《探究三角形相似的条件》教学设计
- 格式:doc
- 大小:1023.00 KB
- 文档页数:6
三角形相似的判定教学设计(优秀4篇)《相似三角形》数学教案篇一一、教材内容分析《探索三角形相似的条件》是北师大版试验教科书八年级下册第四章第九节的内容,1课时,它是在学生学习了相似三角形的概念基础上,进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。
二、教学目标(知识,技能,情感态度、价值观)1、知识目标:(1)使使学生能通过三角形全等的判定来发现三角形相似的判定。
(2)学生掌握相似三角形判定定理1,并了解它的证明。
(3)使学生初步掌握相似三角形的判定定理1的应用。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、类比、归纳;(2)通过知识的纵横迁移感受数学的系统特征。
三、教学重难点:重点:掌握相似三角形判定定理1及其应用。
难点:定理1的证明方法。
四、教学环境及资源准备1、投影片2、观看相关视频五、教学过程教学过程教师活动学生活动设计意图及资源准备(一)、导入新课1、多媒体展示问题,什么叫相似三角形?相似三角形与全等三角形有何联系?2、到目前为止判定三角形相似的方法有几个?3、什么叫相似三角形?相似三角形与全等三角形有何联系?学生回答证明三角形的两种方法通过提问既起到复习旧知识又起到引出新问题的作用(二)、探究新知1新课讲解(1)、做一做,做出两个三角形来试验是否相似。
(2)、师生共同总结:两角对应相等的两个三角形相似。
2应用新知教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60求证:△ABC∽△DEF例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似3、例题小结1、学生亲手实践2、学生理解3、边听讲边思考让学生通过亲手实践来体验知识的准确性,理解,消化主要知识例1,例2的练习加强学生,以达对定理的更深一步的理解与掌握。
(三)、随堂练习学生完成教师订正练习应用巩固知识(四)、课时小结通过这节课的学习,你能获得哪些收获?分小组交流后个别回答知识系统化(五)、课后作业习题4.9第1题、第2题。
三角形相似的判定教案一、教学目标:知识与技能:1. 学生能理解相似三角形的概念,掌握三角形相似的判定方法。
2. 学生能够运用相似三角形的性质解决实际问题。
过程与方法:1. 学生通过观察、操作、交流等活动,培养观察能力、动手能力和表达能力。
2. 学生能够运用转化思想,将复杂几何问题转化为相似三角形问题。
情感态度价值观:1. 学生培养对数学的兴趣,增强自信心,树立克服困难的勇气。
2. 学生学会合作交流,培养团队精神。
二、教学内容:1. 三角形的相似概念:学生通过观察、分析,理解相似三角形的定义。
2. 三角形相似的判定方法:学生掌握SSS、SAS、ASA、AAS四种判定方法,并能灵活运用。
3. 相似三角形的性质:学生了解相似三角形的性质,包括对应边成比例、对应角相等。
三、教学重点与难点:重点:1. 学生掌握三角形相似的判定方法。
2. 学生能够运用相似三角形的性质解决实际问题。
难点:1. 学生理解并灵活运用SSS、SAS、ASA、AAS四种判定方法。
2. 学生解决复杂几何问题,运用转化思想。
四、教学过程:1. 导入:通过展示生活中的实例,引导学生思考三角形相似的概念。
2. 新课导入:介绍三角形相似的定义,引导学生观察、分析,理解相似三角形的性质。
3. 判定方法的学习:讲解SSS、SAS、ASA、AAS四种判定方法,并通过例题让学生动手实践。
4. 课堂练习:设计不同难度的练习题,让学生巩固所学知识。
5. 总结与拓展:总结相似三角形的判定方法,引导学生思考如何运用相似三角形解决实际问题。
五、课后作业:1. 完成课后练习题,巩固三角形相似的判定方法。
教学评价:1. 课后作业的完成情况,检验学生对知识点的掌握。
2. 课堂练习的参与度,观察学生对问题的思考和解决能力。
3. 学生对相似三角形概念的理解,以及对实际问题的运用能力。
六、教学策略与方法:1. 采用问题驱动法,引导学生通过观察、操作、思考、讨论等活动,发现规律,掌握相似三角形的判定方法。
《探索三角形相似的条件》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《探索三角形相似的条件》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“探索三角形相似的条件”是初中数学中重要的内容之一。
它是在学生已经学习了相似图形的概念和性质,以及三角形全等的基础上进行的。
通过对三角形相似条件的探索,不仅可以加深学生对相似图形的理解,还为后续学习相似三角形的性质和应用奠定了基础。
本节课在教材中的地位和作用十分重要,它是从定性研究相似图形到定量研究相似三角形的过渡,同时也为解决实际问题提供了有力的工具。
二、学情分析在学习本节课之前,学生已经掌握了相似图形的基本概念,了解了全等三角形的判定方法,具备了一定的观察、分析和推理能力。
但对于从数量关系来判定三角形相似,学生可能会感到较为抽象和困难。
此外,这个阶段的学生思维活跃,好奇心强,但在逻辑思维和抽象思维方面还需要进一步的培养和提高。
三、教学目标1、知识与技能目标(1)学生能够理解并掌握三角形相似的判定条件。
(2)能够运用三角形相似的判定条件解决简单的问题。
2、过程与方法目标(1)通过观察、猜想、验证等活动,培养学生的探究能力和创新精神。
(2)经历三角形相似条件的探索过程,提高学生的逻辑推理能力和数学思维能力。
3、情感态度与价值观目标(1)让学生在探索中体验成功的喜悦,增强学习数学的自信心。
(2)培养学生合作交流的意识和勇于探索的精神。
四、教学重难点1、教学重点三角形相似的判定条件及其应用。
2、教学难点三角形相似判定条件的推导和应用。
五、教法与学法1、教法(1)引导发现法:通过创设问题情境,引导学生观察、思考、猜想,从而发现三角形相似的条件。
(2)讲练结合法:在讲解新知识的同时,通过练习让学生及时巩固所学内容,提高应用能力。
2、学法(1)自主探究法:让学生通过自主思考、探究,发现问题、解决问题,培养学生的自主学习能力。
探索三角形相似的条件(一)教学设计一、教材内容分析《探索三角形相似的条件(1)》是北师大版试验教科书九年级上册第四章第四节的第1课时的内容。
它是在学习了相似图形及相似三角形的概念等知识后,单独研究如何探索相似三角形的条件的一课,本课是判定三角形相似的起始课,是本章的重点之一。
既是前面知识的延伸和全等三角形性质的拓展,也是今后证明线段成比例,求几何图形和研究相似多边形性质的重要工具。
二、学习任务分析在本课中,学生学习的主要内容是三角形相似的判定定理1及其初步应用,这就为下节课学习相似三角形的判定条件(二)(三)打下好的基础。
通过本节课的学习,还可培养学生猜想、实验、证明、探索等能力,对掌握观察、比较、类比、转化等思想有重要作用。
因此,这节课在本章中有着举足轻重的地位。
三、学法分析根据本节课的教学目标、教材内容以及学生的认知特点,教学上采用以引导发现法为主,并以讨论法、演示法相结合,设计“实验——观察——讨论”的教学方法,意在帮助学生通过直观情景观察和自己动手实验,从自己的实践中获取知识,并通过讨论来深化对知识的理解。
本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。
四、教学目标:(一)知识与技能1.使学生理解相似三角形的定义,掌握定义中的两个条件.2.使学生掌握相似三角形判定定理1.3.使学生初步掌握相似三角形的判定定理1的应用.(二)能力训练要求1、通过亲自动手探索得出三角形相似的条件,培养学生的动手能力。
2、经历“直观感觉---动手感知---理性思维---应用拓展”的活动过程,发现学生发现问题、提出问题、分析问题、解决问题的能力。
(三)情感与价值观要求1、经历自主探究、合作交流,逐渐完善自己的想法,感受到与同伴交流中获益的快乐.2、通过三角形全等判定方法类比得出三角形相似的判定的方法,进一步领悟类比的思想方法。
《探索三角形相似的条件》教案1教学目标知识与技能1.探索两个三角形相似的条件(2),掌握用“如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似”的判定方法来判定两个三角形相似.2.能运用这个判定条件解决相关问题. 数学思考与问题解决类比全等三角形的条件(SAS ),经历猜想结论、画图探究、多种方法验证(度量和推理),由此探究得到相似三角形的判定定理,在此基础上进一步了解类似于判定三角形全等没有“边边角”,相似三角形的判定方法中也没有“边边角”.情感与态度1.通过与相似多边形和三角形全等的条件类比,渗透类比的数学思想.2.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步培养学生猜想经验,激发学生探索知识的兴趣.重点难点重点掌握如果两个三角形的两组对边对应成比例,并且夹角相等,那么这两个三角形相似的判定定理,会运用判定定理判定两个三角形相似.难点1.探究三角形相似的条件.2.运用三角形相似的判定定理解决问题.教学设计一、情境引入类比全等三角形的条件(SAS ),如果一个三角形的两条边与另一个三角形的两条边对应边的比相等,并且相应的夹角相等,那么这两个三角形一定相似吗?如下图,若满足以下条件:2AB ACA B A C =='''', ∠A =∠A ′,请比较∠B 与∠B ′,∠C 与∠C ′的大小,试判断△ABC 与△A ′B ′C ′相似吗?教师出示投影,让学生通过类比展开联想,猜想得出结论,引人新课. 二、自主探究 (一)探究发现利用刻度尺和量角器画△ABC 和△A ′B ′C ′,使∠A =∠A ′,AB A B ''和ACA C ''都等于给定的值k ,量出它们的第三组对应边BC 和B ′C ′的长,它们的比等于k 吗?另外两组对应角∠B 与∠B ′,∠C 与∠C ′是否相等?教师提出画图要求,巡视,给予个别指导.改变∠A 或k 值的大小,再试一试,是否有同样的结论?结论:如果两个三角形的两组对应边成比例,并且夹角相等,那么这两个三角形相似.这个判定定理的几何格式为:AB ACk A B A C=='''',∠A =∠A ′. △ABC ∽△A ′B ′C ′.教师根据学生讨论情况,适时给予引导:度量第三组对应边的长,它们的比等于A 吗?另外两组对应角相等吗?论证结论:(与“两角法”相类似)已知:如下图△ABC 和△A ′B ′C ′中,∠A =∠A ′,AB ACA B A C =''''. 求证:△ABC ∽△A ′B ′C ′.教师引导学生改变∠A 或是的大小再试试. 教师要求学生独立完成定理的证明. (二)思考对于△ABC 和△A ′B ′C ′,如果AB ACA B A C ='''',∠B =∠B ′,这两个三角形一定相似吗?试着画画看.教师要求学生独立思考,再进行小组交流,寻找问题的答案,并集中展示反例.教师引导:类比全等三角形中SSA条件下的三角形的不确定性.(三)讨论在△ABC和△A′B′C′中,∠B=∠B′,要使△ABC∽△A′B′C′,还需要添加什么条件?答案:∠A=∠A′或∠C=∠C′或AB BCA B B C=''''.毫无疑问,只有一个角对应相等的二角形一般是不可能相似的,利用学过的判定条件去添加.(四)例题教学1:根据下列条件,判断△ABC与△A′B′C′是否相似,并说明理由:(1)∠A=120°,AB=7cm,AC=14cm.∠A′=120°,A′B′=3cm,A′C′=6cm;(2)AB=4cm.BC=6cm,AC=8cm,A′B′=12cm,B′C′=18cm,A′C′=21cm.分析:这类题目有两层意思:一是正确的加以证明;二是要对不正确的题目说明理由或举出反例.教师让学生独立完成,然后与同伴交流,待学生做完后,选两名学生的推理过程实物投影,师生共评.三、总结提高(一)师生小结(1)通过本节课的学习,你有哪些收获?还有什么疑惑?说给老师或同学听听.(2)教师与同学聆听部分同学的收获,解决部分同学的疑惑.教师聆听同学的收获,解决同学的疑惑.(二)作业布置必做题:教材59页练习第3题.习题6.4第9题.选做题:习题6.4第12题.教师布置,分层要求.《探索三角形相似的条件》教案2教学目标知识与技能1.探索3角形相似的条件(3),掌握用“如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似”判定三角形相似的方法.2.运用该判定条件解决相关问题,了解重心的定义.数学思考与问题解决通过相似三角形的类比及全等三角形的条件(SSS)判定方法的类比,体会特殊与一般和全等与相似的关系,探究三角形相似的条件(3).并在此基础上进一步地掌握相似三角形的判定方法.情感与态度1.经历两个三角形相似的探索过程,体验分析归纳得出数学学结论的过程,进一步发展学生的探究、交流能力.2.通过和三角形全等的条件类比,渗透类比的数学思想,并领会特殊与一般的关系.重点难点重点掌握三角形相似的判定方法(3),会运用该判定定理判定两个三角形相似.难点会准确地运用三角形相似的判定定理(3)来判定三角形是否相似.教学设计一、复习引人1.相似三角形的主要特征是什么?2.若△ABC和△A′B′C′相似,需具备怎样的条件?3.两个全等三角形一定相似吗?如果相似,相似比是多少?反过来两个相似三角形一定全等吗?4.除了我们已学过的判定三角形相似的方法外,类比判定两个三角形全等的方法,猜想判定两个三角形相似还有什么方法?教师用多媒体出示问题,由问题3知两个三角形全等相似比为1,反过来两个三角形相似不—定全等,但对应边一定成比例.由“三边对应相等的两个三角形全等”能否引出“三边对应成比例的两个三角形相似”呢?二、新知探究活动一:操作——观察——探索 (1)操作:如图,已知△ABC . ①画△A ′B ′C ′,使得=2AB BC CAA B B C C A ==''''''. ②比较∠A =∠A ′,∠B 与∠B ′,∠C 与∠C ′的大小. ⑵观察:△ABC 与△A ′B ′C ′相似吗?用多媒体显示操作内容.提出问题,学生动手在教材图6-22操作,或在练习本上画出△A ′B ′C ′,分别测量∠A =∠A ′,或∠B 与∠B ′,∠C 与∠C ′的大小,同学之间相互比较,探究结论.(3)探索:试说明△ABC 与△A ′B ′C ′相似的理由,设=AB BC CAk A B B C C A==''''''. 若改变k 值的大小,还相似吗?试一试. 教师个别指导学生画三角形的方法.活动二:说明△ABC ∽△A ′B ′C ′的理由.如果在△ABC 与△A ′B ′C ′中,=AB BC CAA B B C C A='''''',则△ABC ∽△A ′B ′C ′.理由陈述:(此处略.见教材第59〜60页)教师投影显示,提示学生运用探索三角形相似的条件(2)类似的方法,构造一个全等三角形,而这个全等三角形与△ABC 相似,利用相似三角形的传递性可证.结论:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.学生独立思考,操作探究也可分组讨论,相互交流举手发言,师生共同进行归纳总结. 活动三:验证应用如图,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上,△ABC 与△DEF 相似吗?为什么?教师引导:相似三角形的判定方法,由三种判定方法,得出用三边成比例证. 学生先用勾股定理求出三边的长,然后证明.教师在学生完成的基础上板书解题过程. 活动四:练习巩固 教材第61页练习第1,2题.教师提出要求并巡回检査,学生独立完成,然后班内交流. 三、综合应用如图,在△ABC 中,AB =AC ,∠A =36°,BD 是△ABC 的角平分线. (1)△ABC 与△BDC 相似吗?为什么?(2)判断点D 是否是AC 的黄金分割点,并说明理由.引导学生找出已有的相似三角形的条件,然后选择判定方法.最后学生完成(1)(可让两学生板演).对于(2)让学生回顾黄金分割的定义,得出要证的结论就是证AD 2=CD ·AC ,可借助相似三角形对应边成比例证.根据学生板演情况讲解,最后投影解题过程. 完成后教师给出黄金三角形的定义及作法. 练习:教材第64页练习第1题. 四、拓展提升如图(1),BE 、CF 是△ABC 的中线,且相交于O . 求证:=2GB GCGE FG教师介绍求比例式的方法,找出(或构造)四条线段所在的相似三角形,利用三边对应成比例证.学生完成证明过程,教师板书解题. (1)这四条线段在哪两个三角形中?(2)作怎样的辅助线,就可构造出它们所在的相似三角形?学生在教师的引导下,得出连接EF ,利用三角形中位线定理,证△BGC ∽△EGF 即可. 思考:1.如图(2),如果AD 是△ABC 的另一条中线,AD 与BE 相交于点G ,=2BG AG G E DG''=''吗?对图(2),可连接DE ,仿图(1)证明△G ′DE ∽△C ′AB 可得.2.如果在一个三角形中,画出△ABC 的三条中线,这三条中线有什么关系?为什么? 3.归纳:三角形的三条中线相交于一点,这点叫三角形的重心,重心与一边中点的连线长是对应中线长的13. 学生独立完成(1),讨论完成(2)并交流.最后教师归纳得出三角形重心的定义及性质. 五、总结提高通过本节课的学习,你有哪些收获?还有什么不明白的地方? 主要内容:三边成比例的三角形相似;三角形的重心. 方法:(1)证明三角形相似的方法(共四种). (2)证明比例式或等积式的方法. 学生归纳、总结发言,体会、反思. 六、作业1.教材习题6.4第14题. 2.教材第61页练习第3题. 3.教材第64页练习第2题. 选作:4.教材习题6.4第15题.教师布置作业,分层提出要求主,学生独立完成.。
相似三角形的判定定理教学设计相似三角形的判定定理教学设计(精选6篇)作为一位杰出的教职工,常常要根据教学需要编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
我们该怎么去写教学设计呢?下面是小编帮大家整理的相似三角形的判定定理教学设计,希望能够帮助到大家。
相似三角形的判定定理教学设计篇1一、教学目标1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力。
2.掌握“两角对应相等,两个三角形相似”的判定方法。
3.能够运用三角形相似的条件解决简单的问题。
二、重点、难点1.重点:三角形相似的判定方法12.难点:三角形相似的判定方法1的运用。
三、课堂引入1.复习提问:(1)我们已学习过哪些判定三角形相似的方法?(2)△ABC中,点D在AB上,如果AC2=ADAB,那么△ACD 与△ABC相似吗?说说你的理由。
(3)△ABC中,点D在AB上,如果∠ACD=∠B,那么△ACD与△ABC相似吗?——引出课题。
(4)教材P48的探究3。
四、例题讲解例1(教材P48例2)。
分析:要证PA*PB=PC*PD,需要证PA/PD=PC/PB,则需要证明这四条线段所在的两个三角形相似。
由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似。
证明:略(见教材)。
例2(补充)已知:如图,矩形ABCD中,E为BC上一点,DF⊥AE于F,若AB=4,AD=5,AE=6,求DF的长。
分析:要求的是线段DF的长,观察图形,我们发现AB、AD、AE和DF这四条线段分别在△ABE和△AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长。
由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似。
《相似三角形判定定理的证明》教学设计一、教学目标1、知识与技能目标学生能够理解相似三角形判定定理的内容。
掌握相似三角形判定定理的证明方法,提高逻辑推理能力。
2、过程与方法目标通过探究相似三角形判定定理的证明过程,培养学生的观察、分析和解决问题的能力。
经历“猜想验证证明”的数学探究过程,体会数学思维的严谨性。
3、情感态度与价值观目标激发学生对数学的兴趣,培养学生勇于探索、创新的精神。
在合作学习中,增强学生的团队意识和交流能力。
二、教学重难点1、教学重点相似三角形判定定理的证明思路和方法。
2、教学难点如何引导学生构建证明的思路,运用已有的知识进行推理和论证。
三、教学方法讲授法、探究法、讨论法相结合四、教学过程1、复习引入回顾相似三角形的定义和性质。
提问:如何判断两个三角形相似呢?引导学生思考并回忆相似三角形的判定方法(如两角分别相等的两个三角形相似)。
2、提出猜想展示几组相似三角形的图片,让学生观察并猜想相似三角形的判定条件。
引导学生提出猜想:比如三边成比例的两个三角形相似;两边成比例且夹角相等的两个三角形相似等。
3、探究证明以“两角分别相等的两个三角形相似”为例,引导学生分析证明思路。
提问:如何构建两个角分别相等的条件?可以通过作平行线等方法。
让学生分组讨论,尝试写出证明过程。
对于“三边成比例的两个三角形相似”,先引导学生思考如何将三边的比例关系转化为线段的等量关系。
提示学生可以通过构建全等三角形来进行证明。
对于“两边成比例且夹角相等的两个三角形相似”,让学生思考如何利用已有的知识和方法进行证明。
4、证明展示与讲解选取几组学生代表,展示他们的证明过程,并进行讲解。
针对学生证明过程中出现的问题和不足,进行纠正和补充。
5、总结归纳总结相似三角形判定定理的证明方法和思路。
强调证明过程中需要注意的逻辑严谨性和规范性。
6、课堂练习布置一些相关的练习题,让学生巩固所学知识。
巡视学生的练习情况,及时给予指导和帮助。
相似三角形的判定(一)一、教学内容的说明1、教材所处的地位:三角形相似的判定是相似形这一章的教学重点,是在学习三角形相似的定义和预备定理的基础上作进一步研究。
从知识的系统性来看,相似三角形是全等三角形知识的发展,它们存在一般与特殊的关系,因此可类比三角形全等的判定方法得到三角形相似的判定方法。
同时判定定理1的证明方法又为进一步学习其它几个判定定理奠定了基础。
2、这一内容可分为四课时完成,本教学设计是第一课时。
3、本节课注重分层教学,在各个环节均照顾不同层次的学生,使各层次学生均有所得,体会到成功的喜悦,树立自信心,主动发展。
教学重点:三角形相似的判定定理1的理解和应用。
教学难点:三角形相似的判定定理1的证明方法。
因为它的证明是在只有相似三角形的定义和预备定理的条件下完成的,需要添加辅助线转化为预备定理。
二、教学目标的确定根据本节课的具体内容并结合学生的实际情况,我从知识与技能、过程与方法、情感态度价值观三方面制定了教学目标:1、使学生理解定理内容及其证明方法,初步会运用定理解决有关问题;2、通过学生探索、证明、理解和应用定理,进一步发展符号感和推力能力,使学生学会学习,体验成功;3、通过图形变式,使学生体验数学活动充满着探索性和创造性,并享受数学美;通过小组讨论,培养学生合作意识。
三、教学方法与教学手段的选择为了充分调动学生学习的积极性,使学生变被动学习为主动愉快地学习,我引导学生类比联想,猜想命题,形成定理,采用讨论、探究式的教学方法.在教学手段方面,我选择了计算机辅助教学的方式,运用Powerpoint和几何画板,增加图形的直观性和课堂密度.四、教学过程的设计为了实现教学目标,我遵循学生的认知规律,根据“循序渐进原则”;把这节课分为三个阶段:“定理探索阶段”;“定理运用阶段”;“定理巩固阶段”.下面我将对教学步骤作出说明。
(一)定理探索阶段1、类比,猜想三角形相似的判定方法由于探索三角形相似的新的判定方法首先应让学生对已有知识有一个清晰的认识,所以先让学生复习相似三角形的定义和判定三角形相似的预备定理,教师引导学生思考,现有的判定三角形相似的方法中:①定义需要对应角分别相等,对应边成比例,条件多,过于苛刻;②预备定理要求有三角形一边的平行线,条件过于特殊,使用起来有局限性.说明探索三角形相似的新的判定方法的必要性。
探索三角形相似的条件〔一〕一、学情分析:认知根底:学生对于全等三角形的有关知识相当熟悉,针对全等三角形与相似三角形的某些类似的性质,可以引导学生类比前者进展新知识的探索。
另外学生刚学完相似三角形的定义,本节课可以运用相似三角形的双重作用,尤其是判定的作用,对简单图形三角形进展相似的判定。
活动经历根底:在学习全等三角形的有关内容时,学生已经经历了观察、猜测、度量、验证的活动过程,在学习相似多边形和相似三角形时,学生的观察能力和逻辑思维能力都得到了提高,以上都为完本钱节课的学习打下了坚实的根底。
二、教学目标:〔1〕知识与技能:初步掌握两个三角形相似的判定条件,并能运用三角形的相似解决简单问题。
〔2〕过程与方法:经历类比三角形全等的判定方法得出两个三角形相似条件的探索过程,进一步开展学生的探究、交流能力,合情推理能力和初步的逻辑推理能力;进一步领悟类比的思想方法〔3〕情感、态度与价值观:在探索活动中,养成学生手脑和谐一致的习惯,并初步培养逻辑推理意识。
三、教学重难点:重点:相似三角形判定条件〔一〕的掌握和应用。
难点:相似三角形判定方法〔一〕的探索过程四、辅助教学:Powerpoint多媒体课件教学过程一、复习引入、类比猜测同学们,我们全等三角形时知道:三角对应相等,三边对应相等的两个三角形叫做全等三角形。
你们还记得三角形全等的判定条件吗?〔学生答复,假设不全面教师补充。
〕上节课我们学习了相似三角形的定义。
你能口述出来吗?〔学生答复〕根据这个定义,判定两个三角形相似,要求三个角对应相等,三边对应成比例,这个过程显然较复杂。
我们能不能像判定两个三角形全等的条件那样,用较少的条件去判定两个三角形相似呢?〔引出课题:探索三角形相似的条件,板书课题〕二、设计方案,类比猜测,合作交流探索互动一:类比三角形全等条件探索过程猜测:判别两个三角形相似可能的条件。
〔角的方面、边的方面、边角方面〕互动二;从角的方面猜测,有几种可能的情况?猜测一:一个角对应相等的两个三角形相似。
探索三角形相似的条件教案一、教学目标:1. 知识与技能:(1)能够掌握三角形相似的定义及判定方法;(2)能够应用相似的条件求解问题。
2. 过程与方法:(1)采用归纳法引导学生发现和总结相似三角形的共同特征;(2)通过引导学生分析、讨论和举例,培养学生的逻辑思维能力。
3. 情感态度和价值观:(1)通过学习探索,培养学生的探索精神和创新能力;(2)培养学生积极思考的习惯。
二、教学重难点:1. 教学重点:(1)相似三角形的定义和基本性质;(2)相似三角形的判定方法。
2. 教学难点:(1)理解相似三角形的定义并能正确应用;(2)灵活运用相似三角形的判定方法。
三、教学过程:1. 导入新课通过展示一些几何图形,让学生观察并找出图形中的相似三角形,引导学生思考相似三角形的共同特征。
2. 概念学习展示定义:相似三角形的定义是指两个三角形的对应角相等,对应边成比例。
通过让学生观察和分析相似三角形的共同特征,引导学生从实例中归纳出相似三角形的定义。
3. 方法学习通过让学生观察和分析相似三角形的特点,引导学生总结相似三角形的判定方法,即可使用以下方法判断两个三角形是否相似:(1)AA判定法:如果两个三角形的两个对应角分别相等,则这两个三角形相似。
(2)SSS判定法:如果两个三角形的对应边分别成比例,则这两个三角形相似。
4. 练习与拓展结合教材的例题,进行练习,巩固学生对相似三角形定义和判定方法的运用,引导学生灵活运用相似三角形的判定方法求解问题。
5. 归纳与总结通过本节课的学习,归纳总结相似三角形的定义及判定方法,并对学生的表现给予肯定和鼓励。
四、教学反思:本节课通过引导学生观察和分析相似三角形的共同特征,引出相似三角形的定义,并结合实际例题,引导学生掌握相似三角形的判定方法。
教案的设计注重培养学生的思维能力和动手能力,使学生更好地理解和掌握知识。
在教学过程中,教师要注意引导学生积极参与、思考和合作,为学生创造良好的学习氛围。
教学过程教学内容个案调整教师主导活动学生主体活动4. 平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC∥,则5.平行的判定定理:如上图,如果有BCDEACAEABAD==,那么三.交流展示:1.看图说比例式2.如图:DE∥BC,AB=15,AC=7,AD=2,求EC。
四.释疑拓展:如图,在△ABC中,DG∥EH∥FI∥BC.(1)请找出图中所有的相似三角形;(2)如果AD=1,DB=3,那么DG∶BC=_____.先让学生独立思考,然后请学生板演并讲评.AB CD EE DCBAABCD3()2() AB DE1() DE BCAB CDEABCDEA BCDEFB CDEA教学过程教学内容个案调整教师主导活动学生主体活动(2)△ABC与△A″B″C″若∠A=∠A″,∠B=∠B″,那么这个三角形有何关系?请说明理由.4.巩固:1.关于三角形相似下列叙述不正确的是( )A 有一个底角对应相等的两个等腰三角形相似B 所有等边三角形都相似C 有一个角对应相等的两个等腰三角形相似D 顶角对应相等的两个等腰三角形相似2. 判断题①所有的等腰三角形都相似 ( )②所有的等腰直角三角形都相似( )③所有的等边三角形都相似 ( )④所有的直角三角形都相似 ( )⑤有一个角是100°的两个等腰三角形相似()⑥有一个角是70°的两个等腰三角形相似()四.释疑拓展:1.如图,在△ABC和△A′B′C′中,已知∠A=50°,∠B=∠B′=60°,∠C′=70°,△ABC与△A′B′C′相似吗?为什么?2.如图,在Rt△ABC中,∠ACB=90°,CD是△ABC的高.找出图中所有的相似三角形.3.过△ABC(∠C>∠B)的边AB上一点D作一条直线与另一边AC相交,截得的小三角形与△ABC相似,这样的直线有几条?请把它们一一作出来.1.先让学生独立思考,然后让学生板演,最后学生点评.2.先让学生独立思考,然后请学生板演并讲评.3.让学生自主探究,自由交流.教学过程教学内容个案调整教师主导活动学生主体活动三.交流展示:1.如图,在△ABC和△DEF中,∠B=∠E,要使△ABC∽△DEF,需要添加什么条件?2.如图,△ABC与△A'B'C'相似吗?有哪些判断方法?四.释疑拓展:1 1. 如图,已知23ECAEBDAD==,试求BCDE的值;2 如图,在△ABC中,AB=4cm,AC=2cm,(1)在AB上取一点D,当AD=________时,△ACD∽△ABC;(2)在AC的延长线上取一点E,当CE=________时,△AEB∽△ABC,此时,BE与DC有怎样的位置关系?为什么?让学生先独立思考,然后小组讨论交流,最后全班展示交流,并让学生自己归纳发现的结论.先让学生独立思考,然后让学生板演,最后学生点评C'B'A'CBAADECB教学过程教学内容个案调整教师主导活动学生主体活动3.归纳三角形相似判定方法三文字语言:几何语言:在△ABC和△A′B′C′中,∵∴4.试一试:(1)在ΔABC与ΔA′B′C′中,若AB=3, BC=4,AC=5;A′B′=6,B′C′=8,A′C′=10,ΔABC与ΔA′B′C′相似吗?(2)在ΔABC与ΔA′B′C′中,若AB=3, BC=3,AC=4;A′B′=6,B′C′=6,A′C′=10,ΔABC与ΔA′B′C′相似吗?三.释疑拓展:1.△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,△ABC与△DEF相似吗?为什么?2.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4,6,8.另一个三角形框架的一边长为2,它的另外两条边长应当是多少?你有几种答案?学生自己归纳发现的结论.先让学生独立思考,然后让学生板演,最后学生点评.让学生谈谈自己是如何思考的AB CA′B′C′。
《探究三角形相似的条件》教学设计
一、教学分析
(一)教学内容分析
《相似三角形的判定》是新人教版九年级下册第27章的内容.三角形相似的判定是相似形这一章的教学重点,是在学习三角形相似的定义基础上作进一步研究.从知识的系统性来看,相似三角形是全等三角形知识的发展,它们存在一般与特殊的关系,同时为进一步学习位似和解决实际问题打下坚实的基础.
(二)教学对象分析
九年级学生已经经历了很多自主探索和合作学习的过程,具备了一定的动手操作能力、观察能力和收集资料的能力,具备了一定的归纳表达能力和推理论证能力,具备了一定的合作和互助的意识.
(三)教学环境分析
根据学生特点,我选择在多媒体教室环境下完成本节课,增加图形的直观性和课堂密度,让学生动手操作,充分调动学生学习的积极性,使学生变被动学习为主动愉快地学习,帮助学生加深理解,把握重点,突破难点.
二、教学目标
(一)知识与技能
1.通过一些具体情境,深化对相似三角形的认识和理解,以及掌握平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似和相似三角形的判定方法1,3.
2.让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力
(二)过程与方法
经历相似三角形与全等三角形的类比过程,进一步体验类比思想、特殊与一般的辨证思想.
(三)情感态度与价值观
通过学生积极参与,激发学生学习数学的兴趣,体验数学的探索与创造快乐.情境的创设体会数学知识应用的价值,培养学生关心他人,服务社会的责任感.提高学生依靠集体智慧解决问题的团队精神.
三、教学重点难点
(一)重点
相似三角形判定的预备定理和相似三角形的判定方法1,3.
(二)难点
三角形相似的判定定理1的证明方法.因为它的证明是在只有相似三角形的定义和预备定理的条件下完成的,需要添加辅助线转化为预备定理.
四、教学方法、过程及整合点
(一)教学流程
(二)教学环节设计
活动1 创设情境导入新课
同学们,即将毕业,你们除了紧张的学习,更多的是对母校深深的眷恋,很多人想抓住一些美好的回忆,现在有个好机会,这张图片,你一定并不陌生,这就是我们学校的劳动基地,现在这块地正面临搬迁重建,它正面向全校学生招聘设计师,如果你的设计被选中了,那将是你留给母校的最美好的纪念,同学们,你愿意参与这次设计吗?(学生答,愿意),好!现在就请你们大显身手,充分展现自己的才华,看谁能成为最有效的设计师!现在设计环节开始,环节一:搬迁.首先要搬迁的是一块三角地,由于条件有限,只能给你提供一个测角仪,测角仪,顾名思义,只能用来干什么,(学生答,测量角的度数),比如说,现在只测出了一个角是60°,一个角是∠B=45°,你能不能设计一个与原来完全相同的三角地.
[设计意图]引导学生去复习全等三角形的
判定方法,强调判定三角形全等的方法中,至少
有一个条件是边,而此题没有完整的边,从而使
学生发现,这不是一个全等问题,而是一个相似
问题,从而导入本节课的教学,并使学生从中体
会数学就在我们身边,让学生学习生活中的数学.
培养学生运用所学知识分析问题解决问题的能
力.
活动2 动手操作实验猜想
问题情景出现后,让学生充分发表自己的想法.可能出现有的学生认为能成功,有的学生认为不能成功,有的学生感到茫然,有的学生提出不妨试一试.于是,动手实验:
请同学们当设计师,在纸片上作∠A=60°,∠B=45°的ΔABC,剪下与同桌所做的三角形比较,研究这两个三角形的关系.你有哪些发现?在小组内交流.
问题一:这两个三角形全等吗?——不一定全等
问题二:为什么不一定全等?我们判定三角形全等的条件有哪些,(SSS、SAS、ASA、AAS、HL至少有一个条件是边,而现在只有一个测角仪,无法测边长.)
问题三:相似吗?
目前为止我们判定三角形相似的方法有几种?
现在你就利用你手里的工具,判断一下这两个三角形是不是相似.
通过度量后计算,得到三个角都对应相等,三边对应成比例.
问题四:你用什么方法判断三个角对应相等的?——通过拼置的方法(方法如图的三种之一,让学生演示拼置方法)学生拿卡片到前面演示,并用多媒体几何画板演示这一过程
[设计意图]通过学生动手操作,以及多媒体的演示,验证猜想——两个角对应相等的两个三角形相似,从而培养学生的动手操作能力,合作能力,观察能力和分析能力,语言表达能力.
活动3 内容升华逻辑推理
多媒体演示,几何画板操作,验证三个角对应相等,三边是不是也对应成比例.
要根据定义判定两个三角形相似必须同时考虑六个元素.过于繁琐,现在我们手里的三角形也相似,却需要两个角,就请你总结出这个判定定理.动手操作也好,几何画板也好,这些都是我们的实际操作,真正能验证它成立,还得用理论做支撑,接下来我们就推理证明这个命题成立.古人云:温故而知新.数学解决问题的宗旨是,化未知为已知.那么,你觉得在我们已经掌握的这两个判定方法中,那个更适合证明这个命题成立呢.
学生回答,预备定理.让学生试证明之.
这就是这节课我们淘到的第一桶金,让我们用这第一桶金,为我们创造更多的财富!
[设计意图]利用预备定理证明相似三角形判定3,从而,培养学生逻辑推理能力.
C 1
B
B'C'活动4思维拓展 深入探究
通过同学们的共同努力,现在这块地已经成功的搬迁了,现在进入环节二:设计造型.
现在要求在刚刚搬迁的三角地上种植向日葵,要求种向日葵的部分必须是三角形,该三角形必须与原三角形相似
请同学们发言,从而引导学生体会,定义的繁琐,预备定理的局限性,现在我们学习了第三种方法,只需要两个角相等,就可以判定相似,你是不是能够设计更多的图形.
设计要求:
1.种向日葵的部分必须是三角形,该三角形必须与原三角形相似;
2.该三角形位置可以在原三角形内部,也可以在原三角形外部;
3.如果原三角形是直角三角形,你有更新颖的设计吗?
4.展开想象,充分运用所学知识,看谁的设计更有代表性.
[设计意图]通过对判定3的应用练习,突破预备定理的局限性,利用平移、旋转、轴对称进行设计,演绎从特殊到一般的思维过程.从而培养学生运用新旧知识去分析解决问题的能力,和归纳总结能力和语言表达能力
.
活动5 小结梳理 内化知识
提问:“通过这节课的学习有什么收获?”
B C
让学生同桌间畅谈自己的学习感受和体会,并请个别学生发言.
[设计意图]通过学生对本节课所学内容的归纳、总结,加深对相似三角形判定方法的理解及掌握,使学生对所学知识形成一个完整的知识体系.
活动6 类比联想课下延伸
师:最后一个任务:现在如果只能提供度量尺,你能重建一块和原来完全一样的三角地吗?
生:能——边边边——三边对应相等的两个三角形全等.
师:既然全等与相似有联系,课下请同学们类比全等三角形的判定,你能不能猜想还有哪些相似三角形的判定?
【设计说明】总结思路,渗透类比、化归的思想
创设良好的学习情境,可以激发学生的学习兴趣.让有机的渗透有关的数学思想和方法,就能逐步培养学生良好的思维品质.实现课下的延伸.。