离散数学第二章
- 格式:pptx
- 大小:3.32 MB
- 文档页数:93
第二章谓词演算及其形式系统2.1 个体、谓词和量词内容提要谓词演算中把一切讨论对象都称为个体,它们可以是客观世界中的具体客体,也可以是抽象的客体,诸如数字、符号等。
确定的个体常用a,b,c等到小写字母或字母串表示。
a,b,c等称为常元(constants)。
不确定的个体常用字母x,y,z,u,v,w等来表示。
它们被称为变元(variables)。
谓词演算中把讨论对象——个体的全体称为个体域(domain of individuals)),常用字母D表示,并约定任何D都至少含有一个成员。
当讨论对象遍及一切客体时,个体域特称为全总域(universe),用字母U表示。
例如,当初中学生说“所有数的平方非负”时,实数集是个体域;而达尔文在写《物种起源》时,则以全体生物为个体域;也许哲学家更偏爱全总域。
讨论常常会涉及多种类型个体,这时使用全总域也是比较方便的。
当给定个体域时,常元表示该域中的一个确定的成员,而变元则可以取该域中的任何一个成员为其值。
表示D上个体间运算的运算符与常元、变元组成所谓个体项(terms)。
例如,x+y,x2等。
我们把语句中表示个体性质和关系的语言成分(通常是谓语)称为谓词(predicate)。
谓词携有可以放置个体的空位,当空位上填入个体后便产生一个关于这些个体的语句,它断言个体具有谓词所表示的性质和关系。
通常把谓词所携空位的数目称为谓词的元数。
谓词演算中的量词(quantifiers)指数量词“所有”和“有”,分别用符号∀(All的第一个字母A的倒写) 和∃(Exist的第一个字母E的反写)来表示。
为了用量词∀和∃分别表示个体域中所有个体和有些个体满足一元谓词P,需引入一个变元,同时用作量词的指导变元(放在量词后)和谓词P的命名式变元:∀xP(x) 读作“所有(任意,每一个)x满足P(x)”。
表示个体域中所有的个体满足谓词P(x)。
∃x P(x) 读作“有(存在,至少有一个)x满足P(x)”。