怎样算得快
- 格式:doc
- 大小:20.00 KB
- 文档页数:2
高效学习:数学速算十大方法数学速算是提高数学计算能力的重要方法之一,它可以帮助我们更高效地解决数学问题。
下面是数学速算的十大方法,希望能对你的研究有所帮助。
1. 快速乘法:通过利用数的特性,采用分解、合并等方法,能够快速进行乘法计算,如竖式乘法、平方数的乘法等。
2. 快速除法:通过采用近似估算、简化运算等方法,能够快速进行除法计算,如长除法、快速除以2等。
3. 快速加法:通过利用数的特性,采用进位、合并等方法,能够快速进行加法计算,如竖式加法、快速加9等。
4. 快速减法:通过采用借位、简化运算等方法,能够快速进行减法计算,如竖式减法、快速减9等。
5. 快速平方:通过利用平方数的特性,采用分解、合并等方法,能够快速求解一个数的平方,如平方尾数为5的数、平方尾数为9的数等。
6. 快速立方:通过利用立方数的特性,采用分解、合并等方法,能够快速求解一个数的立方,如立方尾数为1的数、立方尾数为9的数等。
7. 近似计算:通过采用近似估算的方法,能够快速得到一个数的近似值,如舍入法、截断法等。
8. 快速开平方:通过利用数的特性,采用分解、逼近等方法,能够快速求解一个数的平方根,如整数平方根的求解、近似平方根的求解等。
9. 数字规律:通过观察数字的规律,能够快速推导出结果,如数字序列的规律、乘法口诀的规律等。
10. 快速估算:通过采用估算的方法,能够快速得到一个问题的大致答案,如估算乘法结果的大小、估算除法结果的大小等。
以上是数学速算的十大方法,希望你能在研究数学的过程中灵活运用这些方法,提高你的计算能力。
记住,多练多思考,才能在数学研究中取得更好的成绩。
万能速算法口诀大全速算口诀是帮助我们快速计算的一种方法,它可以让我们在不使用计算器的情况下快速得出结果。
在日常生活和工作中,速算口诀非常有用,它可以帮助我们节省时间,提高计算效率。
下面将介绍一些常见的速算口诀大全,希望能够帮助大家提高计算能力。
一、两位数相加1.个位数相加,进位时只需记住进位的数;2.十位数相加时,记住十位进位的数,然后再加上个位的和即可。
二、两位数相减1.个位数相减,若被减数小于减数,只需借位;2.十位数相减时,若被减数小于减数,也要借位,然后再减个位数。
三、两位数乘一位数1.先算个位;2.再算十位,注意进位。
四、两位数平方1.先算各位平方;2.再算十位乘积。
五、两位数的积1.先算个位;2.再算十位。
六、两位数乘两位数1.先算个位;2.再算十位;3.最后相加。
七、九九乘法口诀1. 1x1=1 1x2=2 ... 1x9=9;2. 2x1=2 2x2=4 ... 2x9=18;3. 3x1=3 3x2=6 ... 3x9=27;4. 4x1=4 4x2=8 ... 4x9=36;5. 5x1=5 5x2=10 ... 5x9=45;6. 6x1=6 6x2=12 ... 6x9=54;7. 7x1=7 7x2=14 ... 7x9=63;8. 8x1=8 8x2=16 ... 8x9=72;9. 9x1=9 9x2=18 ... 9x9=81。
八、十倍数的乘法口诀1.十倍数的积为被乘数的个位加0;2.百倍数的积为被乘数的十位不变,个位加0;3.千倍数的积为被乘数的百位不变,十位加0,个位加0。
九、约数的求法1.一个数的约数必为不大于这个数的一半;2.若一个数为奇数,那么它的约数也必为奇数。
十、素数的判断1.一个数的约数只有1和它本身时,称之为素数;2.素数的判断方法:一个数字是否为素数,只需要分别试除2、3、5、7,如果都不能整除,则为素数。
十一、平方根的近似值1.找到一个不大于被开方数的平方数,例如16的平方根为4、25的平方根为5;2.对于小数部分,可以使用长除法进行计算。
高效学习:数学速算十大方法数学速算是提高数学解题效率的重要技能,本文将向您介绍十大高效研究方法,帮助您在数学研究中事半功倍。
1. 掌握基础知识熟练掌握数学基础知识是提高速算能力的前提。
对于每个数学概念、定理和公式,都要深入理解其含义和应用场景。
2. 熟悉公式和定理熟记常用公式和定理,并了解它们之间的联系。
这样在解题时,可以迅速找到合适的公式或定理,提高解题速度。
3. 提高计算能力加强基本运算训练,提高加减乘除、幂次方等基本运算速度。
可以通过大量练,熟悉各种运算规律和技巧。
4. 培养数学思维培养数学思维能力,学会将复杂问题简化,将问题分解为若干个小部分。
通过逻辑推理和归纳总结,找到解题思路。
5. 学会画图对于几何问题,学会利用尺规作图,直观地展示问题和解答过程。
对于函数问题,学会绘制函数图像,分析函数的性质。
6. 掌握解题方法研究和掌握各种数学问题的解题方法,如代数法、几何法、数形结合法等。
根据不同类型的问题,选择合适的解题方法。
7. 练心算和估算提高心算能力,可以快速得出答案或估算结果。
在心算训练中,可以采用加减乘除、平方立方等练。
8. 培养良好的研究惯保持专注,合理安排研究时间,避免拖延。
在解题过程中,养成良好的审题、分析、解答和总结的惯。
9. 学会使用数学工具学会使用数学软件和工具,如计算器、数学建模软件等。
合理利用这些工具,可以提高解题效率。
10. 勤于思考和总结在研究和练过程中,勤于思考和总结,归纳解题规律和方法。
通过总结,形成自己的数学解题技巧。
通过以上十大方法的研究和实践,相信您的数学速算能力将得到显著提高。
请记住,只有持续的努力和练,才能取得更好的成绩。
祝您研究进步!。
快速算数的方法和技巧
1. 快速加法和减法,对于加法,可以利用进位和补数的方法来
快速计算。
例如,对于47+28,可以先将28拆分成20和8,然后分
别加到47上得到67和55,最后相加得到75。
对于减法,可以利用
借位和补数的方法来快速计算。
例如,对于73-29,可以先将29拆
分成20和9,然后分别减去得到53和64,最后相减得到44。
2. 快速乘法,对于乘法,可以利用近似值和分解的方法来快速
计算。
例如,对于4725,可以将25分解成20和5,然后分别乘以
47得到940和235,最后相加得到1175。
另外,也可以利用交叉相
乘法则来快速计算乘法,例如,对于4725,可以将47拆成40和7,25拆成20和5,然后分别相乘再相加得到1175。
3. 快速除法,对于除法,可以利用近似值和分解的方法来快速
计算。
例如,对于168/12,可以将12分解成10和2,然后分别除
以168得到16和84,最后相加得到14。
另外,也可以利用倍数和
约数的方法来快速计算除法,例如,对于168/12,可以找到它们的
公约数,然后约分得到14。
4. 快速平方和立方,对于平方和立方,可以利用平方数和立方
数的性质来快速计算。
例如,对于37的平方,可以利用
(30+7)^2=30^2+2307+7^2来快速计算得到1369。
对于立方,也可以利用立方数的性质来快速计算。
总之,快速算数的方法和技巧可以帮助我们在日常生活中快速准确地进行数学运算,提高工作和学习效率。
希望以上介绍对你有所帮助。
数学之道:十大速算窍门1. 数字拆分法将大数字拆分成易于计算的小数字,例如将 12345 拆分为10000 + 2000 + 300 + 40 + 5,分别进行计算再相加。
2. 倍数加速法利用数字的倍数特性,快速计算结果。
例如,计算156 乘以2,可以先计算 150 乘以 2 得到 300,再加上 6 乘以 2 得到 12,最终结果为 312。
3. 数字分组法将数字进行分组,例如将 1234 分为 12 和 34,先计算 12 乘以5 得到 60,再计算 34 乘以 5 得到 170,最后将两个结果相加得到230。
4. 加减交换律在加减法运算中,可以改变数字的顺序,这样可以简化计算。
例如,计算 123 + 45,可以改为计算 123 + 54,更容易计算出结果。
5. 乘法分配律利用乘法分配律,将复杂的乘法运算简化。
例如,计算 (2 + 3) 乘以 4,可以先计算 2 乘以 4 得到 8,再计算 3 乘以 4 得到 12,最后将两个结果相加得到 20。
6. 数字定位法对于较大的数字,可以通过数字定位法快速计算出结果。
例如,计算 123456 乘以 7,可以先计算 123456 乘以 10 得到 1234560,再减去 123456 得到 1111004。
7. 平方速算法利用平方数的特性,快速计算数字的平方。
例如,计算 13 的平方,可以先计算 10 的平方得到 100,再计算 3 的平方得到 9,最后将两个结果相加得到 169。
8. 立方速算法利用立方数的特性,快速计算数字的立方。
例如,计算 5 的立方,可以先计算 4 的立方得到 64,再加上 1 的立方得到 65。
9. 递减相加法在加法运算中,可以使用递减相加法,将计算简化。
例如,计算 123 + 45,可以先从 123 中减去 40 得到 83,再加上 5 得到 88。
10. 递增相减法在减法运算中,可以使用递增相减法,将计算简化。
例如,计算 123 - 45,可以先加上 1 得到 124,再减去 40 得到 84。
万能速算法口诀大全速算算法口诀是指在进行数学运算时借助一些特定的口诀以快速进行计算。
在日常生活中,我们经常会遇到需要进行简单的数学运算,比如加减乘除等。
而对于一些复杂的运算,如果能够掌握一些速算算法口诀,就能够在短时间内快速进行计算,提高计算效率。
下面将介绍一些常见的速算算法口诀,希望能够帮助大家更快地进行数学运算。
一、加法口诀1.两位数的加法口诀:当两个数相加,个位数相加,十位数相加,并加上进位。
比如:34+29=63,3+9=12,4+2+1=7,则结果为63。
2.三位数的加法口诀:将三个数的各位相加,若有进位则进位,再将进位的数加上。
比如:356+287=643,6+7=13,5+8+1=14,3+2=5,所以结果为643。
3.多位数的加法口诀:将多个数的各位相加,然后再相加,若有进位则进位,再将进位的数加上。
比如:456+789+123=1368,6+9+3=18,5+8+2+1=16,4+7+1=12,所以结果为1368。
二、减法口诀1.两位数的减法口诀:当两个数相减,从个位开始相减,若被减数小于减数,则向高位借位。
比如:87-46=41,7-6=1,8-4=4,所以结果为41。
2.三位数的减法口诀:将三个数相减,从个位开始相减,若被减数小于减数,则向高位借位。
比如:543-267=276,3-7=6(向十位借位),4-6=8,5-2=3,所以结果为276。
3.多位数的减法口诀:将多个数相减,从个位开始相减,若被减数小于减数,则向高位借位。
比如:823-456-179=188,3-6-9=8(向十位借位),2-5-7=0(向百位借位),8-4-1=3,所以结果为188。
三、乘法口诀1.乘法口诀表:乘法口诀表是指1到9的乘法口诀,通过记忆乘法口诀表可以快速进行乘法运算。
比如:7x8=56,7x9=63,8x9=72。
2.两位数的乘法口诀:两个两位数相乘时,先将个位数相乘,再将十位数相乘,最后将两个结果相加。
快速算术技巧在日常生活中,我们经常会进行各种数学计算。
虽然现代科技已经带来了计算器和电脑的方便,但在某些情况下,仍然需要我们掌握一些快速算术技巧。
本文将介绍几种常用的快速算术技巧,帮助你在日常生活和学习中更高效地进行数学计算。
一、心算近似心算是一种快速计算的技巧,它可以在不使用纸和计算器的情况下,迅速得出近似结果。
比如,在进行加法计算时,我们可以将数字进行近似,使得计算更加简便。
例如,对于相近的数字,如23和27相加,可以将其近似为20+30=50,从而快速得到结果。
在进行乘法计算时,我们也可以使用心算近似的方法。
例如,对于相近的数字如97和105相乘,可以将其近似为100×100=10000,再进行简单的修正即可。
二、乘法的分配律乘法的分配律是数学中常用的规则之一。
它可以帮助我们在计算过程中更加高效地进行乘法运算。
例如,当计算两个较大数相乘时,我们可以利用分配律将其分成更小的乘法运算。
比如,计算347×6时,我们可以将其分解为300×6+40×6+7×6的形式进行计算。
这样不仅可以减小难度,还能提高计算效率。
三、乘法口诀乘法口诀是学习数学时常用的方法之一。
我们可以通过记忆乘法口诀表,在进行乘法计算时迅速得到结果。
例如,当计算2×7时,我们可以利用乘法口诀表中的2×7=14来直接得到结果。
通过反复记忆和练习,我们可以迅速掌握乘法口诀表,提高计算速度。
四、快速除法在进行除法计算时,我们可以利用一些快速算术技巧,提高计算效率。
比如,当计算一个整数除以10的倍数时,我们可以直接通过移动小数点来得到结果。
例如,计算120÷60时,我们可以将120中的小数点向左移动一位,得到2作为商。
这种方法适用于任意的整数和10的倍数的除法计算。
五、进位借位法进位借位法是在进行加法和减法计算时常用的技巧。
当进行加法计算时,如果两个数相加的和大于等于10,就需要进行进位操作。
世界上最快的数学计算方法在世界上,有很多种快速的数学计算方法,其中一些方法可以帮助我们更高效地解决数学问题。
以下是一些世界上最快的数学计算方法。
1.快速乘法:快速乘法是一种在进行大数乘法时能够大大减少计算时间的方法。
它基于分解原理,将两个大数拆分成更小的数,然后使用短乘法方法逐个相乘,最后将结果加起来。
这种方法通常比传统的乘法算法更快速。
2.快速幂算法:快速幂算法是一种高效计算大数幂的方法。
该算法基于指数的二进制形式,通过将指数拆解成二进制表示,可以将计算次数大大减少。
该算法通过重复平方运算,每次将结果平方并且除以2,从而逐渐得到幂的结果。
3.快速开方算法:快速开方算法是一种高效计算平方根的方法。
它基于二分查找原理,通过不断逼近目标平方根的值,最终可以找到非常接近的近似值。
这种方法相较于传统的开方算法更快速。
4.快速逆元计算:快速逆元计算是一种高效计算模逆元的方法。
在数论中,模逆元是指在给定模数下,能够将一个数乘以另一个数得到模数的值。
通过扩展欧几里德算法,可以计算出模逆元。
该算法能够快速计算模逆元,从而解决许多与模逆元相关的问题。
5.快速傅里叶变换:快速傅里叶变换(FFT)是一种在数字信号处理和数据压缩中广泛使用的计算方法。
该算法可以将离散时间序列转换为频域信息,从而实现高效的信号分析。
FFT是一种高效率的计算方法,它能够将傅里叶变换的复杂度从O(n^2)降低到O(n log n),因此在大规模信号处理中具有重要作用。
6.蒙特卡洛方法:蒙特卡洛方法是一种基于概率统计的数值计算方法。
该方法通过随机抽样和统计方法来估计结果。
它在计算复杂问题的结果时,可以通过随机抽样的方式,利用计算机进行大量模拟,从而得到近似解。
蒙特卡洛方法在许多领域中广泛应用,如数值积分、随机模拟等。
综上所述,世界上存在许多种快速的数学计算方法,这些方法可以帮助我们更高效地解决各种数学问题。
通过使用这些方法,我们可以大大减少计算时间,提高计算效率,并且在处理大规模数据时更加轻松。
数学技巧揭秘:十大速算法则介绍数学是我们日常生活中不可或缺的一部分,而速算技巧能够帮助我们更快、更准确地进行数学计算。
本文将揭秘十大常用的速算法则,帮助您提高数学计算的效率。
一、加法法则1. 同号相加法则:两个正数相加,结果为正数;两个负数相加,结果为负数。
2. 异号相加法则:正数与负数相加,结果的符号取决于绝对值较大的数,绝对值较大的数的符号保留。
二、减法法则1. 正数减正数:结果为正数。
2. 正数减负数:结果为正数加上负数的绝对值。
3. 负数减正数:结果为负数加上正数的绝对值。
4. 负数减负数:结果的符号取决于绝对值较大的数,绝对值较大的数的符号保留。
三、乘法法则1. 同号相乘法则:两个正数相乘,结果为正数;两个负数相乘,结果为正数。
2. 异号相乘法则:两个数相乘,结果为负数。
四、除法法则1. 正数除以正数:结果为正数。
2. 正数除以负数:结果为负数。
3. 负数除以正数:结果为负数。
4. 负数除以负数:结果为正数。
五、平方法则1. 正数的平方为正数。
2. 负数的平方为正数。
六、立方法则1. 正数的立方为正数。
2. 负数的立方为负数。
七、乘方法则1. 正数的任意次幂为正数。
2. 负数的奇次幂为负数,负数的偶次幂为正数。
八、开方法则1. 正数的平方根为正数。
2. 负数没有实数平方根。
九、百分比法则1. 将百分数转换为小数:将百分数除以100。
2. 将小数转换为百分数:将小数乘以100。
十、约数法则1. 一个数的约数是能够整除该数的整数。
2. 一个数的因数是能够被该数整除的整数。
结论掌握这十大速算法则,能够让我们在数学计算过程中更加得心应手。
通过熟练运用这些速算法则,我们可以更快地进行数学运算,提高计算的准确性和效率。
数学十大速算技巧作为一门语言,数学最大的特点就是精确、严谨,而这个特点又为计算带来了一个巨大的优势——速算技巧。
无论是在考场中还是日常生活中,速算技巧都能够帮助我们快速准确地完成各种数学运算。
下面介绍数学十大速算技巧。
一、快速乘法快速乘法是指利用数学规律,通过简单的数学运算快速得出两个数的积。
例如,计算97×53,可以按照下面的步骤进行:1.7×3=21,记作12.7×5+9×3=51,记作23.9×5=45,记作34.把步骤1、2、3得到的结果相加得到最终结果:97×53=5151。
二、快速除法快速除法是指利用数学规律,通过简单的数学运算快速得出一个数除以另一个数的商。
例如,计算368÷8,可以按照下面的步骤进行:1.找到8的倍数中离368最近的一个,为360,记作12.计算368-360=8,记作23.把步骤1和步骤2得到的结果相加得到最终结果:368÷8=46。
三、整除分解法整除分解法是指把一个大数分解成几个小数,再分别求这些小数的积或者和。
例如,计算135×96,可以按照下面的步骤进行:1.把135分解成5×27,把96分解成3×322.把得到的小数相乘:135×96=5×27×3×323.把得到的小数相加:135+96=5×27+3×32。
四、进位减法进位减法是指在做减法时,先把每一位上的数都向前面进了一位(或几位)的数减去另一位数,最后把得到的结果加上进位的数。
例如,计算387-156,可以按照下面的步骤进行:1.先在个位上进行减法:7-6=1,不需要进位,记作12.在十位上进行减法:8-5=3,不需要进位,记作33.在百位上进行减法:3-1=2,不需要进位,记作24.把得到的结果1、3、2相加得到最终结果:387-156=231。
怎样算得快
金湖县夹沟小学:张彬
当我们昂首仰望星空,不觉就会想到那“神舟”与“天宫”浪漫一吻;当我们俯身眺望大海,不觉就会浮现那“蛟龙”深海畅游的矫健英姿。
是什么让我们能精确计算出“神舟”与“天宫”飞行的角度、速度?又是什么让我们精确计算出“蛟龙”号承受水的压力?是科学的计算方法。
我们现在学习的简便计算就是科学的计算方法之一,它给我们的生活带来了极大的方便,我们应该掌握它。
生活中简便计算的身影随处可见,它可以使我们的生活变得简便而高效。
比如,今天小红和小丽到书店买书,小丽买了一本75元的书、一本49元的书、一本25元的书,去付钱的时候,老板一口就把钱算好了,而小丽可是“丈二的金刚- ---摸不着头脑”。
小丽就满脸疑惑的问:“老板,你为何算的这样快呀?莫非你是‘齐天大圣’?”老板得意的说:“75+25=100元,100+49=149元。
”“啊,我是用75+49=124元,124+25=149元,比你的复杂多了,怪不得你算的比我快。
”
回来的路上我就想,如何我是书店的老板,我算的这样慢,顾客肯定会不耐烦,肯定会“开溜”,那我还怎样做生意呀?不能做好生意我还如何生活?想到这我不觉害怕起来,对一定要回去叫爸爸教我,于是我不由的加快了脚步。
“爸爸,教我简便运算。
”我边推门边说。
“今天,哪来这么高雅的兴致呀?”“行,我们要帮助每一位渴求进步的同志。
”爸爸一边打趣地说,一边拿出了笔和纸。
不一会一道数学题就写在纸上了,内容是:快过年了我们一家6口人要买鞋,成人的买4双,每双199元,儿童的买2双每双99元,一共要花多少钱?看谁算得快。
我认真的计算起来,4×199=796元,2×99=198元,796+198=994元。
当我去找爸爸对答案时,爸爸正在厨房做拿手的“糖醋鱼”,我问“老爸,你的呢?”老爸笑指头脑并答到“994元”。
“神,怎算的?”“4×200=800元”“2×100=200元”“800+200-6=994元。
”
爸爸摸着我的头说:“许多学生在做计算题时,习惯上都是按照常规的运算顺序进行计算而忽视了用简便方法计算。
不用着急算,先看能否凑成整数,然后或加或减零数。
”
是呀,学生掌握了简便运算的方法后,在今后的计算过程中会起到事倍功半的效果,用简便方法计算,不但能计算还能培养我们的观察能力,何乐而不为?。