12-2法拉第电磁感应定律 自感
- 格式:doc
- 大小:335.00 KB
- 文档页数:6
第2讲法拉第电磁感应定律自感现象主干梳理对点激活知识点法拉第电磁感应定律Ⅱ1.感应电动势(1)概念:在□01电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的□02磁通量发生改变,与电路是否闭合□03无关。
(3)方向判断:感应电动势的方向用□04楞次定律或□05右手定则来判断。
2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的□06磁通量的变化率成正比。
(2)公式:□07E=nΔΦΔt,其中n为□08线圈匝数。
(3)感应电流与感应电动势的关系:遵守□09闭合电路欧姆定律,即I=□10 E。
R+r3.导体切割磁感线时的感应电动势知识点自感、涡流Ⅰ1.互感现象两个互相靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的□01磁场会在另一个线圈中产生□02感应电动势的现象。
2.自感现象(1)定义:当一个线圈中的电流变化时,它产生的变化的磁场在它□03本身激发出□04感应电动势。
(2)自感电动势①定义:由于□05自感而产生的感应电动势。
②表达式:E=□06LΔIΔt。
③自感系数L相关因素:与线圈的大小、形状、□07圈数以及是否有□08铁芯等因素有关。
单位:亨利(H),1 mH=□0910-H,1 μH=10-6 H。
3.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生□10感应电流,这种电流像水的旋涡,所以叫涡电流,简称涡流。
(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到□11安培力,安培力的方向总是□12阻碍导体的运动。
(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生□13感应电流,使导体受到安培力的作用,安培力使导体运动起来。
交流感应电动机就是利用□14电磁驱动的原理工作的。
(3)电磁阻尼和电磁驱动的原理体现了□15楞次定律的推广应用。
一思维辨析1.导体棒在磁场中运动一定能产生感应电动势。
()2.公式E=B l v中的l就是导体的长度。
()3.断电自感中,感应电流方向与原电流方向一致。
第十二章电磁感应第2讲法拉第电磁感应定律、自感和涡流课标要求核心考点五年考情核心素养对接1.通过实验,理解法拉第电磁感应定律.2.通过实验,了解自感现象和涡流现象.能举例说明自感现象和涡流现象在生产生活中的应用.法拉第电磁感应定律的理解及应用2023:天津T10;2021:全国乙T25,全国甲T21;2020:全国ⅢT24;2019:全国ⅠT201.物理观念:理解法拉第电磁感应定律的内涵;知道自感、涡流、电磁阻尼和电磁驱动.2.科学思维:通过类比法,理解感生电场和静电场的区别;应用法拉第电磁感应定律计算感应电动势的大小.3.科学探究:通过对法拉第电磁感应定律、自感现象和涡流现象的探究,掌握对实验证据进行分析与归纳的方法.4.科学态度与责任:通过学习自感现象与涡流现象、电磁阻尼与电磁驱动在生产生活中的应用,认识物理学对现代生活和科技社会发展的促进作用.导体切割磁感线产生感应电动势2022:山东T12;2021:广东T10,河北T7;2020:浙江7月T12自感、涡流、电磁阻尼和电磁驱动2023:全国乙T17;2020:浙江1月T11命题分析预测法拉第电磁感应定律是电磁学的核心知识,是解决电磁感应问题的重要规律,单独考查时常为选择题形式,主要考查感应电动势的计算,综合考查时常结合动力学、能量、电路等知识进行考查.预计2025年高考可能会结合生产生活实际,考查应用法拉第电磁感应定律、切割公式等计算感应电动势的大小问题,与安培力相关的电磁阻尼、电磁驱动问题.考点1法拉第电磁感应定律的理解及应用1.对法拉第电磁感应定律的理解2.法拉第电磁感应定律的应用(1)法拉第电磁感应定律应用的三种情况产生原因ΔΦE 面积随时间变化(动生)ΔΦ=B·ΔS E=nBΔSΔt磁场随时间变化(感生)ΔΦ=ΔB·S E=nSΔBΔt面积和磁场同时随时间变化ΔΦ=Φ末-Φ初E=n B2S2-B1S1Δt(2)应用法拉第电磁感应定律的注意事项求解的是一个回路中某段时间内的平均感应电动势,只有在磁通量均匀变化①公式E=nΔΦΔt时,感应电动势的平均值才等于瞬时值.S求解时,S为线圈在磁场中的有效面积.②利用公式E=nΔBΔt③通过回路截面的电荷量q仅与n、ΔΦ和回路电阻R有关,与时间长短无关,q=nΔΦ.R,判断下列说法的正误.理解公式E=nΔΦΔt不一定等于0.(√)(1)Φ=0,ΔΦΔt(2)穿过线圈的磁通量变化越大,感应电动势也越大.(✕)(3)穿过线圈的磁通量变化越快,感应电动势越大.(√)(4)线圈匝数n越多,磁通量越大,感应电动势也越大.(✕)如图,电流表与螺线管组成闭合回路.判断下列说法的正误.(1)磁铁快速插入螺线管时比慢速插入螺线管时电流表指针偏转大.(√)(2)磁铁快速插入螺线管和慢速插入螺线管,磁通量变化相同,故电流表指针偏转相同.(✕)(3)磁铁放在螺线管中不动时,螺线管中的磁通量最大,所以电流表指针偏转最大.( ✕ )(4)将磁铁从螺线管中拔出时,磁通量减小,所以电流表指针偏转一定减小.( ✕ )命题点1 平均电动势与瞬时电动势的计算1.如图所示,可绕固定轴OO'转动的正方形单匝金属线框的边长为L ,线框从水平位置由静止释放,经过时间t 到达竖直位置,此时ab 边的速率为v .设线框始终处在方向竖直向下、磁感应强度为B 的匀强磁场中,求:(1)这个过程中线框中的平均感应电动势;(2)到达竖直位置瞬间线框中的感应电动势. 答案 (1)BL 2t(2)BLv解析 (1)金属线框从水平位置运动到竖直位置的过程中,由法拉第电磁感应定律可得平均感应电动势E =ΔΦΔt =BL 2t(2)线框到达竖直位置时,只有ab 边切割磁感线产生感应电动势,则线框中的感应电动势E =BLv .命题点2 感应电动势的计算2.[2023湖北]近场通信(NFC )器件应用电磁感应原理进行通讯,其天线类似一个压平的线圈,线圈尺寸从内到外逐渐变大.如图所示,一正方形NFC 线圈共3匝,其边长分别为1.0cm 、1.2cm 和1.4cm ,图中线圈外线接入内部芯片时与内部线圈绝缘.若匀强磁场垂直通过此线圈,磁感应强度变化率为103T/s ,则线圈产生的感应电动势最接近( B )A.0.30VB.0.44VC.0.59VD.4.3V解析由法拉第电磁感应定律得E=E1+E2+E3=ΔBΔt (S1+S2+S3),又ΔBΔt=103 T/s,S1=1.02×10-4 m2,S2=1.22×10-4 m2,S3=1.42×10-4 m2,代入数据解得E=0.44 V,B正确.3.如图甲所示,水平光滑U形导轨宽0.4m,金属棒ab垂直放置在导轨上,均匀变化的磁场垂直穿过导轨平面,磁感应强度随时间的变化规律如图乙所示,金属棒ab的电阻为1Ω,导轨电阻不计.t=0时刻,ab棒从导轨最左端,以v=1m/s的速度向右匀速运动,求1s末回路中的感应电流及金属棒ab受到的安培力.答案 1.6A,方向沿逆时针方向 1.28N,方向水平向左解析由图乙知,1s末磁感应强度B1=2Tab棒产生的动生电动势为E动=B1Lv=2×0.4×1V=0.8V回路中产生的感生电动势为E感=ΔBΔtLvt=2×0.4×1×1V=0.8V根据楞次定律知两个电动势串联,则总电动势为E=E动+E感=1.6V回路中的感应电流为I=ER =1.61A=1.6A,根据楞次定律知感应电流的方向沿逆时针方向1s末ab棒受到的安培力为F=B1IL=2×1.6×0.4N=1.28N,由左手定则知安培力的方向水平向左.方法点拨法拉第电磁感应定律的理解考点2导体切割磁感线产生感应电动势1.动生电动势产生原因导体做切割磁感线运动移动电荷的非静电力导体中自由电荷受沿[6] 导体 方向的洛伦兹力回路中相当于电源的部分做切割磁感线运动的导体方向判断方法通常由右手定则判断,也可由楞次定律判断大小计算方法 由E =Blv 计算,也可由E =nΔΦΔt计算2.导体平动切割磁感线导体平动切割磁感线产生感应电动势的计算式为E =Blv ,应从几个方面理解和掌握(1)正交性 本公式要求磁场是匀强磁场,还需B 、l 、v 三者[7] 相互垂直(2)平均性导体平动切割磁感线时,若v 为平均速度,则E 为平均感应电动势,即[8] E ̅=Bl v ̅(3)瞬时性导体平动切割磁感线时,若v 为瞬时速度,则E 为相应的[9] 瞬时感应电动势(4)有效性公式中的l 为导体的有效切割长度,即导体在与v 共同所在平面上垂直于v 的方向上的[10] 投影长度(5)相对性E =Blv 中的速度v 是导体相对于磁场的速度,若磁场也在运动,应注意速度间的相对关系3.导体转动切割磁感线如图,当导体棒在垂直于磁场的平面内,绕导体棒上某一点以角速度ω匀速转动时,则(1)以导体棒中点为轴时,E =0(相同两段的代数和)(2)以导体棒端点为轴时,E =12B ωl 2(平均速度取中点位置的线速度12ωl )(3)以导体棒上任意一点为轴时,E =12B ω(l 12-l 22)(不同两段的代数和,其中l 1>l 2)计算下面各图中的感应电动势.(1)如图1,E 1= Blv sinθ .(2)如图2,E 2= B cd v sinβ .图1 图2(3)如图3,E 3= B MN v .(4)如图4,若沿v 1方向运动,则E 4= √2BRv 1 ;若沿v 2方向运动,则E 5= BRv 2 .E=nΔΦΔt与E=Blv的区别E=nΔΦΔtE=Blv研究对象求整个闭合回路的感应电动势求回路中的部分导体切割磁感线时产生的感应电动势适用范围无论什么方式引起的磁通量变化都适用只适用于一段导体切割磁感线的情况条件不一定是匀强磁场一般只适用于匀强磁场物理意义当Δt→0时,求的是瞬时感应电动势;当Δt较长时,求的是平均感应电动势当v为瞬时速度时,求的是瞬时感应电动势;当v为平均速度时,求的是平均感应电动势判断电流方向一般用楞次定律判断感应电流方向一般用右手定则判断感应电流方向命题点1有效长度问题4.如图,一导线弯成半径为a的半圆形闭合回路.虚线MN右侧有磁感应强度为B的匀强磁场,方向垂直于回路所在的平面.回路以速度v向右匀速进入磁场,直径CD始终与MN垂直.从D点到达边界开始到C点进入磁场为止,下列说法错误的是(B)A.感应电流方向不变B.CD段直导线始终不受安培力C.感应电动势最大值E=BavD.感应电动势平均值E̅=14πBav解析在闭合回路进入磁场的过程中,通过闭合回路的磁通量逐渐增大,根据楞次定律和安培定则可知感应电流的方向始终为逆时针方向,A正确;根据左手定则可以判断,CD段受方向向下的安培力,B错误;利用感应电动势公式E=Blv计算时,l应是有效切割长度,当半圆形闭合回路进入磁场一半时,有效切割长度最大,为a,这时感应电动势最大,为E=Bav,C正确;感应电动势的平均值E=ΔΦΔt =B·12πa22av=14πBav,D正确.故选B.命题点2平动切割磁感线5.[2023福建泉州模拟/多选]如图所示,abcd为水平放置的U形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计.已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿垂直于MN的方向滑动(金属杆滑动过程中与导轨接触良好),则(AD)A.电路中感应电动势的大小为BlvsinθB.电路中感应电流的大小为BvsinθrC.金属杆所受安培力的大小为B2lvsinθrD.金属杆的热功率为B2lv2rsinθ解析由于速度方向是与金属杆垂直的,而整个金属杆又是与磁场垂直的,所以整个金属杆均垂直切割磁感线,切割长度L=lsinθ,所以感应电动势E=BLv=Blvsinθ,A正确;金属杆的电阻R=Lr=lsinθr,电路中的电流I=ER=Bvr,B错误;金属杆受到的安培力F=BIL=B2lv rsinθ,C错误;金属杆的热功率P=I2R=B2v2lrsinθ,D正确.命题拓展如图所示,如果金属杆以速度v沿平行于cd的方向滑动,则情况又如何呢?答案电路中的感应电动势E=Blv,感应电流I=ER =Elsinθr=Bvsinθr,金属杆所受安培力大小F=BI lsinθ=B2lvr,金属杆的热功率P=I2R=I2lsinθr=B2lv2sinθr..命题点3转动切割磁感线6.如图所示,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行于ab边向上.当金属框绕ab边以角速度ω逆时针转动时,a、b、c三点的电势分别为U a、U b、U c.已知bc边的长度为l.下列判断正确的是(C)A.U a>U c,金属框中无电流B.U b>U c,金属框中电流方向为a→b→c→aC.U bc=-12Bl2ω,金属框中无电流D.U bc=12Bl2ω,金属框中电流方向为a→c→b→a解析金属框abc平面与磁场平行,转动过程中磁通量始终为零,所以无感应电流产生,B、D错误;转动过程中bc边和ac边均切割磁感线,产生感应电动势,由右手定则可知U a<U c,U b<U c,A错误;由转动切割磁感线产生感应电动势的公式得U bc=-12Bl2ω,C 正确.如图所示,半径为r的金属圆盘在垂直于盘面向里的磁感应强度为B的匀强磁场中,绕过圆心垂直于盘面的金属轴以角速度ω沿逆时针方向匀速转动,电阻R一端通过导线连接在轴上,另一端通过导线连接在与圆盘边缘接触良好的金属片上,则通过电阻R的电流的方向和大小为(金属圆盘、轴和金属片的电阻不计)(D)A.由c到d,I=Bωr2R B.由d到c,I=Bωr2RC.由c到d,I=Bωr22R D.由d到c,I=Bωr22R解析圆盘可看作沿半径方向的无数根金属条,由右手定则知,其电流方向为从边缘指向圆心,所以通过电阻R的电流方向为由d到c;金属圆盘产生的感应电动势E=12Bωr2,由I=ER 知通过电阻R的电流大小为I=Bωr22R,D正确.考点3自感、涡流、电磁阻尼和电磁驱动1.感生电动势产生原因磁场的变化移动电荷的非静电力感生电场对自由电荷的电场力回路中相当于电源的部分处于变化磁场中的闭合导体方向判断方法楞次定律大小计算方法E=nΔΦΔt2.自感3.涡流4.感应电流的机械效应——电磁阻尼和电磁驱动电磁阻尼电磁驱动成因导体在磁场中运动产生→感应电流导致→导体受到安培力磁场运动引起磁通量变化产生→感应电流导致→导体受到安培力效果安培力方向与导体运动方向相反,阻碍导体运动安培力方向与导体运动方向相同,推动导体运动能量转化导体克服安培力做功,其他形式的能转化为电能,最终转化为内能通过安培力做功,电能转化为机械能,从而对外做功应用磁电式仪表中利用电磁阻尼使指针快速停下来,便于读数交流感应电动机相同点两者均属于感应电流的机械效应,都是电磁感应现象,且本质都是感应电流的磁场阻碍磁通量的变化(遵循楞次定律),均符合能量守恒定律判断下列说法的正误.(1)真空冶炼炉是利用涡流来熔化金属的装置.(√)(2)家用电磁炉锅体中的涡流是由恒定磁场产生的.(✕)(3)阻尼摆摆动时产生的涡流总是阻碍其运动.(√)(4)变压器的铁芯用相互绝缘的硅钢片叠成,不能减小涡流.(✕)磁电式仪表的线圈常常用铝框做骨架,把线圈绕在铝框上,指针也固定在铝框上(如图).铝框的作用是什么?答案假定仪表工作时指针向右转动,则铝框中有感应电流,铝框要受到安培力阻碍指针向右偏转,使指针快速停下,防止打坏指针.如图所示,小螺线管与音乐播放器相连,大螺线管直接与音响相连.当把小螺线管插入大螺线管中时,音乐就会从音响中响起来,大、小螺线管之间发生的物理现象是(C)A.自感B.静电感应C.互感D.直接导电解析小螺线管与音乐播放器相连,小螺线管中输入了音频信号,当把小螺线管插入大螺线管中时,音乐就会从音响中响起来,说明大螺线管中激发出了感应电流,是互感现象,故C正确.命题点1通断电自感现象的分析7.图甲和图乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈.实验时,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同.下列说法正确的是(C)A.图甲中,A1与L1的电阻值相同B.图甲中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图乙中,变阻器R与L2的电阻值相同D.图乙中,闭合S2瞬间,L2中电流与变阻器R中电流相等解析题图甲中,断开S1的瞬间,灯A1闪亮,故断开S1前,稳定时I L1>I A1,又由于L1和A1两端电压相等,故电阻R L1<R A1,所以A、B均错误;题图乙中,闭合S2瞬间,由于L2的自感作用,通过L2的电流很小,稳定时A2与A3亮度相同,故电流相等,所以变阻器R与L2的电阻值相同,C正确,D错误.方法点拨自感现象中的“三注意、三技巧”三注意三技巧1.自感仅能使电流的变化过程延长,但不能改变最终的结果1.通电自感时线圈相当于一个阻值变化的电阻:阻值由无穷大逐渐减小2.断电自感时灯泡是否“闪亮”,关键在于通过灯泡的电流大小如何变化2.断电自感时线圈相当于电源:电动势由某个值逐渐减小到零3.断电时与自感线圈在同一支路中的用电器中的电流方向不变,否则一般会改变3.电路稳定时,自感线圈相当于导体,是否需要考虑电阻要根据题意确定命题点2对涡流的理解8.[2023广东佛山质检]涡流内检测技术是一项用来检测各种金属管道是否有破损的技术.检测仪在管道内运动及其工作原理剖面示意图如图所示,当激励线圈中通以正弦交流电时,金属管道壁内会产生涡流,涡流磁场会影响检测线圈的电流.以下有关涡流内检测仪的说法正确的是(C)A.检测线圈消耗功率等于激励线圈输入功率B.在管道内某处检测时,如果只增大激励线圈中交流电的频率,则检测线圈的电流不变C.在管道内某处检测时,如果只增大激励线圈中交流电的频率,则检测仪消耗功率将变大D.当检测仪从金属管道完好处进入破损处检测时,管道壁中将产生更强的涡流解析管道壁中产生涡流,有一定的热功率,P激励=P检测+P热,激励线圈输入功率大于检测线圈消耗功率,故A错误;增大激励线圈中交流电的频率,检测线圈的磁通量变化率变大,产生的感应电动势变大,则电流变大,故B错误;增大激励线圈中交流电的频率,检测线圈消耗的功率和管道产生的热功率变大,则检测仪消耗功率将变大,故C正确;当检测仪从金属管道完好处进入破损处检测时,管道壁中产生的涡流变小,故D错误.方法点拨产生涡流时的能量转化伴随着涡流现象,其他形式的能转化成电能,最终在金属块中转化为内能.(1)金属块放在变化的磁场中,则磁场能转化为电能,最终转化为内能.(2)如果是金属块进出磁场或在非匀强磁场中运动,则由于克服安培力做功,金属块的机械能转化为电能,最终转化为内能.命题点3电磁阻尼和电磁驱动9.[电磁驱动/浙江高考]如图所示,在光滑绝缘水平面上,两条固定的相互垂直彼此绝缘的导线通以大小相同的电流I.在角平分线上,对称放置四个相同的正方形金属框.当电流在相同时间间隔内增加相同量,则(B)A.1、3线圈静止不动,2、4线圈沿着对角线向内运动B.1、3线圈静止不动,2、4线圈沿着对角线向外运动C.2、4线圈静止不动,1、3线圈沿着对角线向内运动D.2、4线圈静止不动,1、3线圈沿着对角线向外运动解析由安培定则和磁场叠加原理可知线圈1、3所在处的合磁感应强度为零,穿过这两个线圈的磁通量为零,当电流在相同时间间隔内增加相同量时,磁通量仍为零,则没有感应电流产生,所以线圈1、3静止不动,C、D错误;线圈2中的合磁感应强度方向垂直于纸面向外,线圈4中的合磁感应强度方向垂直于纸面向里,当电流在相同时间间隔内增加相同量时,由楞次定律可知,两线圈应向磁通量减小的方向运动,即沿对角线向外运动,A 错误,B正确.10.[电磁阻尼/多选]以下哪些现象属于电磁阻尼现象(ABC)A.图甲中线圈能使上下振动的条形磁铁快速停下来B.图乙中无缺口的铝管比有缺口的铝管能更快使强磁铁匀速运动C.图丙中U形磁铁可以使高速转动的铝盘迅速停下来D.图丁中转动把手时下面的闭合铜线框会随U形磁铁同向转动解析线圈能使上下振动的条形磁铁快速停下来,是电磁阻尼现象;无缺口的铝管比有缺口的铝管能更快使强磁铁匀速运动,是电磁阻尼现象;U形磁铁能使高速转动的铝盘迅速停下来,铝盘受到的力是阻力,所以是电磁阻尼现象;转动把手时,U形磁铁转动,线框跟随转动,线框受到的力是动力,所以是电磁驱动现象.故选A、B、C.热点11法拉第电磁感应定律在电磁科技中的应用法拉第电磁感应定律与生产、生活密切相关,高考对这部分的考查趋向于有关现代气息和STSE问题中的信息题,命题情境有电磁卡、车速表、磁力刹车、金属探测器、无线充电技术等.1.[电磁卡]磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈.当以速度v0刷卡时,在线圈中产生感应电动势,其E-t关系如图所示.如果只将刷卡速度,线圈中的感应电动势随时间变化的E-t关系图可能是(D)改为v02A BC D,线圈切割磁感线运动时产生的感应电动势解析根据E=Blv可知,若将刷卡速度改为v02大小将会减半,周期将会加倍,故D正确.2.[金属探测器——涡流/多选]金属探测器实物及其结构原理图如图所示.探测器运用的是电磁感应原理,发射线圈(外环)可以产生垂直于线圈平面且大小和方向均匀变化的磁场;内环线圈是接收线圈,用来收集被探测金属物发出的磁场(接收线圈能完全屏蔽发射线圈产生的磁场).随着发射线圈产生的磁场方向和大小不断变化,它会与所遇到的金属物发生作用,导致金属物自身也产生微弱的磁场,来自金属物的磁场进入内环线圈被接收到后,检测器会发出报警声.若发射线圈产生向下且增强的磁场,则下列说法正确的是(AC)A.金属物产生的感应磁场的方向竖直向上B.金属物中的涡流从上往下看沿顺时针方向C.金属物发出的磁场穿过接收线圈时,接收线圈会产生微弱的电流,此类探测器相应的元件就是依据这一电流进行报警的D.如果金属物某时刻发出向上的磁场,那么接收线圈中的感应电流从上往下看沿逆时针方向解析若发射线圈产生向下且增强的磁场,则穿过金属物的磁通量增加,根据楞次定律和安培定则知,金属物中的涡流产生的磁场方向竖直向上,涡流从上往下看沿逆时针方向,A正确,B错误;金属物发出的磁场穿过接收线圈时,接收线圈内磁通量发生变化,会产生微弱的感应电流,此类探测器相应的元件就是依据这一电流进行报警的,C正确;如果金属物某时刻发出向上的磁场,则接收线圈中的感应电流从上往下看沿顺时针方向,D错误.3.[磁力刹车——电磁阻尼/多选]磁力刹车是游乐场中过山车采用的一种新型刹车装置,此装置比靠摩擦力刹车更稳定.如图为该新型装置的原理图(从后朝前看),过山车的两侧装有铜片,停车区的轨道两侧装有强力磁铁,当过山车进入停车区时,铜片与磁铁的相互作用能使过山车很快停下来.关于该装置的下列说法正确的是(BC)A.刹车原理是电流的磁效应B.过山车从进入停车区到停止的过程中,动能转化为电能,电能又转化为内能C.过山车进入停车区的速度越大,刹车的阻力就越大D.若将铜片换成有机玻璃片,也能达到相同的刹车效果解析当过山车进入停车区时,会导致穿过铜片的磁通量发生变化,产生感应电流,形成感应磁场,与强力磁铁产生相互作用,利用了电磁感应原理,故A错误;刹车过程中过山车速度减小,动能转化为电能,电能又转化为内能,故B正确;过山车的速度越大,磁通量变化就越快,产生的感应电流就越大,感应磁场就越强,与强力磁铁的作用力就越大,故刹车的阻力就越大,C正确;将铜片换成有机玻璃片,有机玻璃片不导电,因此不能形成感应磁场,不能达到相同的刹车效果,D错误.1.[电磁阻尼+图像分析/2023全国乙]一学生小组在探究电磁感应现象时,进行了如下比较实验.用图(a)所示的缠绕方式,将漆包线分别绕在几何尺寸相同的有机玻璃管和金属铝管上,漆包线的两端与电流传感器接通.两管皆竖直放置,将一很小的强磁体分别从管的上端由静止释放,在管内下落至管的下端.实验中电流传感器测得的两管上流过漆包线的电流I随时间t的变化分别如图(b)和图(c)所示,分析可知(A)图(b)图(c)A.图(c)是用玻璃管获得的图像B.在铝管中下落,小磁体做匀变速运动C.在玻璃管中下落,小磁体受到的电磁阻力始终保持不变D.用铝管时测得的电流第一个峰到最后一个峰的时间间隔比用玻璃管时的短解析A 对利用F 阻=F 安=BIL定性分析{I 变化,F 阻变化,加速度a 变化,BC 错铝管中强磁体所受阻力大,用时更长,D 错2.[对法拉第电磁感应定律的理解及应用/2021全国甲/多选]由相同材料的导线绕成边长相同的甲、乙两个正方形闭合线圈,两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙的2倍.现两线圈在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一方向垂直于纸面的匀强磁场区域,磁场的上边界水平,如图所示.不计空气阻力,已知下落过程中线圈始终平行于纸面,上、下边保持水平.在线圈下边进入磁场后且上边进入磁场前,可能出现的是( AB )A.甲和乙都加速运动B.甲和乙都减速运动C.甲加速运动,乙减速运动D.甲减速运动,乙加速运动解析 由于甲、乙线圈的材料、边长和质量均相同,故导线的体积相同,而甲线圈的匝数n 1是乙的匝数n 2的2倍,因此甲的长度l 1是乙的长度l 2的2倍,甲的横截面积S 1是乙的横截面积S 2的12,根据电阻定律R =ρlS可知,甲的电阻R 1是乙的电阻R 2的4倍.甲进入磁场后所受安培力F 1=n 1BI 1L =n 1BL n 1BLv R 1=n 12B 2L 2R 1v ,乙进入磁场后所受安培力F 2=n 2BI 2L =n 2BLn 2BLv R 2=n 22B 2L 2R 2v ,由于n 1=2n 2,R 1=4R 2,甲、乙的质量和进入磁场时的速度都相同,故F 1=F 2,甲、乙所受合力相同,加速度相同,因此甲、乙可能都加速运动,可能都匀速运动,还可能都减速运动,故A 、B 正确,C 、D3.[导体转动切割磁感线/2022山东/多选]如图所示,xOy 平面的第一、三象限内以坐标原点O 为圆心、半径为√2L 的扇形区域充满方向垂直纸面向外的匀强磁场.边长为L 的正方形金属框绕其始终在O 点的顶点、在xOy 平面内以角速度ω顺时针匀速转动.t =0时刻,金属框开始进入第一象限.不考虑自感影响,关于金属框中感应电动势E 随时间t 变化规律的描述正确的是( BC )A.在t =0到t =π2ω的过程中,E 一直增大B.在t =0到t =π2ω的过程中,E 先增大后减小C.在t =0到t =π4ω的过程中,E 的变化率一直增大D.在t =0到t =π4ω的过程中,E 的变化率一直减小。
高三物理第18周物理自学园地第Ⅱ课时 法拉第电磁感应定律•自感1、如图12-2-12所示,粗细均匀的电阻为r 的金属圆环,放在图示的匀强磁场中,磁感应强度为B ,圆环直径为d ,长为L ,电阻为2r 的金属棒ab 放在圆环上,以速度0υ向左匀速运动,当ab 棒运动到图示虚线位置时,金属棒两端电势差为( )A 、0;B 、0υBL ;C 、021υBL ;D 031υBL . 【解析】当金属棒ab 以速度0υ向左运动到图示虚线位置时,根据公式可得产生的感应电动势为0υBL E = ,而它相当于一个电源,并且其内阻为2r ;金属棒两端电势差相当于外电路的端电压.外电路半个圆圈的电阻为2r ,而这两个半个圆圈的电阻是并联关系,故外电路总的电阻为4r ,所以外电路电压为03131υBL E U ba ==. 【答案】D2、如图12-2-13所示,竖直向下的匀强磁场中,将一水平放置的金属棒 ab 以水平的初速0υ抛出,设在整个过程中棒的取向不变且不计空气阻力,则在金属棒运动过程中产生的感应电动势大小变化情况是( )A 、越来越大;B 、越来越小;C 、保持不变;D 、无法判断.【解析】金属棒做切割磁感线的有效速度是与磁感应强度B 垂直的那个分速度,由于金属棒做切割磁感线的水平分速度不变,故感应电动势不变.【答案】C3、(2003年杭州模拟题)如图12-2-14所示为日光灯的电路图,以下说法中正确的是( )①日光灯的启动器是装在专用插座上的,当日光灯正常发光后,取下启动器,不会影响灯管发光.②如果启动器丢失,作为应急措施,可以用一小段带绝缘外皮的导线启动日光灯.③日光灯正常发光后,灯管两端的电压为220V .④镇流器在日光灯启动时,产生瞬时高压A 、①②B 、③④C 、①②④D 、②③④【解析】日光灯正常发光后,由于镇流器的降压限流作用,灯管两端的电压要低于220V .【答案】C4、(2002年全国高考卷)如图12-2-15中EF 、GH 为平行的金属导轨,其电阻可不计,R 为电阻器,C 为电容器,AB 为可在EF 和GH 上滑动的导体横杆,有均匀磁场垂直于导轨平面.若用1I 和2I 分别表示图中该处导线中的电流,则当横杆AB ( )A 、匀速滑动时,01=I ,02=IB 、匀速滑动时01≠I ,02≠IC 、加速滑动时,01=I ,02=ID 、加速滑动时,01≠I ,02≠I【解析】横杆匀速滑动时,由于υBL E =不变,故02=I ,01≠I .加速滑动时,由于υBL E =逐渐增大,电容器不断充电,故01≠I ,02≠I .【答案】D5、如图12-2-16所示,线圈由A 位置开始下落,若它在磁场中受到的磁场力总小于重力,则在A 、B 、C 、D 四个位置(B 、D 位置恰好线圈有一半在磁场中)时加速度的关系为( )A 、A a >B a >C a >D a B 、A a =C a >B a >D aC 、A a =C a >D a >B a D 、A a =C a >B a =D a【解析】线框在A 、C 位置时只受重力作用,加速度A a =C a =g .线框在B 、D 位置时均受两个力的作用,其中安培力向上、重力向下.由于重力大于安培力,所以加速度向下,大小g m F g a <-=.(ma Rl B mg =-υ22)又线框在D 点时速度大于B 点时速度,即B D F F >,所以B a >D a .因此加速度的关系为A a =C a >B a >D a .【答案】B6、如图12-2-17所示,将长为1m 的导线从中间折成约为0106的角,磁感应强度为0.5T 的匀强磁场垂直于导线所在的平面.为使导线产生4V 的感应电动势,则导线切割磁感线的最小速度约为_________.【解析】欲使导线获得4V 的感应电动势,而导线的速度要求最小,根据υBL E =可知:E 、B 一定的情况下,L 最大且υ与L 垂直时速度最小.故根据υBL E =得: s m s m BL E /10/8.05.04min =⨯==υ 【答案】s m /107、如图12-2-18所示,匀强磁场的磁感应强度为0.4T ,Ω=100R ,F C μ100=,ab 长为20cm ,当ab 以s m /10=υ的速度向右匀速运动时,电路中的电流为___________,电容器上板带________电,电荷量为_________C .【解析】感应电动势V V BL E 8.0102.04.0=⨯⨯==υ,极板上的电荷量C C CE Q 561088.010100--⨯=⨯⨯==.由于感应电动势一定,电容器的带电荷量一定,所以电路中无电流.【答案】零;正;C 5108-⨯8、(2004年北京高考试卷)如图12-2-19(1)所示,两根足够长的直金属导轨MN 、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b 向a 方向看到的装置如图12-2-19(2)所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑的过程中,当ab 杆的速度大小为υ时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值.【解析】(1)ab 杆受到一个竖直向下的重力;垂直斜面向上的支持力;根据楞次定律的“阻碍”作用可得所受的安培力沿斜面向上.(画图略)(2)当ab 杆的速度大小为υ时,产生的感应电动势为υBL E =,此时杆ab 的电流为R BL I υ=;受到的安培力为RL B BIL F 22υ==. 根据牛顿第二定律得ma RL B mg =-22sin υθ 即mRL B g a 22sin υθ-= (3)当加速度为零时速度达到最大即22sin LB mgR m θυ= 【答案】(1)ab 杆受到一个竖直向下的重力;垂直斜面向上的支持力;沿斜面向上的安培力(2)mRL B g a 22sin υθ-=(3)22sin L B mgR m θυ= 9、(2003年北京海淀区模拟题)如图12-2-20所示,MN 和PQ 是固定在水平面内间距L =0.2m 的平行金属导轨,轨道的电阻忽略不计.金属杆ab 垂直放置在轨道上.两轨道间连接有阻值为Ω=5.10R 的电阻,ab 杆的电阻Ω=5.0R .ab 杆与导轨接触良好并不计摩擦,整个装置放置在磁感应强度为T B 5.0=的匀强磁场中,磁场方向垂直轨道平面向下.对ab 杆施加一水平向右的拉力,使之以s m /5=υ速度在金属轨道上向右匀速运动.求:(1)通过电阻0R 的电流;(2)对ab 杆施加的水平向右的拉力大小;(3)ab 杆两端的电势差.【解析】(1)a 、b 杆上产生的感应电动势为V BL E 5.0==υ.根据闭合电路欧姆定律,通过0R 的电流A R R E I 25.00=+= (2)由于ab 杆做匀速运动,拉力和磁场对电流的安培力F 大小相等,即N BIL F F 025.0===拉(3)根据欧姆定律,ab 杆两端的电势差V R R R BL R R ER U ab 375.00000=+=+=υ【答案】(1)0.25A (2)0.025N (3)0.375V10、(2004年上海高考卷)水平向上足够长的金属导轨平行固定放置,间距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(如图12-2-21所示),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动.当改变拉力大小时,相对应的匀速运动速度υ也会变化,υ和F 的关系如图12-2-22所示.(取重力加速度2/10s m g =)(1)金属杆在匀速运动之前做什么运动?(2)若kg m 5.0=,m L 5.0=,Ω=5.0R ;磁感应强度B 为多大?(3)由υ-F 图线的截距可求得什么物理量?其值为多少?【解析】(1)若金属棒与导轨间是光滑的,那么平衡时必有恒定拉力与安培力平衡,即RL B F 22υ= 从而得到F L B R 22=υ,即υ与F 成线性关系且经过坐标原点.而本题的图像坐标没有经过原点,说明金属棒与导轨间有摩擦.金属棒在匀速运动之前安+F F F f >,随着速度的增加,安培力越来越大,最后相等.故金属棒在匀速运动之前做变速运动(加速度越来越小).(2)设摩擦力为f F ,平衡时有RL B F F F F 22f f υ+=+=安.选取两个平衡状态,得到两个方程组,从而求解得到.如当F =4N 时,s m /4=υ;当F =10N 时,s m /16=υ.代入RL B F F 22f υ+= 解得:B =1T ,N F f 2=(3)由以上分析得到:υ-F 图线的截距可求得金属棒与导轨间的摩擦力,大小为2N .【答案】(1)金属棒在匀速运动之前做变速运动(加速度越来越小);(2)B =1T ;(3)υ-F 图线的截距可求得金属棒与导轨间的摩擦力,大小为2N .第Ⅲ课时 电磁感应和电路规律的综合应用1、如图12-3-7所示,闭合导线框的质量可以忽略不计,将它从图示位置匀速拉出匀强磁场,若第一次用0.3s 时间拉出,外力做的功为1W ,通过导线截面的电量为1q ,第二次用0.9s 时间拉出,外力做的功为2W ,通过导线截面的电量为2q ,则( )A 、21W W <,21q q <B 、21W W <,21q q =C 、21W W >,21q q =D 、21W W >,21q q >【解析】设矩形线框的竖直边为a ,水平边为b ,线框拉出匀强磁场时的速度为υ,线框电阻为R .则线框拉出匀强磁场时产生的感应电动势为a B E υ=,产生的感应电流为Ra B R E I υ== 根据平衡条件得:作用的外力等于安培力即Ra B BIa F F 22υ===安 将线框从磁场中拉出外力要做功υυ⋅=⋅=⋅=Rba B b R a B b F W 2222 由这个表达式可知:Rba B 22两种情况都一样,拉出的速度越大,做的功就越多.第一次速度大,故21W W > 根据RS B R t tR t R E t I q ∆=∆=∆∆∆=∆==φφ,由这一推导过程可知两次拉出磁场通过导线截面的电量只与在磁场中的面积变化有关,即从磁场中拉出的线框面积.由于两次都等于整个线框的面积即两次拉出在磁场中的面积变化相等.故通过导线截面的电量两次相等.即21q q =【答案】C2、如图12-3-8所示,在磁感应强度为B 的匀强磁场中,有半径为r 的光滑半圆形导体框,OC 为一能绕O 在框架上滑动的导体棒,Ob 之间连一个电阻R ,导体框架与导体电阻均不计,若要使OC 能以角速度ω匀速转动,则外力做功的功率是( )A 、R rB 422ω B 、R r B 2422ω C 、R r B 4422ω D 、Rr B 8422ω 【解析】由于导体棒匀速转动,所以外力的功率与产生的感应电流的电功率相等.根据法拉第电磁感应定律得:22121l B l l B l B E ωωυ=⋅==,所以电功率为R r B R l B R E P 4)21(422222ωω=== 【答案】C3、用同种材料粗细均匀的电阻丝做成ab 、cd 、ef 三根导线,ef 较长,分别放在电阻可忽略的光滑的平行导轨上,如图12-3-9所示,磁场是均匀的,用外力使导线水平向右作匀速运动(每次只有一根导线在导轨上),而且每次外力做功功率相同,则下列说法正确的是( )A 、ab 运动得最快B 、ef 运动得最快C 、导线产生的感应电动势相等D 、每秒钟产生的热量不相等【解析】三种情况下导线做切割磁感线运动的等效长度是相同的即导轨的宽度(设为l ).根据法拉第电磁感应定律得产生的感应电动势为l B E υ=,由于匀速运动,所以外力做功的功率与电功率相等即R l B R E P P 22)(υ==电外= 22l B RP 电=υ由图可知导线ef 最长,ab 最短,所以有ab cd ef R R R >> 故ef 运动得最快.由l B E υ=和ef 的速度最大可知导线ef 产生的感应电动势最大.由于三根导线产生的电热功率相等,由Pt Q =得每秒钟产生的热量相等.【答案】B4、如图12-3-10所示,光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导轨所在平面,当ab 棒下滑到稳定状态时,小灯泡获得的功率为0P ,除灯泡外,其它电阻不计,要使灯泡的功率变为02P (但灯泡还在额定功率范围内),下列措施正确的是( )A 、换一个电阻为原来一半的灯泡B 、把磁感应强度增为原来的2倍C 、换一根质量为原来的2倍的金属棒D 、把导轨间的距离增大为原来的2倍【解析】设稳定状态即匀速运动时速度为υ,灯泡的电阻为R ,磁感应强度为B ,导轨宽为L ,质量为m .根据平衡条件得RL B L R L B B BIL mg 22sin υυθ=== 22s i n L B m g R θυ= 感应电动势BLmgR L B E θυsin == 电功率R BLmg R E P 22)sin (θ==换一个电阻为原来一半的灯泡,则电功率为原来的一半.故A 错把磁感应强度增为原来的2倍,则电功率为原来的四分之一.故B 错 换一根质量为原来的2倍的金属棒,则电功率为原来的2倍.故C 对 把导轨间的距离增大为原来的2倍,则电功率为原来的一半.故D 错【答案】C5、如图12-3-11所示,匀强磁场中固定的金属框架ABC ,导线棒DE在框架ABC 上沿图示方向匀速平移,框架和导体材料相同,接触电阻不计,则( )A 、电路中感应电流保持一定B 、电路中的磁通量的变化率一定C 、电路中的感应电动势一定D 、DE 棒受到的拉力一定【解析】假设导体棒经过一段时间后由DE 位置运动到cf 位置(如图所示),在DE 位置时ae 部分是有效切割磁感线的导线长度,产生的感应电动势提供三角形aeB ∆闭合回路的电流,运动到cf 位置时,cf 部分是有效切割磁感线的导线长度,产生的感应电动势提供三角形cfB ∆闭合回路的电流,而两三角形aeB ∆与cfB ∆相似,由于运动速度不变,产生的感应电动势与ae 或cf 的长度成正比,而回路的总电阻与三角形aeB ∆或cfB ∆的周长成正比.所以很容易得到导体棒在不同的两个位置时,闭合回路电流相同,即电路中感应电流保持一定.由于电路中感应电流保持一定,电阻越来越大,感应电动势也应越来越大,故电路中的磁通量的变化率越来越大.导体棒的有效长度变长,所以拉力变大.【答案】A6、如图12-3-12所示,两个用相同导线制成的不闭合环A 和B ,半径B A r r 2=,两环缺口间用电阻不计的导线连接.当一均匀变化的匀强磁场只垂直穿过A 环时,a 、b 两点间的电势差为U .若让这一均匀变化的匀强磁场只穿过B 环,则a 、b 两点间的电势差为_____________.【解析】由题意可知,A 环的面积是B 环面积的4倍,所以A 环产生的感应电动势是B 环的4倍,A 环的电阻是B 环的2倍.磁场只穿过A 环时,A 环等效为电源,B 环为外电路,此时有U R R R E B BA A =+;磁场只穿过B 环时,B 环等效为电源,A 环为外电路,此时有/U R R R E A BA B =+. 由以上关系可求得2/U U =【答案】2U 7、如图12-3-13所示,平行金属导轨间距为d ,一端跨接一阻值为R的电阻,匀强磁场磁感应强度为B ,方向垂直轨道所在平面,一根长直金属棒与轨道成060角放置.当金属棒以垂直棒的恒定速度υ沿金属轨道滑行时,电阻R 中的电流大小为________,方向为__________.(不计轨道与棒的电阻)【解析】导体棒在导轨间切割磁感线的有效长度为33260sin 0d d L == 产生的感应电动势为υυBd BL E 332== 所以电阻R 上的电流为RBd R E I 332υ== 由右手定则判断出感应电流是自上而下通过电阻R . 【答案】RBd 332υ 自上而下 8、固定在匀强磁场中的正方形导线框abcd 各边长为l ,其中ab 是一段电阻为R 的均匀电阻丝,其余三边电阻可忽略的铜线,磁感应强度为B ,方向垂直纸面向里.现有一段与ab 完全相同的电阻丝PQ 架在导线框上(如图12-3-14所示),以恒定速度υ从ad 滑向bc ,当PQ 滑到距离ad 多少时,通过PQ 段电阻丝的电流最小?最小电流为多少?方向如何?【解析】根据题意画出如右图所示的等效电路图,当总电阻最大时,通过PQ 段电阻丝的电流最小,aP R 与Pb R 并联,又由于R R aP =+Pb R ,根据所学稳恒电流的知识得到:当aP R =Pb R 时外电路电阻最大,即总电阻最大.4541R R R R =+=总 故PQ 滑到ab 的中点时PQ 段电阻丝的电流最小根据法拉第电磁感应定律得到产生的感应电动势为l B E υ=故流过PQ 电阻丝的最小电流(即总电流)为R l B R l B R E I 5445min υυ===总 根据右手定则得到电流方向由Q 到P【答案】PQ 滑到ab 的中点;Rl B 54υ; 由Q 到P 9、如图12-3-15所示,有一磁感应强度为B =0.40T 的匀强磁场,其磁感线垂直地穿过半径cm l 20=的金属环,OA 是一根金属棒,它贴着圆环沿顺时针方向绕O 点匀速转动,OA 棒的电阻Ω=40.0r ,电路上三只电阻Ω===0.6321R R R ,圆环与其他导线的电阻不计,当电阻3R 消耗的电功率为W P 060.03=时,OA 棒的角速度多大?【解析】OA 金属棒切割磁感线运动产生的感应电动势把它当作电源,根据题意画出等效电路,(如右图所示)由3233R I P =得A A R P I 1.06060.0333===, 321R R R 、、三个电阻并联,并且三个电阻相等所以外电路的总电阻为Ω=0.2311R R =外 而总电流为A I I 3.033== 故电源电动势为V V I r R E 72.03.0)4.02()(=⨯+==+外根据法拉第电磁感应定律得 22121l B l l B l B E ωωυ=⋅== s rad s rad Bl E /90/)2.0(4.072.02222=⨯⨯==ω 【答案】s rad /9010、如图12-3-16所示,为某一电路的俯视图,MN 、PQ 为水平放置的很长的平行金属板相距0.2m ,板间有匀强磁场,B =0.8T ,方向垂直向下,金属杆电阻Ω=1.00R .可以在水平方向左右无摩擦滑动,Ω==9.321R R ,C =10μF .现有不计重力的带电粒子以s m /95.10=υ的初速度水平射入两板间,为使粒子能继续做匀速运动,则(1)棒ab 应向哪边运动?速度多大?(2)为使棒ab 保持匀速运动,作用在ab 上的水平外力F 多大?【解析】①由于不计带电粒子的重力,而带电粒子又要做匀速运动,所以必定是电场力与洛仑洛仑兹力相平衡,故有q E q B 电=0υ 得m V B E /56.10==υ电.再由平衡条件判定两板间的电场强度方向必向下,即上板电势高,所以由右手定则判定导体棒向右匀速运动. 设导体棒向右匀速运动的速度为υ、两板间的间距为d ,则两板间的导体棒产生的感应电动势为d B E υ=,则两板间的电势差为E R R R U 011+==d E d B 电=+υ1.09.39.3 解得:s m /2=υ ②导体棒产生的感应电流为d d R R d B R R E I 4.0428.00101=⨯⨯=+=+=υ 导体棒受到的安培力N N d d BId F 228.12.02.04.08.04.08.0-⨯=⨯⨯⨯=⨯⨯==【答案】①向右匀速运动,s m /2=υ②N F 228.1-⨯= 第Ⅳ课时 电磁感应和力学规律的综合应用1、半圆形导轨竖直放置,不均匀磁场水平方向并垂直于轨道平面,一个闭合金属环在轨道ab内来回滚动,如图12-4-7所示,若空气阻力不计,则( )A 、金属环做等幅振动;B 、金属环做减幅振动;C 、金属环做增幅振动;D 、无法确定.【解析】由于闭合金属环在充满不均匀磁场的圆形轨道内来回滚动,所以闭合金属环内的磁通量将发生变化,由此将产生感应电流,闭合回路中有了电流必将产生焦耳热,金属环在来回滚动的过程中能量将逐渐减少.故金属环做减幅振动.综上所述正确答案应选B【答案】B2、如图12-4-8所示,MN 和PQ 为平行放置的光滑金属导轨,其电阻不计,ab 、cd 为两根质量均为m 的导体棒,垂直置于导轨上,导体棒有一定电阻,整个装置处于竖直向下的匀强磁场中,原来两导体棒都静止,当ab 棒受到瞬时冲量而向右以速度0υ运动后,(设导轨足够长,磁场范围足够大,两棒不相碰)( )A 、cd 棒先向右做加速运动,然后做减速运动B 、cd 棒向右做匀加速运动C 、ab 棒和cd 棒最终将以2/0υ的速度匀速向右运动D 、从开始到ab 、cd 都做匀速运动为止,在两棒的电阻上消耗的电能是8/20υm【解析】开始ab 棒向右做减少运动,cd 棒向右做加速运动,当它们速度相等时闭合回路中就没有磁通量变化了,此时闭合回路没有感应电流,两棒一起向右做匀速运动.故选项A 、B 错根据ab 棒与cd 棒所受的安培力大小相等,方向相反,故ab 棒与cd 棒组成的系统在水平方向动量守恒,由动量守恒得:υυ)(0m m m += 021υυ= 故选项C 对 根据功与能的转化关系得:在两棒的电阻上消耗的电能等于系统减少的动能,减少的动能为 202204122121υυυm m m E K =⨯-=∆ 故在两棒的电阻上消耗的电能是4/20υm 所以选项D 错.【答案】C3、如图12-4-9所示,矩形线圈长为L 、宽为h ,电阻为R ,质量为m ,在空气中竖直下落一段距离后(空气阻力不计),进入一宽度也为h 、磁感应强度为B 的匀强磁场中,线圈进入磁场时的动能为1K E ,线圈刚穿出磁场时的动能为2K E ,这一过程中产生的热量为Q ,线圈克服磁场力做的功为1W ,重力做的功为2W ,线圈重力势能的减少量为P E ∆,则以下关系中正确的是( )A 、21K K E E Q -=B 、12W W Q -=C 、1W Q =D 、122K KE E W -=【解析】线圈进入磁场和离开磁场的过程中,产生感应电流受到安培力的作用,线圈克服安培力所做的功等于产生的热量,故选项C 正确.根据功能的转化关系得线圈减少的机械能等于产生的热量即212K K E E W Q -+=故选项A 、B 是错的.根据动能定理得1212K K E E W W -=-,故选项D 是错的.【答案】C4、如图12-4-10所示,CDEF 是固定的、水平放置的、足够长的“U ”型金属导轨,整个导轨处于竖直向上的匀强磁场中,在导轨上架着一个金属棒ab ,在极短时间内给ab 棒一个水平向右的冲量,使它获得一个速度开始运动,最后又静止在导轨上,则ab 棒在运动过程中,就导轨是光滑和粗糙两种情况相比较( )A 、安培力对ab 棒做的功相等B 、电流通过整个回路所做的功相等C 、整个回路产生的总热量不同D 、ab 棒动量的改变量相同【解析】最终棒ab 的速度为零,根据功与能的转化关系可知:若导轨是粗糙的,导轨在水平方向要受到向左的安培力和滑动摩擦力.导体棒要克服安培力做功,动能一部分转化为电热能;还要克服滑动摩擦力做功,动能另一部分转化为摩擦产生的热量.但最终是全部转化为热能(热能等于开始时的总动能).而导轨光滑,导轨在水平方向只受到向左的安培力作用,导体棒只要克服安培力做功,动能全部转化为电热能(热能等于开始时的总动能).而两种情况下导体棒改变的动量相等,都等于最初的导体棒动量.【答案】D5、如图12-4-11所示,一根足够长的水平滑杆/SS 上套有一质量为m 的光滑金属圆环.在滑杆的正下方与其平行地放置一足够长的光滑水平的木制轨道,且穿过金属环的圆心O .现使质量为M 的条形磁铁以0υ的水平速度沿轨道向右运动,则( )A 、磁铁穿过金属环后,二者将先后停下来B 、圆环可能获得的最大速度为)/(0m M M +υC 、磁铁与圆环系统损失的动能一定为)(2/20m M mM +υD 、磁铁与圆环系统损失的动能可能为2021υM 【解析】质量为m 的光滑金属圆环和质量为M 的条形磁铁作为一个系统来研究,由于系统水平方向所受的合外力为零,所以系统水平方向动量守恒.系统总动量保持不变.故系统中金属圆环和条形磁铁不可能会两者速度都为零.不可能两者将先后停下来.故A 、D 这两个选项错误.运动的过程中系统中两个物体可能会速度相等,速度相等时圆环的速度最大,此时由动量守恒求得圆环的速度为:υυ)(0m M M += )/(0m M M +=υυ 此时系统损失的动能为)(2)(2121)(2121202020220m M mM m M M m M M m M M E K +=⎪⎭⎫ ⎝⎛++-=+-=∆υυυυυ但也有可能条形磁铁穿过圆环后,仍然磁铁的速度比圆环的大,这样系统损失的动能就不为)(2/20m M mM +υ了.【答案】B6、如图12-4-12所示,在光滑绝缘的水平面上,一个半径为10cm 、电阻为Ω1、质量为0.1kg 的金属圆环以s m /10的速度向一有界磁场滑去,磁场的磁感应强度为0.5T .经过一段时间圆环恰有一半进入磁场,共产生了3.2J 的热量,则此时圆环的瞬时速度为__________s m /,瞬时加速度为_______2/s m .【解析】圆环在进入磁场的过程中要产生感应电流,所以要受到磁场对它的作用,故圆环要克服安培力做功,克服安培力所做的功转化为圆环的热能.设此时圆环的瞬时速度为υ 根据功能的转化关系得:Q m m =-2202121υυ代入解得:s m /6=υ 此时的安培力ma RL B L R L B B BIL F ===22υυ=安 222222/6.0/1.01)2.0(6)5.0(s m s m mR L B a =⨯⨯⨯==υ 【答案】s m /6 2/6.0s m7、如图12-4-13所示,电阻为R 的矩形线框,长为l ,宽为a ,在外力作用下,以速度υ向右匀速运动,通过宽度为d ,磁感应强度为B 的匀强磁场.当d l <时,外力做功为__________;当dl >时,外力做功为___________.【解析】当d l <时,线框运动的情况是:线框进入磁场→全部进入磁场在磁场中运动→线框离开磁场→全部离开磁场.整个线框在磁场中匀速运动时,磁通量没有变化,没有感应电流,没有安培力,无需外力做功.所以外力做功的过程是线框进入磁场与线框离开磁场的两个过程中.这两个过程中线框都是以速度υ匀速运动, 所以:Ra B a R a B B BIa F F 22υυ====安外 而线框在有感应电流产生的过程中的运动时间为υlt 2= 外力做的功为Rl a B l R a B t F W υυυυυ2222122=⋅⋅==外 当d l <时,线框运动的情况是:线框进入磁场→全部磁场区域在线框内(横向)→线框离开磁场→全部离开磁场.全部磁场区域在线框内线框匀速运动,磁通量没有变化,没有感应电流,没有安培力,无需外力做功.所以外力做功的过程是线框右边框进入磁场与线框左边框离开磁场的两个过程中.这两个过程中线框都是以速度υ匀速运动,所以:Ra B a R a B B BIa F F 22υυ====安外 而线框在有感应电流产生的过程中的运动时间为υd t 2/=外力做的功为Rd a B d R a B t F W υυυυυ2222/122=⋅⋅==外 【答案】R l a B υ222 Rd a B υ222 8、如图12-4-14所示,质量为m 、边长为a 的正方形金属线框自某一高度由静止下落,依次经过1B 和2B 两磁场区域.已知212B B =,且2B 磁场的高度为a .线框在进入1B 的过程中做匀速运动,速度大小为1υ,在1B 中加速一段时间后又匀速进入和穿出2B 时速度恒为2υ,求:(1)1υ和2υ之比(2)在整个下落过程中线框中产生的焦耳热.【解析】(1)线框进入1B 区域作匀速运动,根据平衡条件得:Ra B m g 1221υ= 线框进入2B 区域作匀速运动,根据平衡条件得:Ra B m g 2222υ= 而212B B = 故41212221==B B υυ (2)线框进入1B 区域作匀速运动,所以线框的动能没有变化,重力做的功全部转化为热能,故产生的焦耳热mga Q =1,线框全部进入磁场时,线框的磁通量没有发生变化,所以没有感应电流,故也没有克服安培力做功产生焦耳热.线框进入2B 区域和离开2B 区域都作匀速运动,所以线框的动能没有变化,重力做的功全部转化为热能,故产生的焦耳热mga Q 22=.所以整个下落过程中产生的焦耳热为mga Q Q Q 321=+=【答案】1∶4 3mga9、一个质量kg m 016.0=、长m l 5.0=、宽m d 1.0=、电阻Ω=1.0R 的矩形线。
第1页(共22页)2023年高考物理热点复习:法拉第电磁感应定律
自感现象【2023高考课标解读】
1.能应用法拉第电磁感应定律E =n
ΔΦΔt
和导线切割磁感线产生电动势公式E =Blv 计算感应电动势.2.会判断电动势的方向,即导体两端电势的高低.3.理解自感现象、涡流的概念,能分析通电自感和断电自感.
【2023高考热点解读】
一、法拉第电磁感应定律
1.感应电动势
(1)感应电动势:在电磁感应现象中产生的电动势.
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关.
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断.
2.法拉第电磁感应定律
(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.
(2)公式:E =n ΔΦΔt
,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:遵循闭合电路的欧姆定律,即I =E R +r .3.导体切割磁感线时的感应电动势
(1)导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度;
(2)导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动
产生感应电动势E =Bl v -=12Bl 2ω(平均速度等于中点位置的线速度12
lω).二、自感、涡流、电磁阻尼和电磁驱动
1.自感现象
(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.
(2)表达式:E =L ΔI Δt
.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.
2.涡流现象。
法拉第电磁感应与自感定律电磁感应和自感是电磁学中重要的基本概念,揭示了电磁现象之间的相互作用和电路中的能量转换规律。
法拉第电磁感应定律和自感定律是描述这些现象的基础定律,下面将对其进行详细解析。
一、法拉第电磁感应定律法拉第电磁感应定律是揭示了磁场变化引起的感应电动势的大小与方向的关系。
该定律被简称为“法则”,是法拉第于1831年在研究磁场与电路之间相互作用时提出的。
法拉第电磁感应定律表述如下:当磁通量Φ穿过一个电路的匝数N 发生变化时,电路中将产生感应电动势E,其大小与磁通量的变化率成正比,即E=−dΦ/dt。
其中,E表示感应电动势,Φ表示磁通量,t表示时间。
负号表示感应电动势的方向与磁通量变化方向相反。
法拉第电磁感应定律的实际应用非常广泛。
例如,发电机的工作原理就是利用电磁感应产生感应电动势,将机械能转化为电能。
同时,在变压器、感应电炉等设备中,也运用了法拉第电磁感应定律。
二、自感定律自感(也称为电感或互感)是指电流通过导体电路时,导体自身所产生的磁场对电路产生的感应电动势。
自感效应的大小与电路本身的几何形状、导线长度、匝数等因素有关。
自感定律是描述自感效应的基本规律。
根据自感定律,当电流变化时,电路中将产生感应电动势,其大小与电流的变化率成正比,即E=−Ldi/dt。
其中,E表示感应电动势,L表示自感系数,di/dt表示电流变化率。
负号表示感应电动势的方向与电流变化方向相反。
自感定律的应用十分广泛。
例如,在电子电路中,自感是电感元件的重要特性,常用于实现信号滤波、振荡电路、功率放大电路等。
此外,自感还在电力工程中用于电力变压器和电感线圈等设备。
三、电磁感应与自感的关系电磁感应定律和自感定律都是揭示了电磁现象中感应电动势的产生规律,但它们之间存在一定的联系和区别。
首先,电磁感应是由磁场的变化引起的,而自感是由电流的变化引起的。
电磁感应定律主要研究磁场变化对电路的影响,而自感定律主要研究电流变化对电路的影响。
第十二章 第二课时一、选择题(共10小题,每小题6分,共60分,在每小题给出的四个选项中至少有一项符合题意,全部选对的得6分,漏选的得3分,错选的得0分)1.关于电路中感应电动势的大小,下列说法正确的是 ( )A .穿过电路的磁通量越大,感应电动势就越大B .电路中磁通量的改变量越大,感应电动势就越大C .电路中磁通量改变越快,感应电动势就越大D .若电路在某时刻磁通量为零,则该时刻感应电流一定为零【解析】 根据法拉第电磁感应定律,感应电动势正比于磁通量的变化率,C 选项中磁通量变化越快,则磁通量的变化率越大,故C 选项正确,A 、B 选项错误.某时刻的磁通量为零,但该时刻磁通量的变化率不一定为零,所以感应电流也就不一定为零,D 选项错误,故选C.【答案】 C2.(2010·成都市高三摸底测试)如图所示,电阻R =1Ω、半径r 1=0.2m 的单匝圆形导线框P 内有一个与P 共面的圆形磁场区域Q ,P 、Q的圆心相同,Q 的半径r 2=0.1m.t =0时刻,Q 内存在着垂直于圆面向里的磁场,磁感应强度B 随时间t 变化的关系是B =2-t (T).若规定逆时针方向为电流的正方向,则线框P 中感应电流I 随时间t 变化的关系图象应该是下图中的 ( )【解析】 由法拉第电磁感应定律可得:圆形导线框P 中产生的感应电动势为ε=ΔB ·S Δt=ΔB Δt·π·r 22=-0.01π(V),再由欧姆定律得:圆形导线框P 中产生的感应电流I =-0.01π(A),其中负号表示电流的方向是顺时针方向.故C 正确.【答案】 C3.(2009·安徽理综)如图甲所示,一个电阻为R ,面积为S 的矩形导线框abcd ,水平放置在匀强磁场中,磁场的磁感应强度为B ,方向与ad 边垂直并与线框平面成45°角,o 、o ′分别是ab 边和cd 边的中点.现将线框右半边obco ′绕oo ′逆时针旋转90°到图乙所示位置.在这一过程中,导线中通过的电荷量是 ( )A.2BS 2RB.2BS RC.BS RD .0 【解析】 本题考查的是电磁感应的有关知识,意在考查考生对法拉第电磁感应定律的理解和应用以及对空间几何的观察和想像;首先,根据法拉第电磁感应定律可以导出感应的电荷量为:Q =ΔΦR ;而ΔΦ=B ×S 2cos45°-(-B ×S 2sin45°)=BS cos45°=22BS ,故A 正确.【答案】 A4.一个由电阻均匀的导线绕制成的闭合线圈放在匀强磁场中,如图所示,线圈平面与磁场方向成60°角,磁感应强度随时间均匀变化,用下列哪些方法可使感应电流增加一倍( )A .把线圈匝数增加一倍B .把线圈面积增加一倍C .把线圈半径增加一倍D .改变线圈与磁场方向的夹角【解析】 设导线的电阻率为ρ,横截面积为S 0,线圈的半径为r ,则I =E R =nΔΦΔt R=n πr 2ΔB Δt sin θρn ·2πr S 0=S 0r 2ρ·ΔB Δt ·sin θ.可见将r 增加一倍,I 增加1倍,将线圈与磁场方向的夹角改变时,sin θ不能变为原来的2倍(因sin θ最大值为1),若将线圈的面积增加一倍,半径r 增加到原来的2倍,电流也增加到原来的2倍,I 与线圈匝数无关.【答案】 C5.如图所示是日光灯的构造示意图.若按图示的电路连接,关于日光灯发光的情况,下列叙述中正确的是 ( )A .S 1接通,断开S 2、S 3,日光灯就能正常发光B .S 1、S 2接通,S 3断开,日光灯就能正常发光C .S 3断开,接通S 1、S 2后,再断开S 2,日光灯就能正常发光D .当日光灯正常发光后,再接通S 3,日光灯仍能正常发光【解析】 S 1接通,S 2、S 3断开,电源电压220V 加在灯管两端,不能使气体电离,日光灯不能发光,选项A 错误.S 1、S 2接通,S 3断开,灯丝两端被短路,电压为零,日光灯不能发光,选项B 错误.S 3断开,S 1、S 2接通,灯丝被预热,发出电子,再断开S 2,镇流器中产生很大的自感电动势,和原电压一起加在灯管两端,使气体电离,日光灯正常发光,选项C 正确.当日光灯正常发光后,再接通S 3,则镇流器被短路,灯管两端电压过高,会损坏灯管,选项D 错误.【答案】 C6.如图所示的电路中,三个灯泡L 1、L 2、L 3的电阻关系为R 1<R 2<R 3,电感L 的电阻可忽略,D 为理想二极管.电键S 从闭合状态突然断开时,下列判断正确的是 ( )A .L 1先变亮,然后逐渐变暗B .L 2先变亮,然后逐渐变暗C .L 3先变亮,然后逐渐变暗D .L 2立即熄灭【解析】 S 处于闭合状态时,电感L 和二极管均相当于导线,通过灯泡L 1、L 2、L 3的电流关系为I 1>I 2>I 3.当S 突然断开时,电感L 相当于电源,由于此时二极管处于反向截止状态,故L 2立即熄灭,选项B 错误,D 正确;L 、L 1和L 3构成一个闭合回路,L 中电流从I 1逐渐减小,则通过L 1的电流逐渐减小,通过L 3的电流先变大后逐渐变小.故L 1逐渐变暗,L 3先变亮,然后逐渐变暗,选项A 错误,C 正确.【答案】 CD7.如图所示,两根相距为l 的平行直导轨ab 、cd 、b 、d 间连有一固定电阻R ,导轨电阻可忽略不计.MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R .整个装置处于匀强磁场中,磁感应强度的大小为B ,方向垂直于导轨所在平面(指向图中纸面内).现对MN 施力使它沿导轨方向以速度v 做匀速运动.令U 表示MN 两端电压的大小,则 ()A .U =12Bl v ,流过固定电阻R 的感应电流由b 到d B .U =12Bl v ,流过固定电阻R 的感应电流由d 到b C .U =Bl v ,流过固定电阻R 的感应电流由b 到dD .U =Bl v ,流过固定电阻R 的感应电流由d 到b【解析】 导体杆向右匀速运动产生的感应电动势为Bl v ,R 和导体杆形成一串联电路,由分压原理得U =Bl v R +R·R =12Bl v ,由右手定则可判断出感应电流方向由N →M →b →d ,所以A 选项正确.【答案】 A8.(2009·江西重点中学联考)如图是法拉第做成的世界上第一台发电机模型的原理图,将铜盘放在磁场中,让磁感线垂直穿过铜盘,图中a 、b 导线分别与铜盘边缘和铜盘中心相连,转动铜盘,就可以使闭合电路获得电流.若图中铜盘半径为L ,匀强磁场的磁感应强度为B ,回路电阻为R ,从上往下看逆时针匀速运动铜盘的角速度为ω.则下列说法正确的是 ( )A .回路中有大小和方向做周期性变化的电流B .回路中电流大小恒定,且等于BL 2ωRC .回路中电流方向不变,且从b 导线流进灯泡,再从a 导线流向旋转的铜盘D .若将匀强磁场改为仍然垂直穿过铜盘的正弦变化的磁场,不转动铜盘,灯泡中也会有电流流过【解析】 铜盘可以看成由多根发散状细小铜丝组成,在转动过程中为切割磁感线,产生感应电动势,E =BL v =BLωL 2.由右手定则可知,b 为正极,a 为负极,产生的电流方向不变,总是由b 流向灯泡,由a 流回铜盘.大小为I =BωL 22R.A 错误,B 错误;当铜盘不转动,磁场呈正弦规律变化时,铜盘内部产生环形电流,不会对外部电路供电,灯泡不会亮起来,只有C 正确.【答案】 C9.一足够大的正方形区域ABCD 内存在垂直纸面向里的匀强磁场,磁场应强度为B ,其顶点A 在直线MN 上,且AB 、AD与MN 的夹角为45°,如图所示,一边长为a 的正方形导线框从图示位置沿图示直线MN 以速度v 匀速穿过磁场区域,以逆时针方向为电流正方向,下图中能够正确表示电流—时间关系的是 ( )【解析】线框由开始位置运动距离a的过程中,线框的右边导线切割磁感线,由于导线进入磁场的部分均匀增大,因此感应电动势均匀增大,线框运动距离在a~2a的过程中,线框的右边导线在磁场中的长度越来越小,而左边导线在磁场中的长度越来越大,由于右边导线产生的电动势为逆时针,而左边导线产生的电动势为顺时针,因此,在此过程中线框总感应电动势由正值减小到零再到负值;线框运动距离在2a~3a的过程中,只有左边导线在切割磁感线,因此电动势为负值,又由于左边导线在磁场中的长度越来越小,因此电动势也越来越小,由此可知C正确.【答案】 C10.(2009·开封模拟)在竖直方向的匀强磁场中,水平放置一个面积不变的单匝金属圆线圈,规定线圈中感应电流的正方向如图甲所示,取线圈中磁场B的方向向上为正,当磁场中的磁感应强度B随时间t如图乙变化时,以下四图中正确表示线圈中感应电流变化的是()【解析】考查楞次定律.在前半个周期内,磁场方向向上且逐渐减小,根据楞次定律可知感应电流的方向为负方向,后半个周期内磁场方向向下且增大,根据楞次定律可知感应电流的方向为负方向,且后半个周期内磁感应强度的变化率为前半个周期内的两倍,故电流也为前半个周期的两倍,A正确.【答案】 A二、论述、计算题(本题共3小题,共40分,解答时应写出必要的文字说明、计算公式和重要的演算步骤,只写出最后答案不得分,有数值计算的题,答案中必须明确数值和单位) 11.如图所示,边长L=0.20m的正方形导线框ABCD由粗细均匀的同种材料制成,正方形导线框每边的电阻R0=1.0Ω,金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN的电阻r=0.20Ω.导线框放置在匀强磁场中,磁场的磁感应强度B =0.50T ,方向垂直导线框所在平面向里.金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒上的中点始终在BD 连线上.若金属棒以v =4.0m/s 的速度向右匀速运动,当金属棒运动至AC 位置时,求(计算结果保留两位有效数字):(1)金属棒产生的电动势大小;(2)金属棒MN 上通过的电流大小和方向;(3)导线框消耗的电功率.【解析】 (1)金属棒产生的电动势大小为:E =2BL v =0.42V ≈0.57V .(2)金属棒运动到AC 位置时,导线框左、右两侧电阻并联,其并联电阻大小为R 并=1.0Ω, 根据闭合电路欧姆定律I =E R 并+r≈0.48A , 根据右手定则判定,电流方向从N 到M .(3)导线框的功率为:P 框=I 2R 并≈0.23W.【答案】 (1)0.57V (2)0.48A 方向N →M(3)0.23W12.将一个矩形金属线框折成直角框架abcdefa ,置于倾角为α=37°的斜面上,ab 边与斜面的底线MN 平行,如图所示.ab =bc =cd=de =ef =fa =0.2m ,线框总电阻为R =0.02Ω,ab 边的质量为m=0.01kg ,其余各边的质量为忽略不计,框架可绕过c 、f 点的固定轴自动转动,现从t =0时刻开始沿斜面向上加一随时间均匀增加的、范围足够大的匀强磁场,磁感应强度与时间的关系为B =0.5t ,磁场方向与cdef 面垂直.(cos37°=0.8,sin37°=0.6,g =10m/s 2)(1)求线框中感应电流的大小,并在ab 段导线上画出感应电流的方向;(2)t 为何值时框架的ab 边对斜面的压力为零?【解析】 (1)由题设条件可得:E =ΔΦΔt =ΔB Δt cd ·de =0.02V ,所以感应电流I =E R=1.0A ,根据楞次定律可判断,感应电流的方向从a →b .(2)ab 边所受的安培力F B =BI ·ab =0.1t ,方向垂直于斜面向上,当框架的ab 边对斜面的压力为零时,由平衡条件得F B =mg cos37°.由以上各式并代入数据得:t =0.8s.【答案】 (1)1.0V a →b (2)0.8s13.(2009·高考广东卷)如图(a)所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路.线圈的半径为r 1,在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b)所示.图线与横、纵轴的截距分别为t 0和B 0.导线的电阻不计.求0至t 1时间内(1)通过电阻R 1上的电流大小和方向;(2)通过电阻R 1上的电荷量q 及电阻R 1上产生的热量.【解析】 (1)设k =B 0t 0,由题图(b)可知,磁感应强度B 与时间t 的函数关系为B =B 0-B 0t 0t =B 0-kt 磁场的面积及线圈内的磁通量分别为S =πr 22Φ=BS =πr 22(B 0-kt ) 在0和t 1时刻,单匝线圈中的磁通量分别为 Φ0=B 0πr 22Φ1=πr 22(B 0-kt 1)即ΔΦ=-πr 22kt 1 在0至t 1时间内,线圈中的电动势大小及电流分别为ε=n Φt 1=n πr 22k I =εR +2R =n πr 22B 03Rt 0根据楞次定律判断,电阻R 1上的电流方向应由b 向a(2)0至t 1时间内,通过电阻R 1上的电荷量 q =It 1=n πr 22B 0t 13Rt 0电阻R 1上产生的热量 Q =2I 2Rt 1=2n 2π2r 42B 209Rt 20t 1。