接地装置冲击接地电阻与工频接地电阻的换算
- 格式:pdf
- 大小:1.19 MB
- 文档页数:27
一、选择题1、多雷区指的是年平均雷暴日大于,不超过的地区。
( C )A、25d;40dB、30d;60dC、40d;90dD、45d;90d2、接闪器及其衍生的雷电防护系统实际上是一种。
( B )A、防雷系统B、引雷系统C、消雷系统 D、避雷系统3、雷电过电压波是持续时间极端的。
( D )A、方波B、正弦波C、谐波D、脉冲波4、对电压开关型电涌保护器,其有效电压保护水平值为。
( D )A、电涌保护器的电压保护水平B、电涌保护器两端引线的感应电降C、电涌保护器的电压保护水平与电涌保护器两端引线的感应电压降之和D、电涌保护器的电压保护水平与电涌保护器两端引线的感应电压降之间的较大者。
5、电涌保护器应与同一线路上游的电涌保护器在能量上配合,电涌保护器在能量上配合的资料应由制造商提供。
若无此资料,Ⅲ级试验的电涌保护器,其标称放电电流不应小于。
( C )A、12.5kAB、5 kAC、3kA D、1.5 kA6、一座18层框架结构的建筑物,有10条引下线,底层和17层的分流系数分别为。
( C )A、0.1;0.11B、0.1;0.12C、0.1;0.2 D、0.1;0.17、在TT系统或TN系统中,接于中性线和PE线之间的电涌保护器SPD动作后流过工频续流,电涌保护器SPD额定阻断续流电流值应大于或等于。
( C )A、30AB、50AC、100A D、150A8、等电位连接网络用于相对较小的、限定于局部的信息系统。
( A )A、星型B、网格型C、组合型 D、复合型9、在LPZ0A或LPZ0B区与LPZ1区交界处,在从室外引来的线路上安装的SPD,应选用符合分类试验的产品。
( A )A、Ⅰ级B、Ⅱ级C、Ⅲ级 D、常规10、组合波定义为由 2Ω组合波发生器产生的开路电压波和短路电流波。
( A )A、1.2/50μs ;8/20μsB、8/20μs;1.2/50μsC、10/350μs ;1.2/50μsD、1.2/50μs;10/350μs11、供电或通信线路要求穿钢管敷设并两端接地的目的在于起到作用。
工频接地电阻与冲击接地电阻转换
C.0.1 冲击接地电阻与工频接地电阻的换算,应按下式计算:
R~=A×R i
式中:
R~—接地装置各支线的长度取值小于或等于接地体的有效长度l e,或者有支线大于l e而取其等于l e时的工频接地电阻(Ω);
A—换算系数,其值宜按图A.1确定;
R i—所要求的接地装置冲击接地电阻(Ω)。
图D.1 换算系数A
注:l为接地体最长支线的实际长度,其计量与l e类同;当它大于l e时,取其等于l e。
C.0.2 接地体的有效长度应按下式计算。
式中:l e—接地体的有效长度,应参照GB/T21431进行计算。
ρ—敷设接地体处的土壤电阻率(Ω·m)。
C.0.3 环绕建筑物的环形接地体应按以下方法确定冲击接地电阻。
1当环形接地体周长的一半大于或等于接地体的有效长度时,引下线的冲击接地电阻应为从与引下线的连接点起沿两侧接地体各取有效长度的长度算出的工频接地电阻,这时换算系数等于1。
2当环形接地体周长的一半小于有效长度时,引下线的冲击接地电阻应为以接地体的实际长度算出的工频接地电阻再除以换算系数。
3与引下线连接的基础接地体,当其钢筋从与引下线的连接点量起大于20m时,其冲击接地电阻应为以换算系数等于1和以该连接点为圆心、20 m为半径的半球体范围
内的钢筋体的工频接地电阻。
A、防雷系统B、引雷系统C、消雷系统D、避雷系统A、方波B、正弦波C、谐波D、脉冲波4、对电压开关型电涌保护器,其有效电压保护水平值为。
( D )A、电涌保护器的电压保护水平B、电涌保护器两端引线的感应电压降C、电涌保护器的电压保护水平与电涌保护器两端引线的感应电压降之和D、电涌保护器的电压保护水平与电涌保护器两端引线的感应电压降之间的较大者。
5、电涌保护器应与同一线路上游的电涌保护器在能量上配合,电涌保护器在能量上配合的资( C )A、12.5kAB、5 kAC、3 kAD、1.5 kA6、一座18层框架结构的建筑物,有10条引下线,底层和17层的分流系数分别为。
( C )A、0.1;0.11B、0.1;0.12C、0.1;0.2D、0.1;0.17、在TT系统或TN系统中,接于中性线和PE线之间的电涌保护器SPD动作后流过工频续流,电涌保护器SPD额定阻断续流电流值应大于或等于。
( C )A、30AB、50AC、100AD、150A8、等电位连接网络用于相对较小的、限定于局部的信息系统。
( A )A、星型B、网格型C、组合型D、复合型9、在LPZ0A或LPZ0B区与LPZ1区交界处,在从室外引来的线路上安装的SPD,应选用符A、Ⅰ级B、Ⅱ级C、Ⅲ级D、常规A、1.2/50μs ;8/20μsB、8/20μs;1.2/50μsC、10/350μs ;1.2/50μsD、1.2/50μs;10/350μsA、散流B、跨接C、降低电阻D、屏蔽A、便于维修B、技术要求C、防止反击D、方便室内电气接地13、电子信息系统设备主机房选择在建筑物底层中心部位并安置在序数较高的雷电防护区内,A、不会受到直接雷击B、没有雷电电磁干扰C、雷电电磁环境较好D、便于在发生火灾事故时撤离14、当电子系统的室外线路采用光缆时,在其引入的终端箱处的电气线路侧,当无金属线路引出本建筑物至其他有自己接地装置的设备时,可安装慢上升率试验类型的电涌保护器。
工频接地电阻和冲击接地电阻的关系工频接地电阻和冲击接地电阻是电气工程中常用的两个概念,它们分别用于描述接地系统在工频和冲击电流下的电阻特性。
虽然两者都与接地电阻有关,但是在具体应用中,它们有着不同的定义和计算方法。
工频接地电阻是指在工频电流下,接地系统对电流的阻碍程度。
在电气设备的运行中,由于电流的存在,地电位会有所变化,为了确保设备的正常运行和人身安全,需要将接地电阻控制在一定范围内。
工频接地电阻的计算一般采用电阻测量仪器,通过测量接地系统中的电流和电压之间的关系,可以得到工频接地电阻的数值。
通常,工频接地电阻的数值应该小于某个标准值,以确保接地系统的正常运行。
冲击接地电阻是指在冲击电流下,接地系统对电流的阻碍程度。
在雷击、短路等突发情况下,接地系统需要能够快速将电流导入地面,以保护设备和人身安全。
冲击接地电阻的计算一般采用冲击电流试验仪器,通过施加冲击电流并测量接地系统中的电压降,可以得到冲击接地电阻的数值。
通常,冲击接地电阻的数值应该小于某个标准值,以确保接地系统在冲击情况下能够正常工作。
工频接地电阻和冲击接地电阻之间存在一定的关系。
首先,工频接地电阻是冲击接地电阻的一个特例,即在冲击电流为零时,冲击接地电阻等于工频接地电阻。
这是因为在冲击电流为零的情况下,接地系统对电流的阻碍程度就等于工频电流下的阻碍程度。
其次,工频接地电阻和冲击接地电阻的计算方法不同,所以它们的数值通常是不相等的。
在实际应用中,为了确保接地系统的安全性,通常需要同时考虑工频接地电阻和冲击接地电阻的标准值。
工频接地电阻和冲击接地电阻是描述接地系统电阻特性的两个概念。
工频接地电阻用于描述接地系统在工频电流下的阻碍程度,冲击接地电阻用于描述接地系统在冲击电流下的阻碍程度。
虽然两者存在一定的关系,但是在具体计算和应用中需要分别考虑。
通过合理控制工频接地电阻和冲击接地电阻的数值,可以确保接地系统的正常运行和人身安全。
建筑物防雷接地冲击接地电阻的计算分析摘要:本文通过对国家及行业规范、手册的学习及理解,归纳总结出防雷接地装置的设计要点以及防雷接地电阻值的要求。
并根据项目实际案例举例分析介绍了在民用建筑电气设计过程时,防雷接地系统冲击接地电阻的计算过程,过程包括工频接地电阻的计算、工频接地电阻与冲击接地电阻的换算、接地体有效长度等的计算及分析。
通过本文使得防雷接地装置在保证人员及设备安全的前提下做到技术先进、经济合理。
关键词:防雷接地、工频接地电阻、冲击接地电阻、换算系数、有效长度。
0 引言雷电是自然界中一种正常的放电现象,当天空中雷雨云上下电位差累计到一定程度时,就会在极短的时间内击穿空气,产生放电现象,并将大量负荷释放到大地。
当击中建筑物时,高达数百千安培的雷电流对建筑物及其结构造成损害,其感应雷电流对建筑物内的人员和设备造成损伤等,因此建筑物的防雷接地显得尤为重要,是现代建筑工程设计中一个不可轻视的重要内容。
通常人们把大地当作参考点,即“0”电位点,将电气系统及电器设备装置与大地做电气连通,并通过大地散发大量雷电流,以保护雷电流对系统及设备的损害,俗称接地。
为使直接击中建筑物的雷电流能安全顺利的导入大地,减少或者减轻直击或感应雷电流对电气系统、电器设备及人员造成的损伤,应充分做好建筑物及设备的接地措施。
所以,其防雷装置的接地电阻值要求就显得尤为重要,而接地电阻值的计算又是一项相当严格且复杂的工程,在施工图设计阶段,设计人员应根据项目情况充分计算接地电阻值,对比规范要求,若计算结果不满足规范要求,则需采取必要措施降低接地电阻值,其中,增设人工接地极是工程中最常见最主要的措施之一,即在自然接地极外增加敷设一圈水平接地极或垂直接地极。
除此之外,降低接地电阻值的措施还包括外引接地极法、井式或深钻式敷设接地极法、接地极周围换填低电阻率土壤法、接地极周围土壤添加降阻剂法、利用建筑物周边及地下水接地网法、接地极地下爆破后填充低电阻率材料法等降阻措施,以满足接地电阻值的要求。
工频接地电阻和冲击接地电阻的关系引言:在电力系统中,接地电阻是一项重要的安全措施,用于保护人员和设备免受电气事故的伤害。
而工频接地电阻和冲击接地电阻是两个常见的概念。
本文将深入探讨这两者之间的关系。
一、工频接地电阻工频接地电阻是指在电力系统中,接地电阻器对工频电流的电阻值。
它是电力系统中接地电流通过接地装置时的阻抗大小,通常以欧姆(Ω)为单位来表示。
接地电阻的主要作用是将电力系统的故障电流引入地下,并将电压维持在安全范围内,以保护人员和设备的安全。
二、冲击接地电阻冲击接地电阻是指在电力系统中,接地电阻器对冲击电流的电阻值。
冲击电流是指电力系统中突发故障时的瞬时电流,比如接地故障时的短路电流。
冲击接地电阻的主要作用是限制冲击电流的大小,使其不会对电力系统产生过大的影响,从而保护电力设备不受损坏。
三、工频接地电阻与冲击接地电阻的关系工频接地电阻和冲击接地电阻之间存在一定的关系。
首先,它们都是接地电阻的不同表现形式,只是对不同频率下的电流阻抗进行了定义。
其次,工频接地电阻是冲击接地电阻的一种特殊情况,即在工频下的电阻值。
因此,可以说冲击接地电阻是工频接地电阻的一个扩展。
在实际应用中,工频接地电阻和冲击接地电阻的数值通常是不同的。
由于冲击电流的瞬时性质,冲击接地电阻的数值往往要比工频接地电阻的数值小很多。
这是因为冲击电流的瞬时性导致其频率成分更高,通过接地电阻时产生的电阻降低效应更为明显。
工频接地电阻和冲击接地电阻的测量方法也有所不同。
工频接地电阻可以通过交流电桥等方法进行测量,而冲击接地电阻则需要使用特殊的冲击发生器和测量设备来进行测试。
在电力系统设计和接地电阻选择时,需要综合考虑工频接地电阻和冲击接地电阻的要求。
一方面,工频接地电阻应满足电流引入地下的要求,以保护人员和设备的安全。
另一方面,冲击接地电阻应能够限制冲击电流的大小,以保护电力设备不受损坏。
因此,需要根据实际情况选择合适的接地电阻数值,以平衡安全和经济的考虑。
建筑物防雷设计的计算方法和设计要求作者:刘屏周来源:转载发布时间:2006-7-12 9:06:17 发布人:老斑鸠减小字体增大字体摘要:建筑物防雷计算,折线法滚球半径法等。
避雷接地装置的设置与规格要求……关键词:防雷设计计算方法设计1.1建筑物防雷设计的计算方法1.1.1建筑物年预计雷击次数1.建筑物年预计雷击次数应按下式确定:(1-1)式中N-建筑物预计雷击次数,次/a;k-校正系数,在一般情况下取1,在下列情况下取相应数值:位于旷野孤立的建筑物取2;金属屋面的砖木结构建筑物取1.7;位于河边、湖边、山坡下或山地中土壤电阻率较小处、地下水露头处、土山顶部、山谷风口等处的建筑物,以及特别潮湿的建筑物取1.5;Ng-建筑物所处地区雷击大地的年平均密度,次/km2?a;Ae-与建筑物截收相同雷击次数等效面积,km2。
2.雷击大地的年平均密度应按下式确定:(1-2)式中Td-年平均雷暴日,根据当地气象台、站资料确定,d/a。
3.建筑物截收相同雷击次数等效面积Ae应为其实际面积向外扩大后的面积。
其计算方法应符合下列规定:一、当建筑物的高H小于100m时,其每边的扩大宽度和等效面积应按下列公式计算确定(图1-1):(1-3)(1-4)式中D-建筑物每边的扩大宽度,m;L、W、H-分别为建筑物的长、宽、高,m。
图1-1建筑物截收相同雷击次数等效面积注:建筑物平面积扩大后的面积Ae如图1-1中周边虚线所包围的面积。
二、当建筑物的高H等于或大于100m时,其每边的扩大宽度应按等于建筑物的高H计算;建筑物等效面积应按下式确定:(1-5)三、当建筑物各部位的高不同时,应沿建筑物周边逐点算出最大扩大宽度,其截收相同雷击次数等效面积Ae应按每点最大扩大宽度外端的连接线所包围的面积计算。
1.1.2接地装置冲击接到电阻与工频接地电阻的换算1.接地装置冲击接到电阻与工频接到电阻的换算应按下式确定:(1-6)式中 R~-接地装置各支线的长度取值小于或等于接地体的有效长度le或者有支线大于le而取其等于le时的工频接到电阻,Ω;A-换算系数,其数值宜按图1-2确定;Ri-所要求的接地装置冲击接到电阻,Ω。
关于冲击电阻和接地电阻2008-04-11 18:38:13| 分类:专业--常规经验|字号大中小订阅今天有人在群里突然讨论起防雷接地的问题,在这里也讨论一下,说说我知道的电气(变压器)单独接地要求小于4欧电气、防雷联合接地是要求小于1欧这些一般是指冲击电阻工频接地电阻主要考虑的是电网故障接地时电阻,由于流过的电流频率较高,还应考虑是否存在电抗的因素。
冲击接地电阻主要考虑的是电网受到大电流冲击时的接地电阻。
一般电网受到大电流冲击主要发生在雷击时,流过的电流基本上是非周期的直流电流,且电压相对较高,可以不用考虑电抗的因素。
防雷中心检测的接地电阻主要是冲击接地电阻。
冲击接地电阻:指接地装置流过雷电冲击电流是所表现的电阻值。
对防雷工作者来说,工频电流显然是不合适的,应该用闪电的冲击电流,这时,大地流散电阻应该是以冲击电压,除以冲击电流,两者的商就是冲击电阻了。
实际上,发生闪电时不易测量,只能用人工模拟雷电的冲击电流来代替。
实验的结果发现这样测得的电阻值,与用工频电流测得的值有所差别,于是对大地的流散电阻有了两种概念:即冲击接地电阻和工频接地电阻。
工频接地电阻:指接地装置流过工频电流是所表现的电阻值。
实验表明,同一地方的流散电阻,其冲击电阻值经常小于工频电阻值。
闪电对大地产生火花效应,冲击接地电阻是在火花效应下大地表现出来的电阻。
因此,通常仪表不易准确测得冲击接地电阻,这是因为仪表所通入大地的电流太小,与闪电电流完全不同。
防雷规范中所规定的接地电阻,指的是冲击接地电阻,但是,我们用接地电阻测量仪所测到的数值却是工频接地电阻。
工程上测冲击接地电阻,是根据建筑物防雷设计规范,把工频电阻值乘以换算系数就行了。
二、引起接地冲电流的原因1、架空地线遭受直击雷2、避雷器动作3、静电容量通过设备流入4、协调间隙动作5、设备的绝缘破坏1接地装置冲击接地电阻与工频接地电阻的换算应按下式确定:式中R~——接地装置各支线的长度取值小于或等于接地体的有效长度Le或者有支线大于Le而取其等于Le时的工频接地电阻(Ω);A——换算系数,其数值宜按附图3.1确定;Ri——所要求的接地装置冲击接地电阻(Ω)。