最新离散数学第2章关系
- 格式:ppt
- 大小:908.50 KB
- 文档页数:140
第二章二元关系习题2.11.a)R = {<0, 0>, <0, 2>, <2, 0>, <2, 2>}b)R = {<1, 1>, <4, 2>}2.R1⋃ R2 = {<1, 2>, <2, 4>, <3, 3>, <1, 3>, <4, 2>}R1⋂ R2 = {<2, 4>}dom R1= {1, 2, 3}dom R2= {1, 2, 4}ran R1= {2, 3, 4}ran R2= {2, 3, 4}dom (R1⋃ R2) = {1, 2, 3, 4}ran (R1⋂ R2) = {4}3.证明:(根据定义域和值域的定义进行证明)因为x ∈ dom (R1⋃ R2) 当且仅当有y ∈ B使得<x, y> ∈ (R1⋃ R2)当且仅当有y ∈ B使得<x, y> ∈ R1或<x, y> ∈ R2当且仅当有y ∈ B使得<x, y> ∈ R1或有y ∈ B使得<x, y> ∈ R2当且仅当x ∈ dom (R1) 或x ∈ dom (R2)当且仅当x ∈ dom (R1) ⋃ dom (R2)所以,dom (R1⋃ R2) = dom (R1) ⋃ dom (R2) 。
因为若x ∈ ran (R1⋂ R2),则有x ∈ A使得<x, y> ∈ (R1⋂ R2) ;有x ∈ A使得<x, y> ∈ R1且<x, y> ∈ R2 ;有x ∈ A使得<x, y> ∈ R1且有x ∈ A使得<x, y> ∈ R2 ;x ∈ ran (R1) 且x ∈ ran (R2);x ∈ ran (R1) ⋂ ran (R2)。
所以,ran (R1⋂ R2) ⊆ ran (R1) ⋂ ran (R2)。