2017届高考数学大一轮总复习 第八章 平面解析几何 8.4 直线与圆、圆与圆的位置关系课件 理
- 格式:ppt
- 大小:2.73 MB
- 文档页数:37
【步步高】(浙江通用)2017版高考数学一轮复习 第八章 平面解析几何 8.4 直线与圆、圆与圆的位置关系错误!未找到引用源。
1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【知识拓展】1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( × ) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(4)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(5)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(6)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )1.(教材改编)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切 B .相交但直线不过圆心 C .相交过圆心 D .相离答案 B解析 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+1=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ) A .[-3,-1] B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案 C解析 由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+-2≤2,即|a +1|≤2,解得-3≤a ≤1.3.与圆C 1:x 2+y 2+2x -6y -26=0,C 2:x 2+y 2-4x +2y +4=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条 答案 A解析 把已知两圆化为标准方程,C 1:(x +1)2+(y -3)2=36,C 2:(x -2)2+(y +1)2=1,故圆心分别为C 1(-1,3),C 2(2,-1).两圆圆心距|C 1C 2|=-1-2+[3--2=5,等于两圆半径之差,故两圆相内切,它们只有一条公切线.4.(2015·山东)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34答案 D解析 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34,故选D.5.(教材改编)圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以,所求弦长为2 2.题型一 直线与圆的位置关系例1 (1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A .相切 B .相交 C .相离D .不确定(2)若过点(1,2)总可以作两条直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则实数k 的取值范围是________.(3)已知方程x 2+x tan θ-1sin θ=0有两个不等实根a 和b ,那么过点A (a ,a 2),B (b ,b 2)的直线与圆x 2+y 2=1的位置关系是________.答案 (1)B (2)⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833 (3)相切解析 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.(2)把圆的方程化为标准方程得⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=16-3k 24, 所以16-3k24>0,解得-833<k <833.由题意知点(1,2)应在已知圆的外部, 把点代入圆的方程得1+4+k +4+k 2-15>0, 即(k -2)(k +3)>0, 解得k >2或k <-3,则实数k 的取值范围是⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833.(3)由题意可知过A ,B 两点的直线方程为(a +b )x -y -ab =0,圆心到直线AB 的距离为d =|-ab |a +b 2+1,而a +b =-1tan θ,ab =-1sin θ,因此d =⎪⎪⎪⎪⎪⎪1sin θ⎝ ⎛⎭⎪⎫-1tan θ2+1,化简后得d =1,故直线与圆相切.思维升华 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12.(1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长.(1)证明 由⎩⎪⎨⎪⎧y =kx +1,x -2+y +2=12,消去y 得(k 2+1)x 2-(2-4k )x -7=0, 因为Δ=(4k -2)2+28(k 2+1)>0,所以不论k 为何实数,直线l 和圆C 总有两个交点. (2)解 设直线与圆交于A (x 1,y 1)、B (x 2,y 2)两点, 则直线l 被圆C 截得的弦长 |AB |=1+k 2|x 1-x 2|=28-4k +11k21+k2=2 11-4k +31+k2,令t =4k +31+k 2,则tk 2-4k +(t -3)=0,当t =0时,k =-34,当t ≠0时,因为k ∈R ,所以Δ=16-4t (t -3)≥0,解得-1≤t ≤4,且t ≠0, 故t =4k +31+k 2的最大值为4,此时|AB |最小为27.题型二 圆与圆的位置关系例2 (1)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A .内切 B .相交 C .外切 D .外离(2)过两圆x 2+y 2+4x +y =-1,x 2+y 2+2x +2y +1=0的交点的圆中面积最小的圆的方程为________________________________________________________________________. (3)(2015·南京模拟)如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是______________________.答案 (1)B (2)⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45(3)(-22,0)∪(0,22)解析 (1)两圆圆心分别为(-2,0)和(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.(2)由⎩⎪⎨⎪⎧x 2+y 2+4x +y =-1, ①x 2+y 2+2x +2y +1=0, ②①-②得2x -y =0,代入①得x =-15或-1,∴两圆两个交点为⎝ ⎛⎭⎪⎫-15,-25,(-1,-2).过两交点的圆中,以⎝ ⎛⎭⎪⎫-15,-25,(-1,-2)为端点的线段为直径的圆时,面积最小.∴该圆圆心为⎝ ⎛⎭⎪⎫-35,-65,半径为⎝ ⎛⎭⎪⎫-15+12+⎝ ⎛⎭⎪⎫-25+222=255,圆的方程为⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45.(3)C 的标准方程为(x -a )2+(y -a )2=4,圆心坐标为(a ,a ),半径为2.依题意得:0<a 2+a 2<2+2,∴0<|a |<2 2. ∴a ∈(-22,0)∪(0,22) 思维升华 圆与圆的位置关系判断圆与圆的位置关系时,一般用几何法,其步骤是 (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.(1)圆C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0的位置关系为( )A .外离B .外切C .相交D .内切答案 D解析 ∵圆C 1:x 2+y 2-2y =0的圆心为:C 1(0,1),半径r 1=1, 圆C 2:x 2+y 2-23x -6=0的圆心为:C 2(3,0),半径r 2=3, ∴|C 1C 2|=32+1=2,又r 1+r 2=4,r 2-r 1=2,∴|C 1C 2|=r 2-r 1=2,∴圆C 1与C 2内切.(2)已知圆M :x 2+(y +1)2=4,圆N 的圆心(2,1),若圆M 与圆N 交于A ,B 两点,且|AB |=22,则圆N 的方程为( ) A .(x -2)2+(y -1)2=4 B .(x -2)2+(y -1)2=20 C .(x -2)2+(y -1)2=12D .(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20 答案 D解析 设圆N :(x -2)2+(y -1)2=R 2,则圆M 与圆N 的公共弦方程为4x +4y -8+R 2=0,得2=|-4-8+R 2|42.解得R 2=20或R 2=4.题型三 直线与圆的综合问题 命题点1 求弦长问题例3 (2015·课标全国Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |等于( )A .2 6B .8C .4 6D .10 答案 C解析 由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以|MN |=|y 1-y 2|=46,选C.命题点2 由直线与圆相交求参数问题例4 (2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. 解 (1)由题设,可知直线l 的方程为y =kx +1, 因为直线l 与圆C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得 (1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=+k 1+k 2,x 1x 2=71+k2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1 =4k+k1+k2+8. 由题设可得4k+k1+k2+8=12,解得k =1, 所以直线l 的方程为y =x +1. 故圆心C 在直线l 上,所以|MN |=2. 命题点3 直线与圆相切的问题例5 (1)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________________; 答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d =|k -1+4-2k |k 2+-2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0,即4x -3y +4=0.综上,切线方程为x =2或4x -3y +4=0.(2)已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. ①与直线l 1:x +y -4=0平行; ②与直线l 2:x -2y +4=0垂直; ③过切点A (4,-1).解 ①设切线方程为x +y +b =0, 则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0; ②设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52, ∴切线方程为2x +y ±52=0; ③∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.思维升华 直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.(1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.(2)过原点O 作圆x 2+y 2-6x -8y +20=0的两条切线,设切点分别为P ,Q ,则线段PQ 的长为________. 答案 (1)2 2 (2)4解析 (1)设P (3,1),圆心C (2,2),则|PC |=2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222-22=2 2.(2)将圆的方程化为标准方程为(x -3)2+(y -4)2=5,则圆心为(3,4),半径长为 5. 由题意可设切线的方程为y =kx ,则圆心(3,4)到直线y =kx 的距离等于半径长5,即|3k -4|k 2+1=5,解得k =12或k =112,则切线的方程为y =12x 或y =112x .联立切线方程与圆的方程,解得两切点坐标分别为(4,2),⎝ ⎛⎭⎪⎫45,225,此即为P ,Q 的坐标,由两点间的距离公式得|PQ |=4.6.高考中与圆交汇问题的求解一、与圆有关的最值问题典例1 (1)(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为( ) A .6 B .7 C .8 D .9(2)(2014·北京)已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( ) A .7 B .6 C .5 D .4解析 (1)由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7,故选B. (2)根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m . 因为∠APB =90°,连接OP , 易知|OP |=12|AB |=m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为|OC |=32+42=5,所以|OP |max =|OC |+r =6,即m 的最大值为6. 答案 (1)B (2)B 二、直线与圆的综合问题典例2 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A .2 B .4 2 C .6 D .210(2)(2014·江西)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ) A.45π B.34π C .(6-25)πD.54π 解析 (1)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36. ∴|AB |=6.(2)∵∠AOB =90°,∴点O 在圆C 上. 设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,∴点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上,∴当且仅当O ,C ,D 共线时,圆的直径最小为|OD |. 又|OD |=|2×0+0-4|5=45,∴圆C 的最小半径为25,∴圆C 面积的最小值为π(25)2=45π.答案 (1)C (2)A温馨提醒 (1)与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.(2)直线与圆的综合问题主要包括弦长问题,切线问题及组成图形面积问题,解决方法主要依据圆的几何性质.[方法与技巧]1.直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的.2.求过一点的圆的切线方程时,首先要判断此点是否在圆上,然后设出切线方程.注意:斜率不存在的情形. 3.圆的弦长的常用求法(1)几何法:求圆的半径为r ,弦心距为d ,弦长为l ,则⎝ ⎛⎭⎪⎫l 22=r 2-d 2;(2)代数方法:运用根与系数的关系及弦长公式: |AB |=1+k 2|x 1-x 2| =+k2x 1+x 22-4x 1x 2].[失误与防范]1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.A 组 专项基础训练 (时间:35分钟)1.(2015·广东)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x +y +5=0或2x +y -5=0 B .2x +y +5=0或2x +y -5=0 C .2x -y +5=0或2x -y -5=0 D .2x -y +5=0或2x -y -5=0 答案 A解析 设所求直线方程为2x +y +c =0,依题有|0+0+c |22+12=5,解得c =±5,所以所求直线方程为2x +y +5=0或2x +y -5=0,故选A.2.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A 、B 两点,且△ABC 为等边三角形,则实数a 的值为( ) A .4+15 B .4+ 5 C .4±15 D .4± 5答案 C解析 易知△ABC 是边长为2的等边三角形.故圆心C (1,a )到直线AB 的距离为 3. 即|a +a -2|a 2+1=3,解得a =4±15. 3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,则ab 的最大值为( )A. 2 B .2 C .4 D .2 2 答案 B解析 圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R ). 化为:(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1,∵圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切, ∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2.∴ab 的最大值为2.4.过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0 答案 A解析 如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2,∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为( ) A.12,-4 B .-12,4C.12,4 D .-12,-4答案 A解析 因为直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则y =kx 与直线2x +y +b =0垂直,且2x +y +b =0过圆心,所以解得k =12,b =-4.6.(2015·山东)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=________.答案 32解析 由题意,圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PA ⊥x 轴,PA =PB = 3.∴△POA 为直角三角形,其中OA =1,AP =3,则OP =2, ∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos 60°=32.7.已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0,则m 的取值范围为________. 答案 [2,3]解析 曲线C :x =-4-y 2,是以原点为圆心,2为半径的半圆,并且x P ∈[-2,0],对于点A (m,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0, 说明A 是PQ 的中点,Q 的横坐标x =6, ∴m =6+x P2∈[2,3].8.设圆C 的半径为1,圆心在l :y =3x (x ≥0)上,若圆C 与圆x 2+y 2=4相交,则圆心C 的横坐标的取值范围为____________.答案 ⎝ ⎛⎭⎪⎫12,32 解析 设圆C 的圆心坐标为C (x ,3x ).圆x 2+y 2=4的圆心坐标为(0,0),半径为2,∴两圆圆心距为d =x 2+3x 2=2x .由两圆相交,得2-1<d <2+1, 即1<2x <3,解得12<x <32.9.已知以点C (t ,2t)(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程. (1)证明 ∵圆C 过原点O ,且|OC |2=t 2+4t2.∴圆C 的方程是(x -t )2+(y -2t )2=t 2+4t2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12|OA |·|OB |=12×|4t |×|2t |=4,即△OAB 的面积为定值.(2)解 ∵|OM |=|ON |,|CM |=|CN |, ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),|OC |=5, 此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),|OC |=5, 此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.10.(2014·课标全国Ⅰ)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 解 (1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x,2-y ).由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到l 的距离为4105,所以|PM |=4105,S △POM =12×4105×4105=165,故△POM 的面积为165.B 组 专项能力提升 (时间:25分钟)11.若直线l :y =kx +1 (k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是( )A .相交B .相切C .相离D .不确定 答案 A解析 因为圆C 的标准方程为(x +2)2+(y -1)2=2,所以其圆心坐标为(-2,1),半径为2,因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交.12.过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33 B .-33 C .±33D .- 3 答案 B 解析 ∵S△AOB = 12|OA ||OB |sin∠AOB =12sin∠AOB ≤12. 当∠AOB =π2时,△AOB 面积最大. 此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33.(也可k =-tan∠OPH =-33). 13.在平面直角坐标系xOy 中,圆C 1:(x +1)2+(y -6)2=25,圆C 2:(x -17)2+(y -30)2=r 2.若圆C 2上存在一点P ,使得过点P 可作一条射线与圆C 1依次交于点A ,B ,满足PA =2AB ,则半径r 的取值范围是________. 答案 [5,55]解析 由题意可知满足PA =2AB 的点P 应在以C 1为圆心,半径为25的圆上及其内部(且在圆C 1的外部),记该圆为C 3,若圆C 2上存在满足条件的点P ,则圆C 2与圆C 3有公共点,所以|r-25|≤+2+-2≤r +25,即|r -25|≤30≤r +25,解得5≤r ≤55.14.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0. (1)求证:对m ∈R ,直线l 与圆C 总有两个交点;(2)设直线l 与圆C 交于点A ,B ,若|AB |=17,求直线l 的倾斜角;(3)设直线l 与圆C 交于A ,B ,若定点P (1,1)满足2AP →=PB →,求此时直线l 的方程. (1)证明 直线l 恒过定点P (1,1). 由12+(1-1)2<5知点P 在圆C 内, 所以直线l 与圆C 总有两个交点. (2)解 圆心到直线的距离d =r 2-⎝ ⎛⎭⎪⎫AB 22=32,又d =|0-1+1-m |m 2+1,所以32=|0-1+1-m |m 2+1, 解得m =±3,所以,l 的倾斜角为π3或2π3.(3)解 方法一 设A (x 1,y 1),B (x 2,y 2). 由2AP →=PB →得:2(1-x 1,1-y 1)=(x 2-1,y 2-1), 所以x 2+2x 1=3,①直线l 的斜率存在,设其方程为y -1=k (x -1),⎩⎪⎨⎪⎧y -1=k x -,x 2+y -2=5⇒(k 2+1)x 2-2k 2x +k 2-5=0,所以⎩⎪⎨⎪⎧x 1+x 2=2k2k 2+1, ②x 1x 2=k 2-5k 2+1, ③由①②③消去x 1,x 2解得k =±1,故所求直线l 的方程为x -y =0或x +y -2=0. 方法二如图,过点C 作CD ⊥AB 于D ,设|AP |=t ,则|PB |=2t , |AD |=1.5t , |PD |=0.5t .在Rt△CDP 中,有|CP |2=|CD |2+|PD |2,得|CD |2=1-(0.5t )2, 在Rt△CDA 中,|CD |2=5-⎝ ⎛⎭⎪⎫32t 2,所以t =2,从而,|CD |=22,又直线AB 的方程为mx -y +1-m =0,d =|m |m 2+1=22, 解得m =±1,故所求直线l 的方程为x -y =0或x +y -2=0. 15.已知圆O :x 2+y 2=4和点M (1,a ).(1)若过点M 有且只有一条直线与圆O 相切,求实数a 的值,并求出切线方程; (2)若a =2,过点M 的圆的两条弦AC ,BD 互相垂直,求|AC |+|BD |的最大值. 解 (1)由条件知点M 在圆O 上, 所以1+a 2=4,则a =± 3.当a =3时,点M 为(1,3),k OM =3,k 切=-33, 此时切线方程为y -3=-33(x -1).即x +3y -4=0,当a =-3时,点M 为(1,-3),k OM =-3,k 切=33. 此时切线方程为y +3=33(x -1).即x -3y -4=0. 所以所求的切线方程为x +3y -4=0或x -3y -4=0.(2)设O 到直线AC ,BD 的距离分别为d 1,d 2(d 1,d 2≥0),则d 21+d 22=OM 2=3. 又有|AC |=24-d 21,|BD |=24-d 22, 所以|AC |+|BD |=24-d 21+24-d 22.则(|AC |+|BD |)2=4×(4-d 21+4-d 22+24-d 21·4-d 22) =4×[5+216-d 21+d 22+d 21d 22] =4×(5+24+d 21d 22).因为2d 1d 2≤d 21+d 22=3,所以d 21d 22≤94,当且仅当d 1=d 2=62时取等号,所以4+d 21d 22≤52, 所以(|AC |+|BD |)2≤4×(5+2×52)=40.所以|AC |+|BD |≤210, 即|AC |+|BD |的最大值为210.。