例 I(x):表示x是整数,N(x):表示x是自然数, 假设个体域E是自然数集合,公式I(x)与N(x)在E上是 等价的。 而公式N(x)→I(x) 与N(x)∨I(x)就是与个体域无 关的等价的公式,即 N(x)→I(x)N(x)∨I(x)。
河南工业大学离散数学课程组
四、谓词公式的蕴含式定义
约束 变元
自由
(1)(x)(y)(P(x, y)∨Q(y, z))∧(x)R(x,y)
变元
指导 变元
(x)的 (y)的 指导 (x)的 辖域 辖域 变元 辖域
P(x, y)、Q(y, z)中的x, y为约束变元,z为自由变元, R(x,y)中的x为约束变元,但y为自由变元。
河南工业大学离散数学课程组
例(x)(A(x)∨B(x,y))∨C(x)∨ D(x,w) 换名: (y)(A(y)∨B(y,y))∨C(x)∨ D(x,w) 错
(w)(A(w)∨B(w,y))∨C(x)∨ D(x,w) 对 (z)(A(z)∨B(z,y))∨C(x)∨ D(x,w) 对
代入: (x)(A(x)∨B(x,y))∨C(y)∨ D(y,w) 错 (x)(A(x)∨B(x,y))∨C(w)∨ D(w,w) 错 (x)(A(x)∨B(x,y))∨C(u)∨ D(x,w) 错 (x)(A(x)∨B(x,y))∨C(u)∨ D(u,w) 对
(x)G(x) =
1, 0,
x D,G(x) = 1 x0 D,G(x0 ) = 0
(x)G(x) =
1, 0,
x0 D,G(x0 ) = 1 x D,G(x) = 0
河南工业大学离散数学课程组
例
对以下公式赋值后求真值。
(x)(P(x)→Q(f(x),a)) (x)(P(x)∧Q(x,a))