探索三角形相似的条件(上课)讲解
- 格式:ppt
- 大小:1.81 MB
- 文档页数:20
探索三角形相似的条件(基础)知识讲解【学习目标】1.掌握平行线分线段成比例定理以及和三角形一边平行的判定定理,并会灵活应用;2.探索三角形相似的条件,掌握三角形相似的判定方法;3.了解三角形的重心,并能从相似的角度去进行相关的证明. 【要点梳理】要点一、平行线分线段成比例定理 1.平行线分线段成比例定理两条直线被一组平行线所截,所得的对应线段成比例.如图: l 1∥l 2∥l 3,直线a 、b 分别与l 1、l 2、l 3交于点A 、B 、C 和点D 、E 、F 、,则有 (1)AB DE BC EF =(2)AB DE AC DF =(3)BC EFAC DE=成立.l 3l 2l 1bl 3l 2l 1l 3l 2l 1要点诠释:当两线段的比是1时,即为平行线等分线段定理,可见平行线等分线段定理是平行线分线段成比例定理特殊情况,平行线分线段成比例定理是平行线等分线段定理的推广.2.平行于三角形一边的直线的性质平行于三角形一边的直线与其他两边相交,所截得的三角形与原三角形相似.要点诠释:这条定理也可以作为判定两个三角形相似的判定定理,有时也把他叫做判定两个三角形相似的预备定理.要点二、相似三角形的判定定理【高清课程名称:相似三角形的判定(1)高清ID号:394497关联的位置名称:相似三角形的判定】1.判定方法(一):两角分别相等的两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.2.判定方法(二):两边成比例夹角相等的两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.3.判定方法(三):三边成比例的两个三角形相似.要点三、相似三角形的常见图形及其变换:要点四、三角形的重心三角形的三条中线相交于一点,这点叫做三角形的重心.【典型例题】类型一、平行线分线段成比例定理相等的是()B .CDEF C .BOOED.BCBE【答案】D.B CB E.故选:D.【总结升华】本题考查了平行线分线段成比例定理,解题的关键是找准对应线段.举一反三:【变式】如图已知△ABC中AB=AC,AD⊥BC,M是AD的中点,CM交AB于P,DN∥CP交AB于N,若AB=6cm,求AP的值.【答案】解:∵AB=AC,AD⊥BC,∴BD=DC.∵DN∥CP,∴BN=NP又AM=MD.∴AP=PN==2cm.2. 如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.【思路点拨】充分利用平行寻找等角,以确定相似三角形的个数. 【答案与解析】解:∵四边形ABCD是平行四边形,∴ AB∥CD,AD∥BC,∴△BEF∽△CDF,△BEF∽△AED.∴△BEF∽△CDF∽△AED.∴当△BEF∽△CDF时,相似比;当△BEF∽△AED时,相似比;当△CDF∽△AED时,相似比.【总结升华】此题考查了平行于三角形一边的直线与其他两边相交,所截得的三角形与原三角形相似.以及相似三角形的性质定理求得相似比.解题的关键是要仔细识图,灵活应用数形结合思想.类型二、相似三角形的判定3.(优质试题•金平区模拟)如图,点D在等边△ABC的BC边上,△ADE为等边三角形,DE与AC交于点F.(1)证明:△ABD∽△DCF;(2)除了△ABD∽△DCF外,请写出图中其他所有的相似三角形.【思路点拨】(1)利用等边三角形的性质以及相似三角形的判定方法两角对应相等的两三角形相似得出即可;(2)利用对顶角的性质以及相似三角形的判定定理进行判断即可.【答案与解析】。
相似三角形判定讲课逐字稿同学们,今天我们要一起探讨一个非常有趣的几何学话题——相似三角形的判定。
相似三角形是几何学中一个重要的概念,它不仅在数学领域有着广泛的应用,而且在日常生活中也随处可见。
那么,我们如何判断两个三角形是否相似呢?这就是我们今天要学习的重点内容。
首先,让我们来看第一个判定相似三角形的方法——角角相似(AA)。
如果两个三角形有两个角相等,那么这两个三角形就是相似的。
这个判定方法的依据是三角形内角和定理,即任何一个三角形的内角和都是180度。
如果两个三角形有两个角相等,那么第三个角也必然相等,因为它们必须加起来等于180度。
这样,两个三角形的所有对应角都相等,所以它们是相似的。
接下来,我们来看第二个判定方法——边边边相似(SSS)。
如果两个三角形的三边对应成比例,那么这两个三角形就是相似的。
这个方法的依据是相似三角形的性质,即相似三角形的对应边是成比例的。
通过测量两个三角形的边长,我们可以判断它们是否相似。
第三个判定方法是边角边相似(SAS)。
如果两个三角形有两边对应成比例,并且这两边夹角相等,那么这两个三角形就是相似的。
这个方法结合了边的比例关系和角的相等关系,是一种非常实用的判定方法。
现在,让我们通过几个例子来加深对这些判定方法的理解。
我会在黑板上画出几个三角形,然后我们一起来分析它们是否相似。
(此处可以展示几个三角形的例子,让学生参与讨论和判断)通过这些例子,我们可以看到,相似三角形的判定并不是那么困难。
只要我们掌握了角角相似、边边边相似和边角边相似这三个方法,就能够轻松地判断两个三角形是否相似。
最后,我想强调的是,相似三角形的判定不仅仅是一个理论问题,它在实际生活中也有很多应用。
比如在建筑设计、地图制作、甚至在艺术创作中,都需要用到相似三角形的知识。
所以,希望大家能够认真学习这部分内容,将来在实际应用中能够得心应手。
好了,今天的课就到这里,希望大家能够有所收获。
下课。
探索相似三角形相似的条件(基础)【学习目标】1. 相似三角形的概念.2.相似三角形的三个判定定理.3.黄金分割.4. 进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形的概念相似三角形:三个角分别相等,三边成比例的两个三角形叫做相似三角形.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的三个判定定理定理:两角分别相等的两个三角形相似.两边成比例且夹角相等的两个三角形相似.三边成比例的两个三角形相似.要点诠释:(1)要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.(2)此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.要点三、相似三角形的常见图形及其变换:要点四、黄金分割1.定义:一般地,点C 把线段AB 分成两条线段AC 和BC 两段,如果AC BC AB AC=,那么线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.要点诠释:512AC AB -=≈0.618AB (0.618是黄金分割的近似值,512-是黄金分割的准确值). 2.作一条线段的黄金分割点:如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD =21A B. (2)连接AD ,在DA 上截取DE =D B.(3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点.要点诠释:一条线段的黄金分割点有两个.【典型例题】类型一、相似三角形的概念1. 下列能够相似的一组三角形为( ).A.所有的直角三角形B.所有的等腰三角形C.所有的等腰直角三角形D.所有的一边和这边上的高相等的三角形【答案】C【解析】A 中只有一组直角相等,其他的角是否对应相等不可知;B 中什么条件都不满足;D 中只有一条对应边的比相等;C 中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等.。
《探索三角形相似的条件》讲义一、三角形相似的概念在数学的世界里,三角形相似是一个非常重要的概念。
如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就被称为相似三角形。
相似三角形具有很多有趣的性质。
比如说,它们的对应高、对应中线、对应角平分线的比值都等于相似比;它们的周长比也等于相似比,面积比等于相似比的平方。
那如何判断两个三角形是否相似呢?这就需要我们来探索三角形相似的条件。
二、相似三角形的判定条件1、两角分别相等的两个三角形相似如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
为什么呢?因为三角形的内角和是 180 度,如果两个角对应相等,那么第三个角也必然相等。
这样,三个角都相等的两个三角形,它们的形状就是一样的,只是大小可能不同,所以是相似的。
例如,在三角形 ABC 和三角形 A'B'C'中,如果∠A =∠A',∠B=∠B',那么三角形 ABC 就相似于三角形 A'B'C'。
2、两边成比例且夹角相等的两个三角形相似如果两个三角形的两组对应边的比相等,并且它们的夹角相等,那么这两个三角形相似。
比如说,在三角形 ABC 和三角形 A'B'C'中,如果 AB/A'B' =AC/A'C',且∠A =∠A',那么这两个三角形就是相似的。
这个条件的原理在于,当夹角相等,对应边成比例时,三角形的形状就被确定下来了。
3、三边成比例的两个三角形相似如果两个三角形的三组对应边的比都相等,那么这两个三角形相似。
这就好像是用三根长度固定的棍子拼成三角形,只要这三组棍子的长度比例相同,拼出来的三角形形状就是相似的。
比如三角形 ABC 的三边分别为 a、b、c,三角形 A'B'C'的三边分别为 a'、b'、c',如果 a/a' = b/b' = c/c',那么这两个三角形相似。