的点可导, 但在z 平面上处处不解析.例8 求函数 ()f z =Im Re z z z ⋅-在可导点处的导数. 解 ()f z =2Im Re z z z xy x iy ⋅-=-+,则(,)u x y xy x =-,2(,)v x y y =,1,,0,2,u u v v y x y x y x y∂∂∂∂=-===∂∂∂∂四个一阶偏导数连续, 由C —R 方程得01x y =⎧⎨=-⎩ 故函数 ()f z 仅在一点z i =-可导,且导数为()(1)|2z i f i y =-'-=-=-.例9若函数()f z u iv =+在区域D 内解析, 则函数()i f z 也在区域D 内解析.证明 因为()()i f z if z =-, 而()f z 在区域D 内解析, 所以()i f z 也在区域D 内也解析.例10 判断函数 ()f z =232x y i +在何处可导,何处解析,并求 (3),(32)f i f i ''++.解 2(,)u x y x =, 3(,)2v x y y =,22,0,0,6,u u v v x y x y x y∂∂∂∂====∂∂∂∂ 四个一阶偏导数连续,由C —R 方程得23x y =故 函数 ()f z 仅在曲线23x y =上可导,又点3z i =+在此曲线上,所以(3)f i '+存在且(3)f i '+=6,而32z i =+不在曲线上, 所以 (32)f i '+ 不存在.故函数 ()f z 仅在z i =-可导,且()(1)|2z i f i y =-'-=-=-. 例11判断函数 ()f z =322331(3)x xy i x y y -++-在复平面上 的解析性;若解析,试求()f z '.解 32(,)31u x y x xy =-+, 23(,)3v x y x y y =-,2233,6u u x y xy x y ∂∂=-=-∂∂,6v xy x∂=∂,2233v x y y ∂=-∂,四个一阶偏导数连续,由C —R 方程得xv y u y v x u ∂∂-=∂∂∂∂=∂∂,成立, 故函数 ()f z 在复平面上处处解析且()f z '=23z .例12 求实数,a b ,使()f z =2()x y i ax by -++在复平面上解析. 解()()2f x x y i ax by =-++在复平面上处处解析设(),2u x y x y =-,(),v x y ax by =+则2u x ∂=∂ 1u y ∂=-∂ v a x∂=∂ v b y ∂=∂满足C R -条件 u v x y∂∂⇒=∂∂⇒2b = u v y x ∂∂⇒=-∂∂⇒1a = 练习:设3232(,)()f x y my nyx i x xly =+++为解析函数,试确定n m l ,,的值.解:令32(,)u x y my nyx =+, 32(,)v x y x lxy =+,iv u y x f +=),(,则2x u nxy =, 323y u my nx =+, 223x v x ly =+, 2y v lxy =,这四个一阶偏导数存在且连续,因为解析函数()f z 满足C-R 方程,即:x y u v =,y x u v =-,亦即:lxy nxy 22=且323my nx +=22(3)x ly -+ 解得:m =1, 3-==l m .例13 函数)(z f 在区域D 内解析, 且满足下列条件之一,证明: )(z f 在区域D 内必为常数.(1) ()0f z '=.(2)Re ()f z =常数.(3))(z f 在区域D 内解析. (4) )(z f 在区域D 内为常数.(5)c bv au =+,其中a,b,c 为不 全为零的实常数.证明(1) 由()0u v v u f z i i x x y y∂∂∂∂'=+=-=∂∂∂∂ 知 0u v v u x x y y∂∂∂∂====∂∂∂∂, 故 u ,v 都是常数,从而 )(z f 在D 内必为常数.(2)因为 u =常数,故 0u u x y∂∂==∂∂,由C R -方程 v v x y∂∂=∂∂=0,从而 )(z f 在D 内必为常数. (3) 设),(),()(y x iv y x u z f +=, 则 ),(),()(y x iv y x u z f -=.由题设)(z f 和)(z f 都在区域D 内解析,由C —R 条件得x v y u y v x u ∂∂-=∂∂∂∂=∂∂,, xv y u y v x u ∂∂=∂∂∂∂-=∂∂,, 解得 0,0=∂∂=∂∂y u x u , 0,0=∂∂=∂∂yv x v 再由实函数的知识, ),(y x u 与),(y x v 均为实常数, 所以)(z f 在区域D 内为常数.(4) 设),(),()(y x iv y x u z f +=, 则222)(v u z f +=. 由题设)(z f 在区域D 内解析, 且)(z f 为常数, 记为A , 从而xv y u y v x u ∂∂-=∂∂∂∂=∂∂, (1) 222A v u =+ (2)由(2)式得 022=∂∂+∂∂xv v x u u (3) 022=∂∂+∂∂yv v y u u (4) 若0A =, 则0)(=z f , 结论显然成立;若0A ≠,联立(1)(3)(4)得 0,0=∂∂=∂∂y u x u ,0,0=∂∂=∂∂yv x v ; 再由实函数的知识, ),(y x u 与),(y x v 均为实常数, 所以)(z f 在 区域D 内为常数.(5)设a ≠0,则a bv c u -=,于是有 y y x x v a b u v a b u -=-=,. 由C-R 方程 .;x y y x v u v u -== 得0122=⎪⎪⎭⎫ ⎝⎛+⇒⎪⎭⎫ ⎝⎛-==-==y y y x x y v a b v a b a b u a b v a b u v ∴u,v 必为常数,即f(z)为常数.说明:在讨论满足一定条件的解析函数的性质时, 柯西黎曼条件常 常起着关键的作用.例14 ※ 如果)(z f 在上半平面内解析, 则)(z f 在下半平面内解析.证明 在下半平面内任取定一点z 0以及任一点z , 则 0z ,z 都属 于上半平面, 并且 ))()(()()(0000z z z f z f z z z f z f --=-- 因为)(z f 在上半平面内解析, 所以)()()(lim 0000z f z z z f z f z z '=--→,从而)())()((lim )()(lim 0000000z f z z z f z f z z z f z f z z z z '=--=--→→, 即)(z f 在点z 0可导. 再由z 0的任意性, )(z f 在下半平面内解析. 说明:在讨论函数的解析性时, 有时可直接利用导数的定义. 练习:1.函数在一点可导就是函数在一点解析这种说法对吗?答:不对,函数在一点解析是指函数在此点的某邻域内解析,因此只能说函数在一点解析函数在此点一定可导.2.函数在一条曲线上可导,则函数在此曲线上解析这种说法对吗?(不对,理由同上.)3.讨论下列函数的可导性 (1) z w =; (2)z w Re =或z Im .解 (1)设z x iy =+, w u iv =+,则 u =0v =. 由高数学知识知 u =, 0v =在平面上微, 所以, z w =在原点不可导.又当(,)(0,0)x y ≠时,u x ∂=∂,u y ∂=∂, 0v x ∂=∂, 0v y ∂=∂ 要使C R -条件满足, 只须0=,0=, 即0x =且0y =这与(,)(0,0)x y ≠矛盾, 故当(,)(0,0)x y ≠时u和v 不满足C R -条件, 所以z w = 当(,)(0,0)x y ≠时, 也不可导.综上所述, z w =在平面上处处不可导.(2) 设z x iy =+, w u iv =+,则 u x =,0v =. 由高数知识 u x =与0v =在平面上可微,但 10u v x y ∂∂=≠=∂∂, 0u v y x∂∂==-∂∂, 即C R -.条件不满足, 所以, z w Re =在平面上处处不可导.同理可得, Im w z =在平面上处处不可导.5.利用z w =的不解析性据理说明函数)0(1≠=z z w 在z 平面上不解析.解 (反证法) 显然)0(1≠=z z w 在0z =不解析(因它在0z =无意义) ; 假设)0(1≠=z z w 在某一点0z '≠解析, 由解析函数的四则运算性得, z w =在某一点0z '≠也解析, 这与z w =在平面上处处不解析矛盾.故 )0(1≠=z z w 在z 平面上处处不解析.6.讨论下列函数的可微性和解析性:(1)y ix xy z f 22)(+=; (2) 22)(iy x z f +=;(3) )3(3)(3223y y x i xy x z f -+-=.解 (1) 设()f z u iv =+, 则2u xy =, 2v x y =. 显然它们都在平面上具有一阶连续的偏导数 又2u y x ∂=∂, 2u xy y ∂=∂, 2v xy x∂=∂, 2v x y ∂=∂. 要使C R -条件满足, 只须22y x =,22xy xy =-, 即0x =且0y =所以, y ix xy z f 22)(+=仅在原点可导, 在平面上处处不解析.(2) 设()f z u iv =+, 则2u x =, 2v y =. 显然它们都在平面上具有一阶连续的偏导数又2u x x ∂=∂, 0u y ∂=∂, 0v x∂=∂, 2v y y ∂=∂. 要使C R -条件满足, 只须22x y =, 即x y =.所以, 22)(iy x z f +=仅在直线0x y -=上解析, 在平面上处处不解析.(3) 设()f z u iv =+, 则323u x xy =-, 233v x y y =-. 显然它们都在平面上具有一阶连续的偏导数又2233u v x y x y ∂∂=-=∂∂,6u v xy y x ∂∂=-=-∂∂, 即u ,v 满足C R -条件.所以, )3(3)(3223y y x i xy x z f -+-=在平面上处处可导, 也处处解析.7.证明下列函数在平面上解析,并利用yu i y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=')(分别求出其导数: (1))sin cos ()sin cos ()(y x y y ie y y y x e z f x x ++-=;(2) )3(3)(3223y y x i xy x z f -+-=.证明 (1) 设()f z u iv =+,则(cos sin )x u e x y y y =-, (cos sin )x v e y y x y =+. 显然它们都在平面上具有一阶连续的偏导数又(cos cos sin )x u v e y x y y y x y∂∂=+-=∂∂, (sin sin cos )x u v e x y y y y y x∂∂=-++=-∂∂, 即u ,v 满足C.R 条件. 所以, ()f z 在平面上解析, 且()u v f z i x x∂∂'=+∂∂ (cos cos sin )(sin sin cos )x x e y x y y y ie y x y y y =+-+++[cos sin cos sin (sin cos )]x e y i y x y y y i x y y y =++-++(cos sin )(cos sin )(cos sin )x x x e y i y e x y i y iye y i y =+++++(cos sin )(1)(1)x z e y i y x iy e z =+++=+(2) 同习题3(3)可证()f z 在平面上解析, 于是2222()3363()3u v f z i x y i xy x iy z x x∂∂'=+=-+=+=∂∂. 9.若函数)(z f 在区域D 内解析, 且满足下列条件之一, 证明)(z f 在区域D 内必为常数.(1)在D 内0)(='z f ; (2))(Re z f 或)(Im z f 在区域D 内为常数. 证明 (1) 设()f z u iv =+. 因)(z f 在区域D 内解析,且由解析函数的导数与实部、虚部实函数的关系:yu i y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=')( 得 0u x ∂=∂, 0u y ∂=∂, 0v x∂=∂, 0v y ∂=∂. 所以 u 和v 都是实常数. 故 )(z f 在区域D 内必为常数.(2) 设()f z u iv =+, 由题设 u 为实常数, 而)(z f 在区域D 内解析,由C.R.条件知0v u x y ∂∂=-=∂∂, 0v u y x∂∂==∂∂v 也是实常数.所以 )(z f 在区域D 内必为常数.小结:1.函数在一点解析与函数在一点可导不是等价命题;函数在一个区域上解析与函数在一个区域上可导是等价命题.2.判断函数的解析性时最好将其转化为运用推论即对应实、虚部函数是否具有一阶连续偏导数,是否满足柯西-黎曼条件来判定.3.多项式复函数、整数次幂的幂函数、有理函数(分母不为零时)在整个复平面上解析.解析函数的四则运算解析(作商式运算时分母不为零).4.函数的导数公式只须记住:()u v f z i x x∂∂'=+∂∂及柯西-黎曼方程,则在求导数时可根据条件写出相应公式.易犯错误:函数在一点的解析性与在一个区域上的解析性概念混淆.判断函数解析性时方法不妥或错误运用概念.不能正确灵活地求函数的导数.。
第二章 复变函数第一节 解析函数的概念及C.-R.方程1、导数、解析函数定义2.1:设()w f z =是在区域D 内确定的单值函数,并且0z D ∈。
如果极限00,0()()limz z z Df z f z z z →∈--存在,为复数a ,则称)(z f 在0z 处可导或可微,极限a 称为)(z f 在0z 处的导数,记作0'()fz ,或z z dw dz=。
定义2.2:如果()f z 在0z 及0z 的某个邻域内处处可导,则称()f z 在0z 处解析;如果()f z 在区域D 内处处解析,则我们称()f z 在D 内解析,也称()f z 是D 的解析函数。
解析函数的导(函)数一般记为'()f z 或d ()d f z z。
注解1、εδ-语言,如果任给0ε>,可以找到一个与ε有关的正数()0δδε=>,使得当z E ∈,并且0||z z δ-<时,00()()||f z f z a z z ε--<-,则称)(z f 在0z 处可导。
注解2、解析性与连续性:在一个点的可导的函数必然是这个点的连续函数;反之不一定成立;注解3、解析性与可导性:在一个点的可导性是一个局部概念,而解析性是一个整体概念;注解4、函数在一个点解析,是指在这个点的某个邻域内解析,因此在此点可导;反之,在一个点的可导性不能得到在这个点解析。
解析函数的四则运算:()f z 和()g z 在区域D 内解析,那么()()f z g z ±,()()f z g z ,()/()f z g z (分母不为零)也在区域D内解析,并且有下面的导数的四则运算法则:(()())''()'()[()()]''()()()'()f zg z f z g z f z g z f z g z f z g z ±=±=+2()'()()()'()()[()]'f z f z g z f z g z g z g z -⎡⎤=⎣⎦。