第二章 解析函数
- 格式:doc
- 大小:1.28 MB
- 文档页数:15
第二章解析函数•复变函数的导数•解析函数的概念•初等解析函数复函数的求导法则由于复变函数中导数的定义与一元实变函数中导数的定义在形式上完全一致, 并且复变函数中的极限运算法则也和实变函数中一样, 因而实变函数中的求导法则都可以不加更改地推广到复变函数中来, 且证明方法也是相同的.例2证明()2f z x yi =+在复面内处处连续,但处处不可导.证明对复平面内任意点z , 有()()f z z f z +Δ−2.x yi =Δ+Δ()2()2x x y y i x yi =+Δ++Δ−−故0lim[()()]0.z f z z f z Δ→+Δ−=这说明()2f z x yi =+在复面内处处连续.000()()() (), f z z f z f z z z z ρ′+Δ−=Δ+ΔΔ,)()(lim 000z f z z f z =Δ+→Δ所以lim ()0,z z ρΔ→Δ=再由即()f z 在0z 处连续.反之, 由例2知, 处处不可导,()2f z x yi =+但处处连续。
例5问题:对函数f (z ) = u (x ,y ) + iv (x ,y ),如何判别其解析(可导)性?换句话说:()(),f z u v 的解析可导与的偏导数之间有什么关系?解析函数的性质:(1)两个解析函数的和、差、积、商仍为解析函数;(2)两个解析函数的复合函数仍为解析函数;(3)一个解析函数不可能仅在一个点或一条曲线上解析;所有解析点的集合必为开集。
证明必要性. 若存在,设0()f z ′0()f z a ib ′=+(a , b 是实常数). 因此000()()()f z z f z f z z z α′+Δ−=Δ+Δ12()()()()a ib x i y i x i y αα=+Δ+Δ++Δ+Δ12()a xb y x y αα=Δ−Δ+Δ−Δ21(,i b x a y x y αα+Δ+Δ+Δ+Δ其中12Re , Im .αααα==且当时,0z Δ→120, 0.αα→→0000(,)(,),u u x x y y u x y Δ=+Δ+Δ−0000(,)(,),v v x x y y v x y Δ=+Δ+Δ−则于是有00()().f z z f z u i v +Δ−=Δ+Δ12()u i v a x b y x y ααΔ+Δ=Δ−Δ+Δ−Δ21().i b x a y x y αα+Δ+Δ+Δ+Δ由两个复数相等的条件可得设21.v b x a y x y ααΔ=Δ+Δ+Δ+Δ12,u a x b y x y ααΔ=Δ−Δ+Δ−Δ于是,1(,),(,)..a u x y v x y C R =−−当时,满足条件,().f z z 从而在平面上处处可微,处处解析1(,),(,)0..a u x y v x y y C R ≠−=−当时,仅在直线上满足条件,().f z z 故在平面上处处不解析()00.f z y y =≠从而仅在上可微,在上不可微作业3第89页,第二章习题(一):2;4(1)(3);5(2)(4);7;8(2)(4);9; 11(1)(3)。
第2章、解析函数第⼆章解析函数本章介绍复变函数中⼀个重要的概念:解析函数,并给出⼀个重要的判定⽅法:柯西黎曼条件。
最后分别介绍⼀些重要的单值初等解析函数及多值初等函数的分⽀解析。
第⼀节解析函数的概念与柯西-黎曼条件1、复变函数的导数:设()w f z =是在区域D 内确定的单值函数,并且,0z D ∈。
如果极限()000()lim z z f z f z z z →-- 存在,为复数a ,则称)(z f 在0z 处可导或可微,极限a 称为)(z f 在0z 处的导数,记作0()f z ',或0z z dw dz =。
2、解析函数:定义:如果)(z f 在0z 及0z 的某个邻域内处处可导,则称)(z f 在0z 处解析;如果)(z f 在区域D 内处处解析,则我们称)(z f 在D 内解析,也称)(z f 是D 的解析函数。
解析函数的导(函)数⼀般记为)('z f 或z z f d )(d 。
注1、此定义也⽤εδ-语⾔给出。
注2、可导必连续注3、解析必可导性,在⼀个点的可导不⼀定解析,可导性是⼀个局部概念,⽽解析性是⼀个整体概念;解析函数的四则运算:()f z 和()g x 在区域D 内解析,那么)()(z g z f ±,)()(z g z f ,)(/)(z g z f (分母不为零)也在区域D 内解析,并且有下⾯的导数的四则运算法则:(()())()()f z g x f z g z '''±=±[()()])()()()()f zg x f z g z f z g z ''=+2()()()()()()(()0)()()f z f z g z f z g z g z g z g z ''-'=≠复合求导法则:设)(z f =ζ在z 平⾯上的区域D 内解析,)(ζF w =在ζ平⾯上的区域1D 内解析,⽽且当D z ∈时,1)(D z f ∈=ζ,那么复合函数)]([z f F w =在D 内解析,并且有z z f F z z f F d )(d d )(d d )]([d ζζ=求导的例⼦:(1)如果()f x a =(常数),那么;()0df z dz= (2)z 的任何多项式 n n z a z a a z P +++=...)(10在整个复平⾯解析,并且有 121...2)('-+++=n n z na z a a z P(4)、在复平⾯上,任何有理函数,除去使分母为零的点外是解析的,它的导数的求法与z 是实变量时相同。
基本要求:1 掌握函数在一点处(区域)可导,一点处解析(区域)的概念及相互之间的联系;2掌握函数在一点处可导的充分必要条件;3 掌握函数 解析性的判定方法,掌握解析函数与调和函数之间的关系。
第二章 解析函数解析函数是本课程讨论的中心,是复变函数研究的主要对象,它在理论和实际问题中有着广泛的应用。
本章先引入复变函数的导数的概念,然后讨论解析函数,介绍函数解析的一个充分必要条件,它是用函数的实部和虚部所具有的微分性质来表达的。
最后介绍一些常用的初等函数,并讨论它们的解析性。
§1 解析函数的概念1.1 复变函数的导数定义1.1区域D , 0Z 为D 中一点,点0Z +z 不出D 的范围。
如果极限0+0z 0(z -(lim zf z f z )) 存在,则称f(Z)在0Z 处可导,这个极限值称为(z)f )在0Z 处的导数,记作()00 z=z |'=d f dz z ω= 0+0z 0(z -(lim z f z f z →)), (2.1)也就是说,对于任给的ε>0,相应地有δ(ε)>0,使得当0<|Δz|<δ时,有| 0+0(z -(zf z f z ))—()0'f z | < ε. 如果()f z 在区域D 内处处可导,则称()f z 在D 内可导. 也称()df z = ()0z 'f z 或()0z 'd f z 为()f z 在0z 处的微分.例1.1 求()2=f z z 的导数.解 因为0+0z 0(z -(lim z f z f z →))=+22z 0(z -z lim zf z →)=z 0 lim (2z+z)=2z → 所以'(z)=2z f .例 1.2 问(z)f =x+2yi 是否可导? 解 +z 0(z -(lim zf z f z →))=z 0(+- (y+y i--2yi lim zf x x f x →)) = z 0+2yilim +yi x x →若z+Δz 沿平行于x 轴的方向趋向于z ,则Δy=0,z 0+2yi lim +2yi x x →=z 0lim x x →=1.若z+Δz 沿平行于y 轴的方向趋向于z ,则Δx=0,z 0+2yi lim +yix x →= z 02lim yi yi →=2. 故(z)f = +2x yi 的导数不存在.由例1.2可见,函数(z)f = +2x yi 在复平面内处处连续但处处不可导,然而,反过来容易证明在0z 可导的函数必定在0z 连续.事实上,由(z)f 在0z 可导的定义,对于任给的ε>0,有δ>0,当0<|Δz|<δ时,有 |0+0(z -(z f z f z ))—()0'f z | < ε.令()z ρ=0+0(z -(z f z f z ))—()0'f z , 则0+0(z )-(z )z f f =0+z z '(z )()z f ρ.(2.2)而z z 0lim =0ρ→(), 所以+z 0z 0lim =(z )f f →0(z ).即(z)f 在0z 连续.由导数的定义和极限运算法则,不难得出如下的求导公式与法则:(1) (C )’=0,其中C 为复常数.(2) (nz )’=n n-1z ,其中n 为正常数. (3) [(z)g(z)]'='(z)g'(z).f f ±±(4) [(z)g(z)]'='(z)g(z)+(z)g'(z)f f f .(5) 2(z)1[]'=['(z)g(z)-(z)g'(z)],g(z)0.(z)g (z)f f fg ≠ (6) {[(z)]}'='()g'(z)f g f ω,其中ω=(z)g .(7) '(z)f =1'ϕω(),其中=(z)f ω与z=ϕω()是两个互为反函数的单值函数,且'ϕω()≠0.1.2 解析函数的概念定义1.2 如果(z)f 在0z 及 0z 的邻域内处处可导,则称(z)f 在0z 处解析;如果(z)f 在区域D 每一点解析,则称(z)f 在D 内解析,或说(z)f 是D 内的解析函数.如果(z)f 在0z 不解析,则称0z 为(z)f 的奇点.若函数在一点解析,则一定在该点可导,但过来不一定成立.函数在一点解析和在一点可导是两个不等价的概念.但是函数在区域内解析与在区域内可导是等价的.例1.2 研究函数(z)f =2z ,g(z)=+2x yi , 2h(z)=|z |的解析性.解 例1.1知(z)f =2z 在复平面内处处解析,由例1.2知g(z)=+2x yi 处处不解析.下面研究2h(z)=|z |的解析性. .由于0+0h(z -h(z z z ))=0+220|z|-||zz z =00000+z z +z -z z =z +z+z zz z z ()(), (i ) 若0z =0,当z →0时,上式的极限是零.(ii ) 若0z 0≠,当0+z z 沿平行于x 轴方向趋于0z 时,y =0, 0z 00z -lim =lim =lim =1z +z x x yi x x yi x →→→. 当0+z z 沿平行于y 轴方向趋于0z 时,x =0, 0z 00z --lim =lim =lim =-1z +z x x yi yi x yi yi→→→. 从而0+000z -()z =z +z+z zz z z h ()h , 当z →0时,极限不存在.由(i ),(ii )可知,2h(z)=|z |仅在z=0处可导,而在其他点都不可导,从而它在复平面内处处不解析。
第二章 解 析 函 数解析函数是复变函数研究的主要对象.本章介绍导数、解析函数的概念,并介绍一些常用初等函数的解析性.§1.解析函数的概念1.导数与微分 导数定义:设)(z f w=,D z ∈(区域),D z ∈0.若极限zz f z z f z ∆-∆+→∆)()(lim000存在,则称)(z f 在0z 处可导,记为)(0z f ',00 ,z z z z dz dfdz dw ==.若)(z f 在区域D 内处处可导,称 )(z f 在D 内可导.例1.求32)(2+=z z f 的导数.解:z z z zz z z z z f z z f z f z z z 4)Δ2(2 lim ]32[]3)(2[lim )()(lim )(0 220 0 =+=∆+-+∆+=∆-∆+='→∆→∆→∆,)(C z ∈.(处处可导).例2.问 yi x z f 3)(+= 是否可导 )(iy x z +=?解:z z z ∆+→,x x x ∆+→,y y y ∆+→,y i x z ∆+∆=∆.yix yix z yi x i y y x x z z f z z f z z z ∆+∆∆+∆=∆+-∆++∆+=∆-∆+→∆→∆→∆3 lim ]3[])(3)[(lim )()(lim0 0 0. 设z z ∆+ 沿平行于x 轴方向趋于z ,则0=∆y ,极限为 1lim 3lim 0 0 =∆∆=∆+∆∆+∆→∆→∆x xyi x yi x x z ;设z z ∆+ 沿平行于y 轴方向趋于z ,则0=∆x ,极限为33lim 3 lim 0 0 =∆∆=∆+∆∆+∆→∆→∆yiyi yi x yi x y z . 所以yi x z f 3)(+= 的导数不存在,无处可导.可导与连续的关系:函数可导⇒连续; 但函数连续≠⇒可导.证:“可导⇒连续”. 设)(z f 在0z 可导, 则 0 0, >∃>∀δε,当 δ<∆<z 0 时,ερ<'-∆-∆+=∆)()()(000z f zz f z z f . 因此,0lim 0 =→∆ρz . 而z z z f z f z z f ∆⋅+∆'=-∆+ρ)()()(000, 所以 )()(lim 000z f z z f z =∆+→∆,)(z f 在0z 连续. “连续≠⇒可导”. 见例2.求导法则:复变函数的导数定义与实函数的导数定义一致,故求导法则也相同.罗列如下,应当牢记. (1) )( ,0)(C c c ∈='; (2) ) ( , )(1N n z n z n n ∈='-;(3))()(])()([z g z f z g z f '±'='±; (4) )()()()(])()([z g z f z g z f z g z f '+'=';(5) ) 0)g( ( ,)()()()()()()(2≠'-'='⎥⎦⎤⎢⎣⎡z z g z g z f z g z f z g z f ; (6))()(})]([{z g w f z g f ''=',其中)(z g w =;(7) )(1)(z f w '='ϕ, 其中)(z f w =是)(w z ϕ= 的反函数,0)(≠'z f .微分:若)(z f 在0z 可导, 则 )()()()(000z o z z f z f Δz z f w ∆⋅+∆'=-+=∆, 定义dz z f dw )(0'=.2.解析函数 定义:(a ) 若)(z f 在0z 的某一邻域) ,(0δz U 内可导,称)(z f 在0z 处解析; (b ) 若)(z f 在区域D 内的每一点解析,称)(z f 在D 内解析;(c ) 若)(z f 在0z 不解析,称0z 为)(z f 的一个奇点.注:函数在区域内解析与可导等价.但可导与解析并不等价.函数在一点 0z 处可导,并不意味着在0z 处解析.例1.讨论32)(21+=z z f 和 yi x z f 3)(2+= 的解析性.解:)( ,4)(11z f z z f =' 在复平面上解析,称为全纯函数;)(2z f 处处不可导,无处解析. y例2.讨论函数 )1(1+=z z w 的解析性. 解:当1 0-≠≠z z 及 时, w 可导:22)1()12(++-=z z z dz dw . x 所以,在除0=z 及1-=z 外的复平面上,)(z f w = 解析.而1 0-==z z 和 是w 的两个奇点. 称函数)(z f w = 为亚纯函数.定理.两个解析函数的和、差、积、商(分母不为零)仍然是解析函数;解析函数的复合函数也是解析函数. 结论:多项式在C 内处处解析;有理分式函数)()()(z Q z P z f = 在分母不为零的区域内解析.§2.函数解析的充要条件判断复函数) ,() ,()(y x iv y x u z f += 是否解析,有如下的充要条件.定理.函数) ,() ,()(y x iv y x u z f += 在iy x z += 处可导的充要条件是:) ,(y x u 、) ,(y x v 在点 ) ,(y x 处可微,并且满足Riemann Cauchy- 方程: xvy u y v x u , ∂∂-=∂∂∂∂=∂∂.此时,有导数公式x y y x v i v iu u z f )(+=-='. (证略)注:(1) 若) ,(y x u 、) ,(y x v 在D 内具有一阶连续偏导数,且满足R C -方程,则)(z f 解析;(2) 将点改成区域D ,便得)(z f 在D 内解析的充要条件.例1.判断下列函数是否解析. (1)z z f =)(;(2))sin (cos )(y i y e z f x +=.解:(1)iy x z z f -==)(,y v x u -== ,. 100 ,1-====y x y x , v , v u u .y x v u ≠,不满足R C -方程, 故z z f =)( 无处可导, 无处解析.(2)y e u x cos =,y e v x sin =. 由于⎪⎩⎪⎨⎧-=-===x x yy xx v y e u v y e u sin cos , )(z f 处处解析,全纯函数. 例2.证明:若在区域D 内0)(='z f ,则 c z f ≡)((复常数).证:000 )( i v i v iu u z f x y y x +==+=-=',故0====y x y x v v u u21 c , v c u ≡≡⇒ c ic c z f Δ=+≡⇒21)( .例3.函数 iy x z f -=2)( ) (iy x z += 在何处连续?何处可导?何处解析?解:y v x u-== ,2,二元初等函数,处处连续,所以)(z f 处处连续. -⎪⎩⎪⎨⎧=-==-===0012x y y x v u v x u R , y x ∈-=⇒21. 故)(z f 仅在直线 21-=x 上可导,1)(-='z f . 但直线不含邻域,所以)(z f 无处解析.§3.初 等 函 数1.指数函数: 复变数指数函数:)sin (cos exp )( y i y e e e e e z z f x y i x y i x z +=⋅====+.它等价于关系式:x z e e = 及 πk y e Arg z2)(+=. 故0≠z e .z e z f =)( 具有性质:(1))()(z f z f =',)(z f 在C 内解析;(2) 若0)Im(==z y ,x e z f =)(; 若 0)Re(==z x ,y i y e z f i y sin cos )(+==;(3)ze服从加法定理:2121z z z z ee e+=⋅,2121z z z z e e e -=;(4) ze以i k 2π为周期:) ( , 2 2Z k e e e ez i k z ik z ∈=⋅=+ππ.例1.计算 22πi e+. 大写整数集Z解:22222sin 2cos ie i e ei =⎪⎭⎫ ⎝⎛+=+πππ.2.对数函数 定义:指数函数 0)( ,≠=z z e w 的反函数称为对数函数.记作) ,() ,()(y x iv y x u z f w +==, 而 θi re z =.则θi iv u re e =+, 故θ===r, v u e r u ln ,.这样,对数函数为 ) 0( , ln ≠=+=∆z z Ln iArgz z w (多值函数).若Argz 取主值,记 z i z z arg ln ln +=, 称为 z Ln 的主值.其它分支可表为 ) 0 ( , 2ln ≠∈+=Z, z k i k z z Ln π. 称为z Ln 的单值分支.特别,当x z x z ln ln , 0=>=时 (实对数函数).运算性质:2121 )(Lnz z Ln z z Ln +=,2121Lnz z Ln z z Ln -=.例1.求3 Ln ,)1( -Ln ,i Ln 以及相应的主值.解:i k Ln 23ln 3π+=,)(Z k ∈;主值为3ln ;i k iArg Ln )12()1(1ln )1( π+=-+=-,)(Z k ∈; 主值为i )1ln(π=-;i k iArgi i i Ln )212( ln π+=+=,)(Z k ∈;主值为i i 2ln π=. 对数函数的连续性与解析性: 对于z i z zarg ln ln +=,当 0≠z 时,z ln 连续,而z arg 则在原点与负实轴上不连续,故除原点与负实轴外,z ln 处处连续.w e z = 在区域 ππ<<-z arg 的反函数z w ln =单值,由反函数的求导法,有:ze dw de dz dw z w w11)(ln 1==⎪⎪⎭⎫ ⎝⎛=='-.因此,在除去原点与负实轴的复平面内 z ln 解析, z ln 的每个单值分支也解析,且 zLnz 1)(='. 3.幂函数定义:)(ln z iArg z Lnz z Ln ee ez w +====αααα, (α0,≠z 为复常数).由z Ln 的多值性,i k z Lnz e e e w 2ln απαα⋅==, )(Z k ∈. 可见,αz 也是多值函数(当α不是整数),幂函数的解析性:由于Lnz 的每一单值分支在除去原点与负实轴的复平面内解析,由复合函数的解析性知,αz 的每一单值分支在除去原点与负实轴的复平面内解析,且111 )()(---⋅=⋅=⋅='='ααααααααz z z z e e z Lnz z Ln .例1.求21和i i )1( - 的值.解:ik iArg Ln e ee 22)1 1(ln 21221π===+,)(Z k ∈.)2ln sin 2ln (cos )1(2 4) 2ln 2 4()4i 22ln ( )1( i eeeei k i k i k i i Ln i i +====--+--+-ππππππ,)(Z k ∈.4.三角函数与双曲函数由⎪⎪⎩⎪⎪⎨⎧-=+=⇒⎪⎩⎪⎨⎧-=+=---)(21sin )(21cos sin cos sin cos θθθθθθθθθθθθi i i i i i e e i e e i e i e , 称为Euler 公式.定义:)(21sin ),(21cos z i z i z i z i e e iz e e z ---=+=. zz z cos sin tan =;zzctg sin cos =;z z cos 1sec =; zz s i n 1c s c =.z z cos )(sin =',z z sin )(cos -=',处处解析. 大多数三角公式对于z z cos ,sin 成立.双曲余弦:)(21cosh zz e e chz z -+==;双曲正弦:)(21sinh z ze e shz z --==; 双曲正切:zz zz e e e e chz shz thz z --+-===tanh .以上函数均在定义域(分母不为零处)内可导并且解析. 5.反三角函数与反双曲函数 三角函数的反函数称为反三角函数.w z sin = 的反函数称为反正弦函数.下求之.由)(21sin iw iw e e iw z --==, 得 iwe 的二次方程:012)(2=--iw iw ize e , 根为:21z iz e w i -+=, (21z - 为双值函数). 所以)1( sin 2z iz Ln i z Arc w -+-==.反余弦函数:)1( cos 2-+-=z z Ln i z Arc ; 反正切函数:izizLn i Arctgz -+-=112.双曲函数的反函数称为反双曲函数. 它们是: 反双曲正弦:)1( 2++=z z Ln Arshz ; 反双曲余弦:)1( 2-+=z z Ln Archz ;反双曲正切:z1z 1 21-+=Ln Arthz . 它们都是多值函数.在复变函数中,常值函数、指数函数、对数函数、幂函数、三角函数、双曲函数、反三角函数等七类函数称为复基本初等函数.复初等函数:由复基本初等函数经过有限次加、减、乘、除和复合运算,能由一个式子表示的函数称为复初等函数. 如:ze z tgz w +=2,z e w z ln sin +=,等等.。
第二章 解析函数§1 复变函数一 、复变函数的概念1. 定义:设D 为复平面上的点集,对∀点D z ∈,按某种法则,总有另一复数W 与之对应,则称W 是Z 的复变函数,记为)(z f w =。
其中,称W 为像;Z 为原像。
若W Z 与是一一对应,则称)(z f w =为单值函数,若W Z 与 是相互一一对应,则称)(z f w =为单叶函数;Z 对应多个W , 则称)(z f w =为多值函数。
2、复变函数与实变函数的关系设iy x z +=,iv u y x iv y x u z f W +=+==),(),()(,即有⎩⎨⎧⋅=⋅=)()(y x v v y x u u 这说明了一个复变函数可以用两个二元实变函数 ),(),,(y x v y x u 来表示。
例:xy i y x Z W 2)(222+-==⎩⎨⎧=-=⇒xyv y x u 222。
⎪⎪⎩⎪⎪⎨⎧+-=+=⇒+-+=+-===22222222221y x y v y x x u y x y i y x x y x iy x z z z z w 3.关于映射的慨念复变函数在几何上又称为映射(或变换)。
这种函数关系要用两个平面来表示。
函数)(z f w =在几何上可以看成是把z 平面上的一个点集G 映射到w 平面上的一个点集*G 。
例 z w =,显然,它将z 平面上的点i z 321+=映射成w 平面上的 点i w 321-=,将点i z 212-=映射成w 平面上的点i w 212+=, 将三角形ABC 映射成w 平面上的三角形'''C B A .见下图:例2 问:函数2z w =将z 平面上的曲线C x =映射成w 平面上的何种曲线?解 ⎩⎨⎧=-=⇒+-=+==xyv yx u xy i y x iy x z w 22)(222222xy v 2=可得22242C v C u c x x v y -=⇒== 是w 平面上 关于以u 轴为对称的抛物线。
例 .1642;41122v u x v u x -=⇒=-=⇒=例3 变换 zw 1=将z 平面上的直线1=x 映射成w 平面上的何种曲线? 解 22222211y x y i y x x y x iy x iy x z w +-+=+-=+==,⎪⎩⎪⎨⎧+-=+=⇒⎪⎪⎩⎪⎪⎨⎧+-=+=22222222v u vy v u u x y x y v y x x u 1=x 代入方程,可得22222)21()21(1=+-⇒=+v u v u u ,显然为w 平面上圆。
由以上例子,可以总结出一般的将z 平面上的曲线映射成w 平面上的何种曲线时,考虑问题的方法是:先求出函数),(),()(y x iv y x u z f w +==中的)1(),(),(⎩⎨⎧==y x v v y x u u ,再反解出 )2(),(),(⎩⎨⎧==v u y v u x ψϕ,由给出的条件代入(1), 可得 在w 平面上的相应的含有v u 和.的曲线方程。
二、复变函数的极限和连续 (内容省略) (一)、复变函数的极限1 .定义 设函数)(z f w =在点0z 的某个邻域有定义,A 复常数。
若对任意给定的0>ε,相应地必有一正数)(εδ,使得 当ρ<-<00z z 时,有,)(ε<-A z f 则称A 为)(z f 当z 趋向于0z 时的极限,记为A z f z z =→0)(lim 。
必须注意,定义中的z 趋向于0z 的方式必须是任意的。
定理1 设 ),(),()(y x iv y x u z f +=,00000,iy x z iv u A +=+=, 则A z f z z =→)(lim 0的充要条件是00),(lim ,),(lim 0v y x v u y x u y y x x y y x x ==→→→→。
这个定理说明求复变函数 ),(),()(y x iv y x u z f +=的极限问题 可以转化为求两个二元实函数),(y x u 和),(y x v 的极限问题。
2.极限的运算法则——完全类似于实函数的极限运算法则 如果A z f z z =→)(lim 0,B z f z z =→)(lim 0,那末1)B A z g z f z z ±=±→)]()([lim 0; 2)AB z g z f z z =→)()(lim 0;3)0,)()(lim≠=→B BAz g z f z z 。
(二)、函数的连续性1定义 如果)()(lim 00z f z f z z =→,则称函数)(z f 在点0z 处连续。
如果)(z f 在区域D 内处处连续,我们说)(z f 在D 连续。
定理2 函数),(),()(y x iv y x u z f +=在000y x z +=处连续的充要条件是:),(y x u 和),(y x v 在点),(00y x 处连续。
2 .连续函数的和、差、积、商(分母不为零)仍为连续函数, 连续函数的复合函数仍为连续函数。
§2解析函数一、解析函数的慨念1. 复变函数的导数1)定义 设函数)(z f w =是定义于区域D 。
0z 与z z ∆+0均为D 内的点。
若极限zz f z z f z ∆-∆+→∆)()(lim000存在,则称)(z f 在0z 处可导(可微),这个极限值称为)(z f 在0z 处的导数, 记为 )(0'z f 或z z dzdw==zz f z z f z z ∆-∆+→)()(lim000。
也就是说,对任意给定的0>ε,相应地有一个0)(>εδ,使得当δ<∆<z 0时,总有ε<-∆-∆+)()()(0'00z f zz f z z f 。
应当注意,定义中0→∆z 的方式是任意的。
如果)(z f 在D 处处可导, 则称)(z f 在D 可导。
例1 求2)(z z f =的导数。
解 因为zz z z z z f z z f z x ∆-∆+=∆-∆+→∆→∆200)(lim )()(limz z z z 2)2(lim 0=∆+=→∆所以 z z f 2)('=,即函数2)(z z f =在全平面均可导。
例2 问y i x z f 2)(+=是否可导?解 这里 =∆-∆+→∆zz f z z f z )()(lim 0yix yix z yi x i y y x x z z ∆+∆∆+∆=∆--∆++∆+→∆→∆2lim2)(2)(lim00 ① 设z ∆沿着平行于x 轴的方向趋于0,因为x z y ∆=∆=∆,0。
这时极限 1lim 2lim00=∆∆=∆+∆∆+∆→∆→∆xxyi x yi x x z② 设z ∆沿着平行于y 轴的方向0,因为0=∆x 。
这时y i z ∆=∆,极限.22lim 2lim00=∆∆=∆+∆∆+∆→∆→∆yyiyi x yi x y z所以函数y i x z f 2)(+=不可导。
2)可导与连续 从例2可以看出,函数yi x z f 2)(+=处处连续却处处不可导。
然而,反过来我们容易证明可导必定连续。
3) 求导法则 类似于实变函数。
2. 解析函数的慨念定义 如果函数)(z f 在0z 及0z 的邻域内处处可导,那末称)(z f 在0z 点解析。
如果)(z f 在区域D 内每一点解析, 则称)(z f 是D 内的一个解析函数。
若函数)(z f 在0z 点不解析, 称0z 为函数)(z f 的奇点。
例3 讨论2)(z z f =的解析性。
解 由于 zz z z z z f z z f z z ∆-∆+=∆-∆+→∆→∆20200000lim )()(lim ⎪⎪⎭⎫⎝⎛∆∆+∆+=∆-∆+∆+=→∆→∆z z z z z z z z z z z z z z 00000000lim ))((lim, 当00=z 时,这个极限是零;当00≠z 时,令z z ∆+0沿直线)(00x x k y y -=-趋于0z ,由于k 的任意性,kiki i zy ix y yi x yi x z z +-=∆∆+∆∆-=∆+∆∆-∆=∆∆1111 不趋于一个确定的值, 所以极限zz f z z f z ∆-∆+→∆)()(lim 000不存在。
因此,0)(2==z z z f 在处可导,而在其他点都不可导, 根据解析性定义,它在复平面上处处不解析。
定理 两个解析函数的和、差、积、商都是解析函数 (除去分母为零的点);解析函数的复合函数仍为解析函数。
§3 函数解析的充要条件在上一节中,我们已经看到并不是每一个复函数都是解析函数; 判别一个函数是否解析,如果只根据解析函数的定义进行判断, 往往是困难的,需要寻找判别函数可导与否的简便而实用的方法。
下面先讨论)(z f 可导的必要条件。
定理1 设函数),(),()(y x iv y x u z f +=在区域D 内有定义,iy x z +=是D 内任意一点。
若z z f 在点)(处可导,则),(),(y x v y x u 与满足柯西-黎曼(Cauchy-Riemann )条件:,,xvy u yv x u ∂∂-=∂∂∂∂=∂∂ 则)(z f 的导数为 yui y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=')(。
证 因为z z f 在点)(处可导,所以由导数定义,有zz f z z f z f z ∆-∆+='→∆)()(lim)(0=z w z ∆∆→∆0lim ,其中,v i u w ∆+∆=∆, y i x z ∆+∆=∆,则原式[]{-∆+∆++∆+∆+=→∆→∆),(),(lim 00y y x x iv y y x x u y x []})/(),(),(y i x y x iv y x u ∆+∆+其中z ∆以任意方式趋于零,因此可以选取两条特殊路线使0→∆z 。
[]})/(),(),(y i x y x v y y x x v i ∆+∆-∆+∆+[]{+-∆+∆+=→∆→∆),(),(lim 00y x u y y x x u y x ,lim0yx vi u y x ∆+∆∆+∆=→∆→∆①当z ∆沿平行于实轴的直线趋于零,即0,≡∆∆=∆y x z 时,有x v i x u x v i x ux v i u z f x x ∂∂+∂∂=⎪⎭⎫ ⎝⎛∆∆+∆∆=∆∆+∆='→∆→∆00lim lim)(。
②当z ∆沿平行于虚轴的直线趋于零,即0,≡∆∆=∆x y i z 时,有y u i y v y u i yv y i vi u z f y y ∂∂-∂∂=⎪⎪⎭⎫ ⎝⎛∆∆-∆∆=∆∆+∆='→∆→∆00lim lim)(, 于是yui y v x v i x u ∂∂-∂∂=∂∂+∂∂, 比较上式两端,即得上述条件称为柯西-黎曼条件,或称柯西-黎曼方程,简记为C-R 条件。