半导体工艺总复习..
- 格式:ppt
- 大小:382.00 KB
- 文档页数:21
1.根据扩散源的不同有三种扩散工艺:固态源扩散,液态源扩散,气态源扩散。
2.固相扩散工艺微电子工艺中的扩散,是杂质在晶体内的扩散,是固相扩散工艺。
固相扩散是通过微观粒子一系列随机跳跃来实现的,这些跳跃在整个三维方向进行,主要有三种方式:间隙式扩散替位式扩散间隙—替位式扩散3.什么是离子注入离化后的原子在强电场的加速作用下,注射进入靶材料的表层,以改变这种材料表层的物理或化学性质.注入离子在靶内受到的碰撞是随机的,所以杂质分布也是按几率分布的。
离子进入非晶层(穿入距离)的分布接近高斯分布.4.离子注入的沟道效应沟道效应当离子沿晶轴方向注入时,大部分离子将沿沟道运动,几乎不会受到原子核的散射,方向基本不变,可以走得很远。
5.减少沟道效应的措施(1)对大的离子,沿沟道轴向(110)偏离7-10o(2)用Si,Ge,F,Ar等离子注入使表面预非晶化,形成非晶层.(3)增加注入剂量(晶格损失增加,非晶层形成,沟道离子减少).(4)表面用SiO2层掩膜.6.损伤退火的目的(修复晶格,激活杂质)A.去除由注入造成的损伤,让硅晶格恢复其原有完美晶体结构B.让杂质进入电活性(electrically active)位置-替位位置。
C.恢复电子和空穴迁移率7.退火方法a.高温退火b.快速退火:激光、高强度光照、电子束退火、其他辐射.8.注入方法a直接注入离子在光刻窗口直接注入Si衬底。
射程大、杂质重时采用。
b间接注入;通过介质薄膜或光刻胶注入衬底晶体。
间接注入沾污少,可以获得精确的表面浓度。
c多次注入通过多次注入使杂质纵向分布精确可控,与高斯分布接近;也可以将不同能量、剂量的杂质多次注入到衬底硅中,使杂质分布为设计形状。
9.降低系统自掺杂方法a.降低系统自掺杂的有效方法是对石墨基座进行HCl 高温处理,处理的温度应该高于外延生长温度。
b.所谓高温处理就是用HCl 在高温下把基座上淀积的硅腐蚀掉,在腐蚀后立即在基座上包一层本征硅用来封闭基座。
1、三种重要的微波器件:转移型电子晶体管、碰撞电离雪崩渡越时间二极管、MESFET.2、晶锭获得均匀的掺杂分布:较高拉晶速率和较低旋转速率、不断向熔融液中加高纯度多晶硅,维持熔融液初始掺杂浓度不变。
3、砷化镓单晶:p型半导体掺杂材料镉和锌,n型是硒、硅和锑硅:p型掺杂材料是硼,n型是磷。
4、切割决定晶片参数:晶面结晶方向、晶片厚度(晶片直径决定)、晶面倾斜度(从晶片一端到另一端厚度差异)、晶片弯曲度(晶片中心到晶片边缘的弯曲程度)。
5、晶体缺陷:点缺陷(替位杂质、填隙杂质、空位、Frenkel,研究杂质扩散和氧化工艺)、线缺陷或位错(刃型位错和螺位错,金属易在线缺陷处析出)、面缺陷(孪晶、晶粒间界和堆垛层错,晶格大面积不连续,出现在晶体生长时)、体缺陷(杂质和掺杂原子淀积形成,由于晶体固有杂质溶解度造成).6、最大面为主磨面,与<110>晶向垂直,其次为次磨面,指示晶向和导电类型。
7、半导体氧化方法:热氧化法、电化学阳极氧化法、等离子化学汽相淀积法。
8、晶体区别于非晶体结构:晶体结构是周期性结构,在许多分子间延展,非晶体结构完全不是周期性结构.9、平衡浓度与在氧化物表面附近的氧化剂分压值成正比。
在1000℃和1个大气压下,干氧的浓度C0是5。
2x10^16分子数/cm^3,湿氧的C0是3x10^19分子数/cm^3。
10、当表面反应时限制生长速率的主要因素时,氧化层厚度随时间呈线性变化X=B(t+)/A线性区(干氧氧化与湿氧氧化激活能为2eV,);氧化层变厚时,氧化剂必须通过氧化层扩散,在二氧化硅界面与硅发生反应,并受扩散过程影响,氧化层厚度与氧化时间的平方根成正比,生长速率为抛物线X^2=B(t+)抛物线区(干氧氧化激活能是1。
24Ev,湿氧氧化是0.71eV). 11、线性速率常数与晶体取向有关,因为速率常数与氧原子进入硅中的结合速率和硅原子表面化学键有关;抛物线速率常数与晶体取向无关,因为它量度的是氧化剂穿过一层无序的非晶二氧化硅的过程。
填空 20’简答20’判断10’综合50’第一单元1.必定温度,杂质在晶体中拥有最大均衡浓度,这一均衡浓度就称为何?固溶度2.按制备时有无使用坩埚分为两类,有坩埚分为?无坩埚分为?(P24)有坩埚:直拉法、磁控直拉法无坩埚:悬浮区熔法3.外延工艺按方法可分为哪些?(P37)气相外延、液相外延、固相外延和分子束外延4.Wafer 的中文含义是什么?当前常用的资料有哪两种?晶圆;硅和锗5.自混杂效应与互扩散效应(P47-48)左图:自混杂效应是指高温外延时,高混杂衬底的杂质反扩散进入气相界限层,又从界限层扩散掺入外延层的现象。
自混杂效应是气相外延的本征效应,不行能完好防止。
自混杂效应的影响:○1改变外延层和衬底杂质浓度及散布○2对p/n或n/p硅外延,改变pn 结地点右图:互(外)扩散效应:指高温外延时,衬底中的杂质与外延层中的杂质相互扩散,惹起衬底与外延层界面邻近的杂质浓度迟缓变化的现象。
不是本征效应,是杂质的固相扩散带来(低温减小、消逝)6.什么是外延层?为何在硅片上使用外延层?1)在某种状况下,需要硅片有特别纯的与衬底有同样晶体构造的硅表面,还要保持对杂质类型和浓度的控制,经过外延技术在硅表面堆积一个新的知足上述要求的晶体膜层,该膜层称为外延层。
2)在硅片上使用外延层的原由是外延层在优化pn 结的击穿电压的同时降低了集电极电阻,在适中的电流强度下提升了器件速度。
外延在 CMOS集成电路中变得重要起来,由于跟着器件尺寸不停减小它将闩锁效应降到最低。
外延层往常是没有玷辱的。
7.常用的半导体资料为何选择硅?1)硅的充裕度。
硅是地球上第二丰富的元素,占地壳成分的25%;经合理加工,硅能够提纯到半导体系造所需的足够高的纯度而耗费更低的成本。
2)更高的融化温度同意更宽的工艺容限。
硅1412 ℃>锗3)更宽的工作温度。
用硅制造的半导体件能够用于比锗937℃。
更宽的温度范围,增添了半导体的应用范围和靠谱性。
第一次作业:1,集成时代以什么来划分?列出每个时代的时间段及大致的集成规模。
答:类别时间数字集成电路模拟集成电路 MOS IC 双极ICSSI 1960s前期MSI 1960s~1970s 100~500 30~100LSI 1970s 500~2000 100~300 VLSI 1970s后期~1980s后期 >2000 >300 ULSI 1980s后期~1990s后期GSI 1990s后期~20世纪初SoC 20世纪以后2,什么是芯片的集成度?它最主要受什么因素的影响?答:集成度:单个芯片上集成的元件(管子)数。
受芯片的关键尺寸的影响。
3,说明硅片与芯片的主要区别。
答:硅片是指由单晶生长,滚圆,切片及抛光等工序制成的硅圆薄片,是制造芯片的原料,用来提供加工芯片的基础材料;芯片是指在衬底上经多个工艺步骤加工出来的,最终具有永久可是图形并具有一定功能的单个集成电路硅片。
4,列出集成电路制造的五个主要步骤,并简要描述每一个步骤的主要功能。
答:晶圆(硅片)制备(Wafer Preparation);硅(芯)片制造(Wafer Fabrication):在硅片上生产出永久刻蚀在硅片上的一整套集成电路。
硅片测试/拣选(Die Test/Sort):单个芯片的探测和电学测试,选择出可用的芯片。
装配与封装(Assembly and Packaging):提供信号及电源线进出硅芯片的界面;为芯片提供机械支持,并可散去由电路产生的热能;保护芯片免受如潮湿等外界环境条件的影响。
成品测试与分析(或终测) (Final Test):对封装后的芯片进行测试,以确定是否满足电学和特性参数要求。
5,说明封装的主要作用。
对封装的主要要求是什么。
答:封装的作用:提供信号及电源线进出硅芯片的界面;为芯片提供机械支持,并可散去由电路产生的热能;保护芯片免受如潮湿等外界环境条件的影响。
主要要求:电气要求:引线应当具有低的电阻、电容和电感。
半导体复习参考试题⼀、填空题1. ⾃由电⼦的能量与波数的关系式为(0222)(m k h k E =),孤⽴原⼦中的电⼦能量(⼤⼩为2220408n h q m E n ε-=的分⽴能级),晶体中的电⼦能量为(电⼦共有化运动)所形成的(准连续)的能带。
2. 温度⼀定时,对于⼀定的晶体,体积⼤的能带中的能级间隔(⼩),对于同⼀块晶体,当原⼦间距变⼤时,禁带宽度(变⼩)。
3. 玻尔兹曼分布适⽤于(⾮简并)半导体,对于能量为E 的⼀个量⼦态被电⼦占据的概率为()ex p()ex p()(00Tk ET k E E f F B -?=),费⽶分布适⽤于(简并)半导体,对于能量为E 的⼀个量⼦态被电⼦占据的概率为()e x p (11)(0Tk E E E f F-+=),当EF 满⾜(Tk E E T k E E V F F C 0022≤-≤-或)时,必须考虑该分布。
4. 半导体材料中的(能带结构(直接复合))、(杂质和缺陷等复合中⼼(间接复合))、(样品形状和表⾯状态(表⾯复合))等会影响⾮平衡载流⼦的寿命,寿命值的⼤⼩反映了材料晶格的(完整性),是衡量材料的⼀个重要指标。
5. Si 属于(间接)带隙半导体。
导带极⼩值位于布⾥渊区的(<100>⽅向)上由布⾥渊区中⼼点Г到边界X 点的(0.85倍)处,导带极值附近的等能⾯是(长轴沿<100>⽅向的旋转椭球⾯),在简约布⾥渊区,共有(6)个这样的等能⾯。
6. Ge 属于(间接)带隙半导体。
导带极⼩值位于布⾥渊区的(<111>⽅向)上由布⾥渊区边界L 点处,导带极值附近的等能⾯是(长轴沿<111>⽅向的旋转椭球⾯),在简约布⾥渊区,共有(4)个这样的等能⾯。
7. GaAs 属于(直接)带隙半导体。
导带极⼩值位于布⾥渊区中⼼点Г处,极值附近的等能⾯是(球⾯),在简约布⾥渊区,共有(1)个这样的等能⾯。
在布⾥渊区的(<111>⽅向)边界L 点处,存在⾼于能⾕值0.29eV 的次低能⾕,简约布⾥渊区⼀共有(8)个这样的能⾕。
1.半导体定义为:在绝对零度无任何导电能力,但其导电性随温度升高呈总体上升趋势,且对光照等外部条件和材料的纯度与结构完整性等内部条件十分敏感的材料。
2.电负性的定义:原子吸引其在化学键中与另一原子之共有电子偶的能力,其值为原子的电离能与电子亲和能之和。
3.电离能指失去一个电子所需要的能量。
亲和能则指中性原子获得一个电子所释放的能量。
4.价电子数相同的原子,电子壳层数越多,电负性越小,电子壳层数相同的原子,价电子越多,电负性越强。
5.同种元素原子结合形成晶体时,原子电负性小按金属键结合,电负性大按分子键结合,电负性中等按共价键结合。
6.不同种元素原子结合形成化合物时,电负性差别较大的两种元素倾向于离子键结合,电负性差别不大的两种元素倾向于共价键结合,但公有电子向电负性较强的一边倾斜,因而具有一定的离子性,形成混合键,构成混合键的两种元素的电负性差别越大,其离子性越强。
7.各种半导体的构成元素大多位于元素周期表中居中的位置,其构成元素的电负性属中等水平,可见,共价键是半导体的主要结合形式。
8.主要半导体器件由Ⅲ-Ⅴ、Ⅱ-Ⅵ族化合物和Ⅳ族元素型共价键晶体构成,Ⅲ-Ⅵ、Ⅱ-Ⅵ族化合物的平均价电子数与Ⅳ族元素型共价键晶体一样,都是4配位,原子的4配位密排方式是正四面体结构,4个键角相等,皆为109°28′。
9.元素半导体金刚石、硅(Si)、锗(Ge)、和灰锡(α—Sn)的晶体结构是金刚石型。
10.晶体的化学组成完全相同而晶体结构不同称为同质异晶体,SiC是同质异晶型最多的半导体。
11.固体中电子的状态以其能量E和动量P来表示,反映其能量随动量变化规律的E(k)函数即所谓能带。
不过,能带也常常指的是在某些能量范围内密集的能级。
12.分别叙述半导体与金属和绝缘体在导电过程中的差别。
1.对参杂的锗、硅等原子半导体,主要的散射机构是声学波晶格散射和电离杂质散射。
2.电阻率是半导体导电能力的直接表征,且可以直接测量,但测量结果反映的事载流子密度与迁移率的乘积,要想分别测出载流子的密度和迁移率,可以利用霍尔效应。
半导体器件复习题一、半导体基础知识1、什么是半导体?半导体是一种导电性能介于导体和绝缘体之间的材料。
常见的半导体材料有硅(Si)、锗(Ge)等。
其导电能力会随着温度、光照、掺入杂质等因素的变化而发生显著改变。
2、半导体中的载流子半导体中有两种主要的载流子:自由电子和空穴。
在本征半导体中,自由电子和空穴的数量相等。
3、本征半导体与杂质半导体本征半导体是指纯净的、没有杂质的半导体。
而杂质半导体则是通过掺入一定量的杂质元素来改变其导电性能。
杂质半导体分为 N 型半导体和 P 型半导体。
N 型半导体中多数载流子为自由电子,P 型半导体中多数载流子为空穴。
二、PN 结1、 PN 结的形成当 P 型半导体和 N 型半导体接触时,在交界面处会形成一个特殊的区域,即 PN 结。
这是由于扩散运动和漂移运动达到动态平衡的结果。
2、 PN 结的单向导电性PN 结正偏时,电流容易通过;PN 结反偏时,电流难以通过。
这就是 PN 结的单向导电性,是半导体器件工作的重要基础。
3、 PN 结的电容效应PN 结存在势垒电容和扩散电容。
势垒电容是由于空间电荷区的宽度随外加电压变化而产生的;扩散电容则是由扩散区内电荷的积累和释放引起的。
三、二极管1、二极管的结构和类型二极管由一个 PN 结加上电极和封装构成。
常见的二极管类型有普通二极管、整流二极管、稳压二极管、发光二极管等。
2、二极管的伏安特性二极管的电流与电压之间的关系称为伏安特性。
其正向特性曲线存在一个开启电压,反向特性在一定的反向电压范围内电流很小,当反向电压超过一定值时会发生反向击穿。
3、二极管的主要参数包括最大整流电流、最高反向工作电压、反向电流等。
四、三极管1、三极管的结构和类型三极管有 NPN 型和 PNP 型两种。
它由三个掺杂区域组成,分别是发射区、基区和集电区。
2、三极管的电流放大作用三极管的基极电流微小的变化能引起集电极电流较大的变化,这就是三极管的电流放大作用。
苏州⼤学半导体⼯艺复习期末复习半导体⼯艺期末复习针对性总结第⼀部分:论述题1、集成电路的⼯艺集成:晶体⽣长(外延)、薄膜氧化、⽓相沉积、光刻、扩散、离⼦注⼊、刻蚀以及⾦属化等。
☆2、⼯艺⽬的:①形成薄膜:化学反应,PVD,CVD,旋涂,电镀;②光刻:实现图形的过渡转移;③刻蚀:最后的图形转移;④改变薄膜:注⼊,扩散,退⽕;3、单晶硅制备的⽅法:直拉法、磁控直拉技术、悬浮区熔法(FZ)。
☆4、直拉法的关键步骤以及优缺点(1)关键步骤:熔硅、引晶、收颈、放肩、等径⽣长、收晶。
熔硅:将坩埚内多晶料全部熔化;引晶:先预热籽晶达到结晶温度后引出结晶;收颈:排除接触不良引起的多晶和尽量消除籽晶内原有位错的延伸;放肩:略降低温度(15-42℃),让晶体逐渐长到所需的直接为⽌;等径⽣长:提⾼拉速收肩,收肩后保持晶体直径不变,就是等径⽣长;收晶:拉速不变、升⾼熔体温度或熔体温度不变、加速拉速,使晶体脱离熔体液⾯。
(2)优点:①所⽣长单晶的直径较⼤,成本相对较低;②通过热场调整及晶体转速、坩埚转速等⼯艺参数的优化,可较好控制电阻率径向均匀性。
(3)缺点:⽯英坩埚内壁被熔硅侵蚀及⽯墨保温加热元件的影响,易引⼊氧、碳等杂质,不易⽣长⾼电阻率的单晶。
5、磁控直拉技术的优点:①减少温度波动;②减轻熔硅与坩埚作⽤;③降低了缺陷密度,氧的含量;④使扩散层厚度增⼤;⑤提⾼了电阻分布的均匀性。
6、悬浮区熔法制备单晶体:特点:①不需要坩埚,污染少;②制备的单晶硅杂质浓度⽐直拉法更低;③主要⽤于需要⾼电阻率材料的器件。
缺点:单晶直径不及CZ法☆7、晶体⽣长产⽣的缺陷种类及影响种类:点缺陷、线缺陷、⾯缺陷、体缺陷;影响:点缺陷…… 影响杂质的扩散运动;线缺陷…… ⾦属杂质容易在线缺陷处析出,劣化器件性能;⾯缺陷…… 不能⽤于制作集成电路;体缺陷…… 不能⽤于制作集成电路。
8、外延⽣长①常⽤的外延技术:化学⽓相淀积(CVD)、分⼦束外延(MBE)。
半导体物理复习题一、选择题1.硅晶体结构是金刚石结构,每个晶胞中含原子个数为(D)P1A.1B.2C.4D.82.关于本征半导体,下列说法中错误的是(C)P65A.本征半导体的费米能级E F=E i基本位于禁带中线处B.本征半导体不含有任何杂质和缺陷C.本征半导体的费米能级与温度无关,只决定于材料本身D.本征半导体的电中性条件是qn0=qp03.非平衡载流子的复合率定义为单位时间单位体积净复合消失的电子-空穴对数。
下面表达式中不等于复合率的是(D)P130A. B. C. D.4.下面pn结中不属于突变结的是(D)P158、159A.合金结B.高表面浓度的浅扩散p+n结C.高表面浓度的浅扩散n+p结D.低表面浓度的深扩散结5.关于pn结,下列说法中不正确的是(C)P158、160A.pn结是结型半导体器件的心脏。
B.pn结空间电荷区中的内建电场起着阻碍电子和空穴继续扩散的作用。
C.平衡时,pn结空间电荷区中正电荷区和负电荷区的宽度一定相等。
6.对于小注入下的N型半导体材料,下列说法中不正确的是(B)P128A. B. C. D.7.关于空穴,下列说法不正确的是(C)P15A.空穴带正电荷B.空穴具有正的有效质量C.空穴同电子一样都是物质世界中的实物粒子D.半导体中电子空穴共同参与导电8.关于公式,下列说法正确的是(D)P66、67A.此公式仅适用于本征半导体材料B.此公式仅适用于杂质半导体材料C.此公式不仅适用于本征半导体材料,也适用于杂质半导体材料D.对于非简并条件下的所有半导体材料,此公式都适用9.对于突变结中势垒区宽度,下面说法中错误的是(C)P177A.p+n结中B.n+p结中C.与势垒区上总电压成正比D.与势垒区上总电压的平方根成正比10.关于有效质量,下面说法错误的是(D)P13、14A.有效质量概括了半导体内部势场的作用B.原子中内层电子的有效质量大,外层电子的有效质量小C.有效质量可正可负D.电子有效质量就是电子的惯性质量。
半导体制造技术复习总结半导体制造技术复习总结第⼀章半导体产业介绍1、集成电路制造的不同阶段:硅⽚制备、硅⽚制造、硅⽚测试/拣选、装配与封装、终测;2、硅⽚制造:清洗、成膜、光刻、刻蚀、掺杂;3、半导体趋势:提⾼芯⽚性能、提⾼芯⽚可靠性、降低芯⽚价格;4、摩尔定律:⼀个芯⽚上的晶体管数量⼤约每18个⽉翻⼀倍。
5、半导体趋势:①提⾼芯⽚性能:a关键尺⼨(CD)-等⽐例缩⼩(Scale down)b每块芯⽚上的元件数-更多 c 功耗-更⼩②提⾼芯⽚可靠性: a⽆颗粒净化间的使⽤ b控制化学试剂纯度c分析制造⼯艺 d硅⽚检测和微芯⽚测试e芯⽚制造商成⽴联盟以提⾼系统可靠性③降低芯⽚价格:a.50年下降1亿倍 b减少特征尺⼨+增加硅⽚直径c半导体市场的⼤幅度增长(规模经济)第⼆章半导体材料特性6、最常见、最重要半导体材料-硅:a.硅的丰裕度 b.更⾼的熔化温度允许更宽的⼯艺容限c.更宽的⼯作温度范围d.氧化硅的⾃然⽣成7、GaAs的优点:a.⽐硅更⾼的电⼦迁移率; b.减少寄⽣电容和信号损耗; c.集成电路的速度⽐硅制成的电路更快; d.材料电阻率更⼤,在GaAs衬底上制造的半导体器件之间很容易实现隔离,不会产⽣电学性能的损失;e.⽐硅有更⾼的抗辐射性能。
GaAs的缺点: a.缺乏天然氧化物;b.材料的脆性; c.由于镓的相对匮乏和提纯⼯艺中的能量消耗,GaAs的成本相当于硅的10倍; d.砷的剧毒性需要在设备、⼯艺和废物清除设施中特别控制。
第三章器件技术8、等⽐例缩⼩:所有尺⼨和电压都必须在通过设计模型应⽤时统⼀缩⼩。
第四章硅和硅⽚制备9、⽤来做芯⽚的⾼纯硅称为半导体级硅(semiconductor-grade silicon, SGS)或电⼦级硅西门⼦⼯艺:1.⽤碳加热硅⽯来制备冶⾦级硅SiC(s)+SiO2(s) Si(l)+SIO(g)+CO(g)2.将冶⾦级硅提纯以⽣成三氯硅烷Si(s)+3HCl(g) SiHCl3(g)+H2(g)3.通过三氯硅烷和氢⽓反应来⽣成SGS SiHCl3(g)+H2(g) Si(s)+3HCl(g)10、单晶硅⽣长:把多晶块转变成⼀个⼤单晶,并给予正确的定向和适量的N型或P型掺杂,叫做晶体⽣长。