10.1计数原理
- 格式:ppt
- 大小:1005.50 KB
- 文档页数:17
10.1 分类加法计数原理与分步乘法计数原理【高考导航】考查分类加法计数原理和分步乘法计数原理的应用.【复习指导】复习时要弄清分类加法计数原理和分步乘法计数原理的区别与联系,这是解排列组合问题的基础。
基础梳理1.分类加法计数原理 2.分步乘法计数原理考向一 分类加法计数原理【例1】►(2011·全国)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有( ).A .4种B .10种C .18种D .20种[审题视点] 由于是两类不同的书本,故用分类加法计数原理.【训练1】 如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.答案 40考向二 分步乘法计数原理【例2】►(2011·北京)用数字2,3组成四位数,且数字2,3至少都出现一次,这样 问题1:分类计数原理和分布技术原理有何区别? 问题2:用两个计数原理解决问题时,要注意哪些问题?自主探究的四位数共有________个(用数字作答).[审题视点] 组成这个四位数须分4步完成,故用分步乘法计数原理.注意:各步之间相互联系,依次都完成后,才能做完这件事.简单说使用分步计数原理的原则是步与步之间的方法“相互独立,逐步完成”.【训练2】由数字1,2,3,4,(1)可组成多少个3位数;(2)可组成多少个没有重复数字的3位数;(3)可组成多少个没有重复数字的三位数,且百位数字大于十位数字,十位数字大于个位数字.考向三涂色问题【例3】►如图,用5种不同的颜色给图中A、B、C、D四个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,求有多少种不同的涂色方法?[审题视点] 根据乘法原理逐块涂色,要注意在不相邻的区域内可使用同一种颜涂色问题的实质是分类与分步,一般是整体分步,分步过程中若出现某一步需分情况说明时还要进行分类.涂色问题通常没有固定的方法可循,只能按照题目的实际情况,结合两个基本原理和排列组合的知识灵活处理.【训练3】如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条规范解答20——如何解决涂色问题【问题研究】涂色问题是由两个基本原理和排列组合知识的综合运用所产生的一类问题,这类问题是计数原理应用的典型问题,由于涂色本身就是策略的一个运用过程,能较好地考查考生的思维连贯性与敏捷性,加之涂色问题的趣味性,自然成为新课标高考的命题热点.【解决方案】涂色问题的关键是颜色的数目和在不相邻的区域内是否可以使用同一种颜色,具体操作法和按照颜色的数目进行分类法是解决这类问题的首选方法.【示例】►(本小题满分12分)用红、黄、蓝、白、黑五种颜色涂在“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?1 23 4在涂色问题中一定要看颜色是否可以重复使用,不允许重复使用的涂色问题实际上就是一般的排列问题,当颜色允许重复使用时,要充分利用两个计数原理分析解决问题.【试一试】(2011·湖北)给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示:由此推断,当n=6时,黑色正方形互不相邻的着色方案共有__________种,至少有两个黑色正方形相邻的着色方案共有________种.(结果用数值表示)[尝试解答](1)当n=6时,如果没有黑色正方形有1种方案,当有1个黑色正方形时,有6种方案,当有两个黑色正方形时,采用插空法,即两个黑色正方形插入四个白色正方形形成的5个空内,有C25=10种方案,当有三个黑色正方形时,同上方法有C34=4种方案,由图可知不可能有4个,5个,6个黑色正方形,综上可知共有21种方案.(2)将6个正方形空格涂有黑白两种颜色,每个空格都有两种方案,由分步计数原理一共有26种方案,本问所求事件为(1)的对立事件,故至少有两个黑色正方形相邻的方案有26-21=43(种).答案2143。
南通工贸技师学院
教案首页
课题:§10.1 计数原理
教学目的要求:
1.掌握分类计数原理与分步计数原理的概念和区别;
2.能利用两个原理分析和解决一些简单的应用问题;
3.通过对一些应用问题的分析,培养自己的归纳概括和逻辑判断能力.
教学重点、难点:两个原理的概念与区别
授课方法:任务驱动法小组合作学习法
教学参考及教具(含多媒体教学设备):《单招教学大纲》、课件授课执行情况及分析:
板书设计或授课提纲
教学内容、方法和过程附记
2、上题5个数可以组成多少个无重复数字的偶数的三位数?
【例3】在由电键组A与B所组成的并联电路中,如图(1)、(2),
要接通电源,使电灯发光的方法有多少种?
分析:思考电灯发光是一步可以完成还是需要分步完成.
解:图(1)电灯发光,只要其中的一个电键闭合即可,做完这件事只需一步,故用分类计数原理,共有N=2+3=5种方法.
图(2)电灯发光,分两步完成,第一步先闭合电键组A中的一个电
键,第二部闭合电键组B中的一个电键,故用分步计数原理,共有N=2
×3=6种方法.
【举一反三】
某农户有3种西瓜种子,5种香瓜种子,2中丝瓜种子.
(1)现任取一种瓜种试种,共有多少种不同的方法?
(2)现各取一种瓜种试种,共有多少种不同的方法?
是分步
计数原理还
是分类计数
原理关键看
做这件事是
一步可以做
完还是分步
才能做完.。
10.1分类计数原理和分步计数原理(一)高二数学田茂成教学目标: 1.了解学习本章的意义,激发学生的兴趣;2.理解分类计数原理和分步计数原理,培养学生归纳概括的能力;3.会利用两个原理分析和解决一些简单的应用问题教学重点:理解分类计数原理和分步计数原理,培养学生归纳概括的能力教学难点:会利用两个原理分析和解决一些简单的应用问题教学过程:先观察课题“分类计数原理和分步计数原理”,发现这两个原理只有一字之差,一个“分类”,一个“分步”,我们要带着这样三个问题开始进入学习:1、这两个原理是用来干什么的?2、这两个原理应该怎样区别?3、这两个原理应该怎样去使用?引入新课引例1:从甲地到乙地,可以乘火车,也可以乘汽车。
一天中,火车有3班, 汽车有2班。
那么一天中乘坐这些交通工具,从甲地到乙地共有多少种不同的走法?问:这个引例要解决的问题是什么?答:计算从甲地到乙地的方法总数。
(确定事件)问:完成从甲地到乙地的关键是什么?答:选择不同交通工具。
(确定完成该事件的关键)问:从甲地到乙地方法总数是多少?答:5种。
(确定方法总数)变题1:若从甲地到乙地还有4班飞机可乘,此时又有多少种不同走法?变题2:若完成一件事,有n 类办法,在第1类办法中有种不同方法,在第2类中有种不同方法,……,在第n类办法中有种不同方法。
每一类方法中的每一种方法均可完成这件事,那么完成这件事情共有多少种不同方法?分类计数原理(加法原理):若完成一件事,有n 类办法,在第1类办法有种不同方法,在第2类中有种不同方法,……,在第n类办法中有种不同方法。
每一类方法中的每一种方法均可直接完成这件事,那么完成这件事情共有种不同方法。
引例2:从甲地到乙地,先从甲地乘火车到丙地,再于次日从丙地乘汽车到乙地。
一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地,共有多少种不同的走法?问:这个引例要解决的问题又是什么?答:计算从甲地到乙地的方法总数。
(确定事件)问:从甲地能不能直接到乙地?答:不能。
专题十计数原理10.1计数原理、排列与组合基础篇考点计数原理、排列与组合考向一两个计数原理的应用1.(2023届河南洛阳模拟,1)一个电路中含有(1)(2)两个零件,零件(1)含有A,B两个元件,零件(2)含有C,D,E三个元件,每个零件中有一个元件能正常工作则该零件就能正常工作,则该电路能正常工作的线路条数为()A.9B.8C.6D.5答案C2.(2023届黑龙江牡丹江二中段考一,2)若3个班级分别从6个风景点中选择一处游览,则不同选法有() A.A63种 B.C63种 C.36种 D.63种答案D3.(2021江西宜春月考,8)“回文数”是指从左到右读与从右到左读都一样的正整数.如22,121,3443等.那么在四位数中,回文数共有()A.81个B.90个C.100个D.900个答案B4.(2016课标Ⅱ,5,5分)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9答案B5.(2022福建泉州科技中学月考,6)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.如图,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为()A.180B.240C.420D.480答案C6.(2023届甘肃张掖重点校检测四,16)如图,节日花坛中有5个区域,现有4种不同颜色的花卉可供选择,要求相同颜色的花不能相邻栽种,则符合条件的种植方案有种.答案72考向二排列与组合1.(2020新高考Ⅰ,3,5分)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有() A.120种 B.90种C.60种D.30种答案C2.(2021全国乙,6,5分)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有() A.60种 B.120种C.240种D.480种答案C3.(2022新高考Ⅱ,5,5分)甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同的排列方式共有() A.12种 B.24种 C.36种 D.48种答案B4.(2022新疆莎车一中期中,7)7个人排成一排准备照一张合影,其中甲、乙要求相邻,丙、丁要求分开,则不同的排法有() A.480种 B.720种 C.960种 D.1200种答案C5.(2022西安二模,5)现有语文、数学、英语、物理各1本书,把这4本书分别放入3个不同的抽屉里,要求每个抽屉至少放一本书且语文和数学不在同一个抽屉里,则放法种数为() A.18 B.24 C.30 D.36答案C6.(2023届哈尔滨质检,5)小张接到5项工作,要在周一、周二、周三、周四这4天中完成,每天至少完成1项,且周一只能完成其中1项工作,则不同的安排方式有() A.180种 B.480种 C.90种 D.120种答案A7.(2022陕西交大附中模拟,7)将4个9和2个6随机排成一行,则2个6不相邻的排法有()A.240种B.120种C.20种D.10种答案D8.(2020课标Ⅱ,14,5分)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.答案369.(2021云南顶级名校检测,15)某班6名同学去A,B,C,D四个城市参加社会调查,要求将这6名同学分成四组,每组去一个城市,其中两组各有两名同学,另外两组各有1名同学,则不同的分配方案的种数是.(用数字作答)答案1080综合篇考法一排列问题的解题方法1.(2022哈尔滨六中期中,8)用1,2,3,4,5,6六个数字组成六位数,其中奇数不相邻且1、2必须相邻,则满足要求的六位数共有() A.72个 B.96个 C.120个 D.288个答案A2.(2021四川顶级名校检测,7)成都七中举行的秋季运动会中,有甲、乙、丙、丁四位同学参加了50米短跑比赛,现将四位同学安排在1,2,3,4这4个跑道上,每个跑道安排一名同学,则甲不在1跑道,乙不在2跑道的不同安排方法有() A.12种 B.14种 C.16种 D.18种答案B3.(2023届四川南江中学阶段测试,9)4张卡片的正、反面分别写有数字1,2;1,3;4,5;6,7.将这4张卡片排成一排,可构成不同的四位数的个数为()A.288B.336C.368D.412答案B4.(2018浙江,16,4分)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)答案12605.(2022四川诊断性测试,16)电影院一排有八个座位,甲、乙、丙、丁四位同学相约一起观影,他们要求坐在同一排,则恰有两个连续的空座位的情况有种.答案7206.(2022江西智学联盟联考一,15)某公司在元宵节组织了一次猜灯谜活动,主持人事先将10条不同的灯谜分别装在了如图所示的10个灯笼中,猜灯谜的职员每次只能任选每列最下面的一个灯笼中的谜语来猜(无论猜中与否,选中的灯笼都被拿掉),则这10条灯谜依次被选中的所有不同顺序种数为.(用数字作答)答案25200考法二分组、分配问题的求解策略1.(2023届安徽蚌埠第一次质检,8)为贯彻落实《中共中央国务院关于全面深化新时代教师队伍建设改革的意见》精神,加强义务教育教师队伍管理,推动义务教育优质均衡发展,安徽省全面实施中小学教师“县管校聘”管理改革,支持建设城乡学校共同体.2022年暑期某市教体局计划安排市区学校的6名骨干教师去4所乡镇学校工作一年,每所学校至少安排1人,则不同安排方案的总数为()A.2640B.1440C.2160D.1560答案D2.(2022吉林东北师大附中模拟,4)某中学响应国家双减政策,开设了乒乓球,羽毛球,书法,小提琴四门选修课程,要求每位同学每学年至多选2门,初一到初三三学年将四门选修课程选完,则每位同学的不同选修方式有()A.60种B.78种C.54种D.84种答案C3.(2023届山东潍坊临朐实验中学月考,5)某市因新冠疫情封闭管理期间,为了更好地保障社区居民的日常生活,选派6名志愿者到甲、乙、丙三个社区进行服务,每人只能去一个地方,每地至少派一人,则不同的选派方案共有() A.540种 B.180种 C.360种 D.630种答案A4.(2023届安徽江淮十校联考,14)安徽省地形具有平原、台地(岗地)、丘陵、山地等类型,其中丘陵地区占了很大比重,因此山地较多,著名的山也有很多.某校开设了研学旅行课程,该校有6个班级分别选择黄山、九华山、天柱山中的一座山作为研学旅行的地点,每座山至少有一个班级选择,则恰好有2个班级选择黄山的方案有种.答案2105.(2022成都模拟,15)将甲、乙、丙、丁四人安排到A,B,C三所学校工作,每校至少安排一人,每人只能到一所学校,甲不能到A学校工作,则不同的安排方法共有种.答案24。
【课题】10.1 计数原理
【教学目标】
知识目标:掌握分类计数原理和分步计数原理. 能力目标:培养学生的观察、分析能力.
情感目标:让学生在数学学习中感悟生活,在轻松的氛围中获得知识。
【教学重点】掌握分类计数原理和分步计数原理. 【教学难点】区别与运用分类计数原理和分步计数原理. 【教学备品】教学课件. 【课时安排】1课时. 【教学过程】
n k +(种)上面的计数原理叫做分类计数原理
1
分类计数原理有些教科书上写作加法原则.
2本章中,袋子中的球除了颜色不同外,外形、重量等完全相同。
每个球都有编号,任意两个同色球都是不同的球。
k•(种)
n
分步计数原理
板书设计:
计数原理
一、n
k +(种)各类办法间相互独立
总结:一步到位,分类计数,类类相加 n k •(种)各类办法间相互依存
总结:分步完成,步步相乘
总结:分类和分步的区别:看是否能一步完成,能就是分类,需多步就是分步计数 【教学反思】
007
遥望远方,思绪蔓延。
妹妹,你在哪里啊?你在哪里?你可听到远方姐姐的呼唤!望断天涯,路漫漫,既已相遇,何忍分离。
第一节分类加法计数原理与分步乘法计数原理【知识重温】一、必记3个知识点1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,则完成这件事情,共有N=①____________________种不同的方法.2.分步乘法计数原理完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,…,完成第n步有m n种不同的方法,那么完成这件事情共有N=②____________________种不同的方法.3.两个原理的区别与联系分类加法计数原理与分步乘法计数原理,都涉及③____________________的不同方法的种数.它们的区别在于:分类加法计数原理与④________有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与⑤________有关,各个步骤⑥________,只有各个步骤都完成了,这件事才算完成.二、必明2个易误点1.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)在分类加法计数原理中,两类不同方案中的方法可以相同.()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.()二、教材改编2.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各取一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是()A.12B.8C.6D.43.如图,从A城到B城有3条路;从B城到D城有4条路;从A 城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有________条不同的路线.三、易错易混4.已知a,b∈{2,3,4,5,6,7,8,9},则log a b的不同取值个数为________.5.某项测试要过两关,第一关有3种测试方案,第二关有5种测试方案,某人参加该项测试,不同的测试方法种数为() A.3+5 B.3×5 C.35D.53202210.1四、走进高考6.[2020·山东卷]6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种考点一分类加法计数原理[自主练透型]1.[2021·湘赣十四校联考]有一数学问题可用综合法和分析法两种方法证明,有5名同学只会用综合法证明,有3名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,不同的选法种数为()A.8B.15C.18D.302.椭圆错误!+错误!=1的焦点在x轴上,且m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.3.如图,从A到O有________种不同的走法(不重复过一点).悟·技法1。