当前位置:文档之家› 非线性电路的分析方法研究

非线性电路的分析方法研究

非线性电路的分析方法研究
非线性电路的分析方法研究

高频电子线路

课程论文

论文题目:非线性电路的分析方法研究

专业:08电子信息工程本科

小组成员: DZU Joecindy

指导老师:王丽

完成时间:2011年12月22日

非线性电路的分析方法研究

【摘要】我们要将电路元件的范围及其相应的分析方法进行拓展,引入对非线性二端元件的分析和总结。非线性二端元件就是接线端自变量和接线端的函数具有非线性关系的元件。

下面我们将对非线性电路的分析方法进行研究,从而对其分类和总结。

【关键词】非线性电路 直接分析法 数值分析法 图形分析法 分段线性分析法 小信号分析法

前 言

到目前为止,我们已经学习过若干种线性元件的电路,也学习过这些元件构成的线性电路分析法。本文将就非线性问题进行分类和归纳总结。

1.直接分析法

此方法一般应用于对非线性二端元件的函数关系较简单时使用,结合并运用线性元件电路的分析方法和一些定理,同时列写出非线性的补充方程,最后通过求解数学问题并结合电路实际解答的方法。

我们首先用直接分析法求解图1.1所示的简单非线性电阻电路。假设图中非线性电阻的特性可表示为下列v-i 关系:

2,00,0

D D D D Kv v i v ?>=?≤?

常熟K 大于零。

D i

图1.1

该电路的求解过程:

(D v -E )/R +D i = 0 (1.1) 补充方程: D i = K D v 2 (1.2) 注意该元件在D v 大于零的时候才能工作。如果D v <0 则 D i = 0

用原件的非线性v-i 关系替换式(1.1)中的D i 就得到了用节点电压表示的节点方程: (D v -E )/R + Kv D 2 = 0 (1.3) 化简式(1.3),得到下列二次方程:

RK D v 2 + D v – E = 0

求出D v 并选择正解,即:

D v =

(1.4)

对应的i D 表达式可通过将上式替换式(1.2)得到,即:

D i

= 12K RK ?-+ ??

小结:这类分析方法很有局限性,通常只适用于函数关系较简单的非线性求解问题,对于较复杂的问题,下面我们将讨论到。

2.数值分析法

当所求非线性的函数关系不是简单的函数关系时,已经不能用已有的公式去求解,这是就需要在误差精度允许的范围内,运用计算方法学的知识寻求所需的解,下面介绍常用到的计算方法:

在《电路基理论基础》一书中给出的3种方法:

① 前向欧拉法(Forward Euler method ):

(以后本文均以(,)dy f y x dx =表示dy dx

) 1k y + = k y + h f (k y , k x )

其中h 为积分步长

② 后向欧拉法 (Backward Euler method )

1k y + = k y + h f ( 1k y + , 1k x + )

③ 梯形法(trapezoidal method )

1k y += k y + 0.5[f (k y , k x ) + f ( 1k y + , 1k x +) ]

也就是我们所熟悉的梯形公式

还有几种常用的计算方法:

④ 辛普森公式(Simpson )也作抛物线公式:

1k y += k y + 16

{f ( k y , k x )+ 4f [0.5(k y + y k+1) ,0.5(k x + 1k x +)] +f (1k y + , 1k x + )} ⑤ 牛顿(Newton )法 (也作切线迭代法):

该公式多用于复杂的函数的求根运算,设()y f x =

1n x += n x - ()()

n n f x f x ' ⑥ 拉格朗日差值n 次型

对于无法求出具体表达式的非线性函数,在已知图像上若干点的情况时,可以用n 次多项式进行近似的拟合,我所学过的有牛顿型差值公式和拉格朗日型差值,下面只介绍拉格朗日型差值公式,牛顿型差值比较类似。

已知非线性图像上的n 个点:(o x ,0y ),(1x ,1y ),…(n x ,n y )

011011()()()()()()(()()i i n i i i i i i i n x x x x x x x x l x x x x x x x x x -+-+----=

---- i =0,1,2 n

拉格朗日差值多项式:

0011()()()()n i i n n y l x y l x y l x y l x

?=+++++ ⑦ 龙格-库塔方法(R-K 方法)

11212

11122(,)(,)n n n n n n y y k k k hf x y k hf x h y k +?=++??=??=++??

此为二阶R-K 方法

小结:运用计算方法可以将复杂的计算和函数变成相对简单的运算。

3.图形分析法

许多非线性电路无法用直接分析法求解,而又不需要具体的数据作支持时,通常我们需要在计算机上用尝试并求误差的方法求解这样的问题。这种解法可以提供答案,但通常不能对电路的性能和设计给出深入的分析。另一方面,虽然图形法牺牲了一定的精度,但可得到对电路的深刻理解和认识。因此现在我们用图解法解答图3.1所示的电路。为了使问题具体化,我们假设E=3V ,R=500Ω,来确定R v ,D i 和D v 。

之前在第1部分中我们已经得到了式子(1.1)和(1.2),为了方便起见,进行少量变动后重写如下:

D D v

E i R

-=- (3.1) /(1)D th v V D s i I e =- (3.2) R v

D v

图3.1

为了能够用图形法求解上述方程,我们将其画在同一个坐标下,并寻求交点。假设已经获得了非线性函数的图形(如图3.2),现在最简单的方法就是将式(3.1)所示的线性表达式画在这张图上,如图3.2所示。式(3.1)的线性约束通常称为“负荷线”。

D i

D v

根据式(3.1)绘出的直线斜率为-1/R ,与D v 轴的交点为D v =E 。斜率的大小并不表示电阻对于该图的特殊值来说,从图中可以看出D i 大约为5mA ,D v 大约为0.6V 。一旦我们知道D i 是5mA ,立刻就可以计算出:

3510500 2.5R D v i R V -==??=

从上面的讨论中可以看出,如果E 增加为现在的3倍,则二极管的电压仅增加少量的数值,约为0.65V 。这说明了从图形分析中可以得到对电路本质的认识。

小结:这种图形法不仅能用于这道题的求解。对于包含任意电阻和电源,但只有一个非线性元件的电路来说,除那个非线性元件以外的其他电路元件都是线性的。因此,无论电路如何复杂,我们总可以利用戴维南定理将从非线性元件看过去的线性元件简化为图3.1所示的形式。

对于包含两个非线性元件的电路来说,这种方法的作用比较小了,因为它涉及到用一个非线性特性来描述另一个非线性特性的问题。

4.分段线性分析法

实际生产和应用中,有些非线性的研究不可能或没必要达到百分之百的精确,也找不出它的具体函数表达式,因此不能列写非线性电路方程,也就不能求解析解。这是可以采用分段线性分析法或折线法,在误差允许范围值和要求精度之内我们可以将端口非线性关系在局部近似的看作线性的来处理,在每一个讨论的区间中进行线性分析,然后对所得出的解进行筛选和取舍。

在做题目中也经常遇见这种方法,求解这类题目一般分过两个过程:首先确定动态路径,再次计算静态工作点,求解位于各段的响应,要用到分类讨论的思想。下面我们列举一道有

关的例题:

电路及非线性电阻的电压电流关系如图 4.1和图 4.2所示,设C=1F ,(0)7,10c s u V U V -==。画出t >0时的动态轨迹并求电压R u 。

R i

A

o P

B

R u V O

图 4.2

解:

()c R R s R du du d i C

C U u C dt dt dt

==-=- (1) 由式(1)可知,当R i > 0时,R du dt < 0,R u 单调减小;当R i < 0时,R du dt > 0,R u 单调增加。(0)(0)3R s C u U u V ++=-=,响应的初始点对应o P 。根据动态轨迹,分段计算如下:

① AB 段直线的方程为4R R u i =-+,由此一阶电路的三要素公式得:

4,1Rp u V s τ==-

/[(0)(0)](4)t t R Rp R Rp u u u u e e V τ-++=+-=- 1(0)t t <<

设1t t =时,动态点运动到A 点,即142t e -=,求得1ln 20.693t s =≈

② OA 段。1t t >时,R u 将位于OA 段,对应直线方程 R R u i =。线性等效电路可求解

为:

1()2t t R u e V --= 1()t t >

5.小信号分析法

小信号分析法也称增量分析法。在电子电路的许多应用场合中,非线性元件仅在很小的电压电流范围内运行,比如在许多传感器和大多数音频放大器中。在这种情况下,需要确定一种分段线性的模型以确保能够在很窄的范围内获得很大的精度。这种很窄运行范围内线性化模型的过程被称作增量分析或者小信号分析。小信号分析的好处是小信号变量满足KVL,KCL 以及窄范围内的线性v i -关系。

结 论

通过一周的高频电子线路设计,使我们对非线性电路的分析方法研究有了非常深入的认识和理解,对用直接分析法、数值分析法、图形分析法、分段线性分析法、小信号分析法等方法对非线性电路分析有了更加深刻的领悟。当然,我们在完成课程设计过程中遇到了许多困难,从刚开始的不知所措,通过查找书本、上网查找资料、共同研究分析,筛选出对自己有用的信息,在整个过程我们真正学到了课堂上没有领悟以及没有学到的知识。此次课程设计让我们深入懂得了高频知识在解题过程中的灵活运用,我们将继续好好学习高频,努力掌握更多的有用的知识,同时我们也认识到设计知识的不容易和自己各项能力的欠缺。我们会在以后的学习中更加注意基础知识的巩固和动手能力的应用,在实践中培养兴趣、巩固知识。

参考文献

[1] 高频电子线路,张肃文、陆兆熊,第三版[ M ] 高等教育出版社,2004年11月。

[2]模拟电子技术基础(第四版),童诗白、华成英主编,高等教育出版社,2006年5月。

[3]数字电子技术基础简明教程(第三版),余孟尝主编,高等教育出版社,2006年7月。

[4] 电路理论基础(第三版),陈希有主编,高等教育出版社。

[5] 基础电子技术,蔡惟铮、王立欣主编,高等教育出版社。

电路的基本分析方法

第2章电路的基本分析方法 电路的基本分析方法贯穿了整个教材,只是在激励和响应的形式不同时,电路基本分析方法的应用形式也不同而已。本章以欧姆定律和基尔霍夫定律为基础,寻求不同的电路分析方法,其中支路电流法是最基本的、直接应用基尔霍夫定律求解电路的方法;回路电流法和结点电压法是建立在欧姆定律和基尔霍夫定律之上的、根据电路结构特点总结出来的以减少方程式数目为目的的电路基本分析方法;叠加定理则阐明了线性电路的叠加性;戴维南定理在求解复杂网络中某一支路的电压或电流时则显得十分方便。这些都是求解复杂电路问题的系统化方法。 本章的学习重点: ●求解复杂电路的基本方法:支路电流法; ●为减少方程式数目而寻求的回路电流法和结点电压法; ●叠加定理及戴维南定理的理解和应用。 2.1 支路电流法 1、学习指导 支路电流法是以客观存在的支路电流为未知量,应用基尔霍夫定律列出与未知量个数相同的方程式,再联立求解的方法,是应用基尔霍夫定律的一种最直接的求解电路响应的方法。学习支路电流法的关键是:要在理解独立结点和独立回路的基础上,在电路图中标示出各支路电流的参考方向及独立回路的绕行方向,正确应用KCL、KVL列写方程式联立求解。支路电流法适用于支路数目不多的复杂电路。 2、学习检验结果解析 (1)说说你对独立结点和独立回路的看法,你应用支路电流法求解电路时,根据什么原则选取独立结点和独立回路? 解析:不能由其它结点电流方程(或回路电压方程)导出的结点(或回路)就是所谓的独立结点(或独立回路)。应用支路电流法求解电路时,对于具有m条支路、n个结点的电路,独立结点较好选取,只需少取一个结点、即独立结点数是n-1个;独立回路选取的原则是其中至少有一条新的支路,独立回路数为m-n+1个,对平面电路图而言,其网孔数即等于独立回路数。 2.图2.2所示电路,有几个结点?几条支路?几个回路?几个网孔?若对该电路应用支

第九章-复杂直流电路的分析与计算试题及答案 (2)word版本

基尔霍夫方程组 基尔霍夫方程组 (1)基尔霍夫第一方程组又称结点电流方程组,它指出,会于节点的各支路电流强度的代数和为零 即:∑I = 0 。 上式中可规定,凡流向节点的电流强度取负而从节点流出的电流强度取正(当然也可取相反的规定),若复杂电路共有n个节点,则共有n-1个独立方程。 基尔霍夫第一方程组是电流稳恒要求的结果,否则若流入与流出节点电流的代数和不为零,则节点附近的电荷分布必定会有变化,这样电流也不可能稳恒。 (2)基尔霍夫第二方程组又称回路电压方程组,它指出,沿回路环绕一周,电势降落的代数和为零 即:∑IR —∑ε= 0。 式中电流强度I的正、负,及电源电动势ε的正、负均与一段含源电路的欧姆定律中的约定一致。由此,基尔霍夫第二方程组也可表示为:∑IR = ∑ε 。 列出基尔霍夫第二方程组前,先应选定回路的绕行方向,然后按约定确定电流和电动势的正、负。 对每一个闭合回路都可列出基尔霍夫第二方程,但要注意其独立性,可行的方法是:从列第二个回路方程起,每一个方程都至少含有一条未被用过的支路,这样可保证所立的方程均为独立方程;另外为使有足够求解所需的方程数,每一个方程都至少含有一条已被用过的支路。 用基尔霍夫方程组解题的步骤: 1.任意地规定各支路电流的正方向。 2.数出节点数n,任取其中(n-1)个写出(n-1)个节点方程。 3.数出支路数p,选定m=p-n+1个独立回路,任意指定每个回路的绕行方向,列出m 个回路方程。 4.对所列的(n-1)+ (p-n+1)=p个方程联立求解。 5.根据所得电流值的正负判断各电流的实际方向。

第九章 复杂直流电路的分析与计算 一、填空题 1.所谓支路电流法就是以____ 为未知量,依据____ 列出方程式,然后解联立方程得 到____ 的数值。 2.用支路电流法解复杂直流电路时,应先列出____ 个独立节点电流方程,然后再列出 _____个回路电压方程(假设电路有n 条支路,m 各节点,且n>m )。 3.图2—29所示电路中,可列出____个独立节点方程,____个独立回路方程。 4.图2—30所示电路中,独立节点电流方程为_____,独立网孔方程为_______、______。 5.根据支路电流法解得的电流为正值时,说明电流的参考方向与实际方向____;电流为负 值时,说明电流的参考方向与实际方向____。 6. 某支路用支路电流法求解的数值方程组如下: 1020100202050 2321321=-+=--=++I I I I I I I 则该电路的节点数为____,网孔数为___。 7.以___ 为解变量的分析方法称为网孔电流法。 8.两个网孔之间公共支路上的电阻叫____ 。 9.网孔自身所有电阻的总和称为该网孔的_______。 图2—36 图2—37 图2—38 10.图2—36所示电路中,自电阻R 11=____,R 22=_____,互电阻R 12=___。 11.上题电路,若已知网孔电流分别为I Ⅰ、I Ⅱ,则各支路电流与网孔电流的关系式为: I 1=___、I 2=____、I 3=____。 12.以____ 为解变量的分析方法称为结点电压法。 13.与某个结点相连接的各支路电导之和,称为该结点的_____ 。 14.两个结点间各支路电导之和,称为这两个结点间的____ 。 15.图2—42所示电路中,G 11=_____ 、G 22=_____ 、G 12=_____ 。

第2章电路的基本分析方法

第2章电路的基本分析方法 一、填空题: 1. 有两个电阻,当它们串联起来的总电阻为10Q,当他们并联起来的总电阻为 2.4 Q 这两个电阻的阻值分别为_4Q _和__6Q — 2. 下图所示的电路,A B之间的等效电阻R= 1Q 电路的等效电阻R A B=60Q R CD 5. _______________________________________________________ 下图所示电 路中的A B两点间的等效电阻为12KQ _______________________________ 图中所示 的电流l=6mA则流经6K电阻的电流为2mA ;图中所示方向的电压U为12V 此 6K电阻消耗的功率为24mW 。 4. 3.下图所示的电路, 下图所示电路,每个电阻的阻值均为30 Q, B o B之间的等效电阻R A E=3Q O 6Q 3Q 2Q 2 Q 2 Q 2Q

鼻s Ik 10k皐 A Q T 1 L__JI 1_ () --------------------- 10kQ知 ]6k j L + B O ------ o

6. 下图所示电路中,ab 两端的等效电阻为12Q , cd 两端的等效电阻为4 Q 8.下图所示电路中,ab 两点间的电压U ab 为io V 。 + iov a 24V 已知U F 3V, I S = 3 A 时,支路电流I 才等于2A 。 10. 某二端网络为理想电压源和理想电流源并联电路, 则其等效电路为 理想电压 源。 11. 已知一个有源二端网络的 开路电压为20V,其短路电流为5A,则该有源二端 网络外接4 Q 电阻时,负载得到的功率最大, 最大功率为 25W 12. 应用叠加定理分析线性电路时, 对暂不起作用的电源的处理,电流源应看作 开路,电压 7?下图所示电路a 、 6 Q a i — 5 Li b 间的等效电阻Rab 为4" 9.下图所示电路中, d 15 Q b Hi BO

初中十种复杂电路分析方法实用

电路问题计算的先决条件是正确识别电路,搞清楚各部分之间的连接关系。对较复杂的电路应先将原电路简化为等效电路,以便分析和计算。识别电路的方法很多,现结合具体实例介绍十种方法。 一、特征识别法 串并联电路的特征是;串联电路中电流不分叉,各点电势逐次降低,并联电路中电流分叉,各支路两端分 别是等电势,两端之间等电压。根据串并联电路的特征识别电路是简化电路的一种最基本的方法。 例1 .试画出图1 所示的等效电路。 —b 各点电势逐次降低,两条支路的 和R4 并联后与R2 串联,再与R1 并联, 等效电路如图2 所示。 B 端流出。支路a—R1—b 和a—R2—R3(R4) a、b 两点之间电压相等,故知R3 、伸缩翻转法 无阻导线可以延长或缩 短,或将一 翻转时支路的两端保持不动; 但不 能越过元件。这样就提供了简化电路的一种方法,我们把这种方法称为伸缩翻转法。 解:设电流由 A 端流入,在a 点分叉,b 点汇合,由 在实验室接电路时常常可以这样操 作, 翻过来转过去, 支路翻到别处, 也可以 导线也可以从

解:先将连接a、c 节点的导线缩短,并把连接 R3—C —R4 支路外边去,如图4。 再把连接a、C 节点的导线缩成一点,把连接成一点,并把R5 连到节点的导线伸长线上( 图5) 。由此可看出联,接到电源上。 b、d 节点的导线伸长翻转到 b、d 节点的导线也缩 d R2、R3 与R4 并联,再与R1 和R5 串

三、电流走向法 电流是分析电路的核心。从电源正极出发 ( 无源电路可假设 电 流由一端流入另一端流出 ) 顺着电流 的走向,经各电阻绕外电路巡行一周至电源的负极, 凡是电流无分叉地依次流过的电阻均为串联, 凡是电 流有分叉地分别流过的电阻均为并联。 例 3 .试画出图 6 所示的等效电路。 解:设想把 A 、 B 两点分别接到电源的正负极上进行分析, A 、 D 两点电势相等, B 、 C 两点电 势也相等,分别画成两条线段。电阻 R1 接在 A 、 C 两点,也即接在 A 、 B 两点; R2 接在 C 、 D 两点,也即接在 B 、 A 两点; R3 接在 D 、 B 两点,也即接在 A 、 B 两点, R4 也接在 A 、 B 两点,可见四个电阻都接在 A 、 B 两点之间均为并联 ( 图 9) 。所以, PAB =3 Ω。 解:电流从电源正极流出过 A 点分为三路 (AB 导线可缩为一点 D 点流 入电源负极。第一路经 R1 直达 D 点,第二路经 达 C 点,显然 R ) ,经外电路巡行 R2 到达 C 点,第三路经 R3 也到 2 和 R 3 接联在 点经 R4 到达 D 点,可知 联后与 R4 串联,再与 AC 两点之间为并联。二、三络电流同汇于 c R2、 R3 并 R1 并联,如图 7 所示。 四、等电势法(不讲) 在较复杂的电路中往往能找到电势相等的点, 为一点, 或画在一条线段 把所有电势相等的点归结 上。当两等势点之间有非电源元件时, 既无电源又无电流时, 取消这一支路。我们将这种简比电路的方法称为等电势法 可将之去掉不考虑; 当某条支路 法称 例 4 .如图 8 所示,已知 R1=R 2=R 3=R4=2Ω, 两点间的总电阻

简单非线性电阻电路的分析

第五章 简单非线性电阻电路的分析 5-1 含一个非线性元件的电阻电路的分析 一、含一个非线性元件的电阻电路都可用电源等效定理来等效 N 为含源线性网络。 二、非线性电路的一般分析方法 1、图解法 2、代数法 3、分段分析法 4、假定状态分析法 1、图解法 设非线性电阻的V AR 为 在如上图所示u 和i 的参考方向如下,线形部分的V AR 为 将 代入上式得 通常,用图解法求解u 和i 如图5-2 两曲线的交点Q 是所求解答。直线称为负载线 在求出端口电压 u Q 和 i Q 后。就 可用置换定理求出线性单口网络内部的电 ) (u f i =i R u u oc 0-=)(u f i =oc oc u u u f R u f R u u =+-=)()(00

压电流。 例5-1 电路如图5-3(a)所示,二极管特性曲线如图(d)所示,输入电压随时间变化。 (1)试求所示电路输出电压u0对输入电压u i的曲线,即u0-u i转移特性; (2)若输入电压的波形如图(e)所示,试求输出电压u0的波形。 解戴维南等效电路 由电路可知 2 i oc u u= i u u30 0 + =

若 u i 变化时(交流),戴维南等效电压源也是时变的。但Ro 是定值,所以 线性网络的负载线具有不变的斜率 -1/Ro ,在 u-i 平面上作平行移动,每一时 刻负载线在电压轴的截距总是等于等效电压源在该时刻的瞬时值,负载线与二极管特性曲线的交点也在移动,即二极管的电压、电流都随时间而变。 求u 0-u i 转移特性曲线 由图(a )可得 当 时,0u 由 确定。 当 时,0i =, 可得转移特性曲线如图5-4所示 2、代数法 若i=f(u)中的f(u)可用初等函数表示,那么可利用节点法或回路法求解。 例5-2 如图5-5所示电路中,已知非线性电阻的V AR 为 试求电流i 。 030u u i =+0>i u i u u o 30+=0

【转帖】分析电路的四大常用方法

电子电路图用来表示实际电子电路的组成、结构、元器件标称值等信息。通过电路图可以知道实际电路的情况。这样我们在分析电路时,就不必把实物翻来覆去地琢磨,而只要拿着一张图纸就可以了。在设计电路时,也可以从容地纸上或电脑上进行,确认完善后再进行实际安装,通过调试、改进,直至成功。我们更可以应用先进的计算机软件来进行电路的辅助设计,甚至进行虚拟的电路实验,大大提高工作效率。 给大家总结了四大常用的分析电路的方法,以及每种方法适合的电路类型和分析步骤。 1、时间常数分析法 时间常数分析法主要用来分析R,L,C和半导体二极管组成电路的性质,时间常数是反映储能元件上能量积累快慢的一个参数,如果时间常数不同,尽管电路的形式及接法相似,但在电路中所起的作用是不同的。常见的有耦合电路,微分电路,积分电路,钳位电路和峰值检波电路等。 2、频率特性分析法 频率特性分析法主要用来分析电路本身具有的频率是否与它所处理信号的频率相适应。分析中应简单计算一下它的中心频率,上下限频率和频带宽度等。通过这种分析可知电路的性质,如滤波,陷波,谐振,选频电路等。 3、直流等效电路分析法 在分析电路原理时,要搞清楚电路中的直流通路和交流通路。直流通路是指在没有输入信号时,各半导体三极管、集成电路的静态偏置,也就是它们的静态工作点。交流电路是指交流信号传送的途径,即交流信号的来龙去脉。

在实际电路中,交流电路与直流电路共存于同一电路中,它们既相互联系,又互相区别。 直流等效分析法,就是对被分析的电路的直流系统进行单独分析的一种方法,在进行直流等效分析时,完全不考虑电路对输入交流信号的处理功能,只考虑由电源直流电压直接引起的静态直流电流、电压以及它们之间的相互关系。 直流等效分析时,首先应绘出直流等效电路图。绘制直流等效电路图时应遵循以下原则:电容器一律按开路处理,能忽略直流电阻的电感器应视为短路,不能忽略电阻成分的电感器可等效为电阻。取降压退耦后的电压作为等效电路的供电电压;把反偏状态的半导体二极管视为开路。 4、交流等效电路分析法 交流等效电路分析法,就是把电路中的交流系统从电路分分离出来,进行单独分析的一种方法。 交流等效分析时,首先应绘出交流等效电路图。绘制交流等效电路图应遵循以下原则:把电源视为短路,把交流旁路的电容器一律看面短路把隔直耦合器一律看成短路。

电路的几种分析方法

几种常见电路分析方法浅析 摘要:对电路进行分析的方法很多,如叠加定理、支路分析法、网孔分析法、结点分析法、戴维南和诺顿定理等。根据具体电路及相关条件灵活运用这些方法,对基本电路的分析有重要的意义。现就具体电路采用不同方法进行如下比较。 关键词:电路分析电流源支路电流法网孔电流法结点分析法叠加定理戴维宁定理与诺顿定理 Several Commonly Used Analytical Methods in Circuit Abstract: on the circuit analysis methods, such as superposition theorem, branch analysis method, mesh analysis method, nodal analysis method, Thevenin and Norton's theorem. According to the specific circuit and related conditions of flexibility in the use of these methods, the basic circuit analysis has important significance. The specific circuit using different methods are compared. Key words :Circuit Analysis of voltage source current source branch current method mesh current method nodal analysis method of superposition theorem and David theorem and Norton theorem in Nanjing. 引言:每种电路的分析方法,一般都有其适用范围。应用霍夫定律求解适用于求多支路的电流,但电路不能太复杂;电源法等效变换法适用于电源较多的电路;节点电位法适用于支路多、节点少的电路;网孔分析法使适用于支路多、节点多、但网孔少的电路;戴维宁定理和叠加定理适用于求某一支路的电流或某段电路两端电压。上面例题的电路比较简单,可选择任意一种方法求解,对于一些比较复杂但有一

初中物理电路分析方法以及典型例题(超级有用)

例5:如图所示,当接通开关S后,发现电流表指针偏转,电压表指针不 动,则故障可能是() A.L1的灯丝断了B.L2的灯丝断了 C.L1的接线短路D.L2的接线短路 初中物理电学综合问题难点突破 电学综合题历来是初中物理的难点,在近几年的中考题中屡屡出现,由于试题综合性强,设置障碍多,如果学生的学习基础不够扎实,往往会感到很难。在实际教学中,许多教师采用的是“题海战术”,无形加重了学生学习的课业负担。探索和改进电学综合问题教学,是一项很有价值的工作。 在长期的初中教学实践中,本人逐步探索了一套电学综合问题教学方案,对于学生突破电学综合问题中的障碍有一定效果。一、理清“短路”概念。

在教材中,只给出了“整体短路”的概念,“导线不经过用电器直接跟电源两极连接的电路,叫短路。”而在电学综合题中常常会出现局部短路的问题,如果导线不经过其他用电器而将某个用电器(或某部分电路)首尾相连就形成局部短路。局部短路仅造成用电器不工作,并不损坏用电器,因此是允许的。因它富于变化成为电学问题中的一个难点。 局部短路概念抽象,学生难以理解。可用实验帮助学生突 破此难点。实验原理如图1,当开关 S闭合前,两灯均亮(较暗);闭合后, L1不亮,而L2仍发光(较亮)。 为了帮助初中生理解,可将L1比作 是电流需通过的“一座高山”而开关S 的短路通道则比作是“山里的一条隧 洞”。有了“隧洞”,电流只会“走隧洞”而不会去“爬山”。 二、识别串并联电路 电路图是电学的重要内容。许多电学题一开头就有一句“如图所示的电路中”如果把电路图辨认错了,电路中的电流强度、电压、电阻等物理量的计算也随之而错,造成“全军覆没”的局面,所以分析电路是解题的基础。初中电学一般只要求串联、并联两种基本的连接,不要求混联电路。区分串、并联电路是解电学综合题的又一个需要突破的难点。 识别串、并联有三种方法,⑴、电流法;⑵、等效电路法;⑶、去表法。 ⑴、电流法:即从电源正极出发,顺着电流的流向看电流的路径是否有分支,如果有,则所分的几个分支之间为并联,(分支前后有两个节点)如果电流的路径只有一条(无分支点),则各元件之间为串联。此方法学生容易接受。 ⑵、等效电路法:此方法实质上运用了“电位”的概念,在初中物

第二章电路的基本分析方法1

第二章电路的基本分析方法 一、填空题: 1. 有两个电阻,当它们串联起来的总电阻为10Ω,当他们并联起来的总电阻为 2.4Ω。这两个电阻的阻值分别为_ _4Ω___和__6Ω。 2. 下图所示的电路,A、B之间的等效电阻R AB= 1 Ω。 3. 下图所示的电路,A、B之间的等效电阻R AB= 3 Ω。 A 2Ω B 4. 下图所示电路,每个电阻的阻值均为30Ω,电路的等效电阻R AB= 60 Ω。 5. 下图所示电路中的A、B两点间的等效电阻为___12KΩ________.若图中所示的电流I=6mA,则流经6K电阻的电流为__2mA _____;图中所示方向的电压U 为____12V____.此6K电阻消耗的功率为__24mW_________。

U A 6. 下图所示电路中,ab 两端的等效电阻为 12Ω ,cd 两端的等效电阻为 4Ω 。 7.下图所示电路a 、b 间的等效电阻Rab 为 4 。 8. 下图所示电路中,ab 两点间的电压 ab U 为 10 V 。 9. 下图所示电路中,已知 U S =3V , I S = 3 A 时,支路电流I 才等于2A 。

3 Ω 1 10. 某二端网络为理想电压源和理想电流源并联电路,则其等效电路为理想电压源。 11.已知一个有源二端网络的开路电压为20V,其短路电流为5A,则该有源二端网络外接 4 Ω电阻时,负载得到的功率最大,最大功率为25W 。 12.应用叠加定理分析线性电路时,对暂不起作用的电源的处理,电流源应看作开路,电压源应看作短路。 13.用叠加定理分析下图电路时,当电流源单独作用时的I1= 1A ,当电压源单独作用时的I1= 1A ,当电压源、电流源共同时的I1= 。 2A 14.下图所示的电路中,(a)图中Uab与I的关系表达式为Uab= 3I ,(b) 图中Uab与I的关系表达式为Uab=3I+10 ,(c) 图中Uab与I的关系表达式为Uab=6(I+2)-10 ,(d)图中Uab与I的关系表达式为Uab=6(I+2)-10 。

交流电路参数的测定三表法的实验原理(精)

交流电路参数的测定三表法的实验原理 交流电路参数的测定三表法的实验原理 类别:电子综合 1.交流电路元件的等值参数R,L,C可以用交流电桥直接测得,也可以用交流电压表、交流电流表和功率表分别测量出元件两端的电压U、流过该元件的电流I和它消耗的功率P,然后通过计算得到。后一种方法称为“三表法”。“三表法”是用来测量50Hz频率交流电路参数的基本方法。 如被测元件是一个电感线圈,则由关系可得其等值参数为同理,如被测元件是一个电容器,可得其等值参数为2.阻抗性质的判别方法。如果被测的不是一个元件,而是一个无源一端口网络,虽然从U,I,P三个量,可得到该网络的等值参数为R=|Z|cos,X=|Z|sin,但不能从X的值判断它是等值容抗,还是等值感抗,或者说无法知道阻抗幅角的正负。为此,可采用以下方法进行判断。(1)在被测无源网络端口(入口处)并联一个适当容量的小电容。在一端口网络的端口再并联一个小电容C时,若小电容C=Zsinr,a,视其总电流的增减来判断。若总电流增加,则为容性;若总电流减小,贝刂为感性。图1(a)中,Z为待测无源网络的阻抗,C为并联的小电容。图1(b)是图1(a)的等效电路,图中G,B为待测无源网络的阻抗Z的电导和电纳,B为并联小电容C的电纳。在端电压有效值不变的条件下,按下面两种情况进行分析:①设B+B=B",若B增大,B"也增大,则电路中电流I单调地增大,故可判断B为容性。②设B+B=B",若B增大,而B"先减小再增大,则电流I也是先减小再增大,如图2所示,则可判断B为感性。由以上分析可见,当B为容性时,对并联小电容的值C无特殊要求;而当B为感性时,B<|2B|才有判定为感性的意义。B>|2B|时,电流单调增大,与B为容性时相同,但并不能说明电路是感性的。因此,B<|2B|是判断电路性质的可靠条件。由此可得定条件为 图1 阻抗与导纳变换示意图图2 负载并联电容后电流变化示意图(2)在被测无源网络的入口串联一个适当容量的电容C。若被测网络的端电压下降,则判为容性电路;反之,若端电压上升,则判为感性电路。判定条件为,式中X为被测网络的电抗,C为串联电容的值。(3)用“三压法”测Φ,进行判断。在原一端口网络入口处串联一个电阻r,如图3(a)所示,向量如图3(b)所示,由图可得r,Z串联后的阻抗角Φ为测得U,Ur,Uz,即可求得Φ

复杂电路的简化方法23270

复杂电路的简化方法 一 .“拆除法”突破短路障碍 短路往往是因开关闭合后,使用电器(或电阻)两端被导线直接连通而造成的,初学者难以识别。图1即为常见的短路模型。一根导线直接接在用电器的两端,电阻R被短路。既然电阻R上没有电流通过,故可将电阻从电路中“拆除”,拆除后的等效电路如图2所示。 图 1 图 2 二 .“分断法”突破滑动变阻器的障碍 较复杂的电路图中,常通过移动变阻器上的滑片来改变自身接入电路中的电阻值,从而改变电路中的电流和电压,从而影响我们对电路作出明确的判断。滑动变阻器的接入电路的一般情况如图3所示。若如图4示的接法,同学们就难以判断。此时可将滑动变阻器看作是在滑片P处“断开”,把其分成AP和PB两个部分,

即等效成图5的电路,其中PB部分被短路。当P从左至右滑动时,变阻器接入电路的电阻AP部分逐渐变大;反之,AP部分逐渐变小。

图 3 图 4 图 5 三 .突破电压表的障碍 1. “滑移法”确定测量对象 所谓“滑移法”就是把电压表正、负接线柱的两根引线顺着导线滑动至某用电器(或电阻)的两端,从而确定测量对象的方法,但是滑动引线时不可绕过用电器和电源(可绕电流表)。如图6,用“滑移法”将电压表的下端滑至电阻R1左端,不难确定,电压表测量的是R1和R2两端的总电压;将电压表的上端移至R3右端,也可确定电压表测量的是R3两端电压,同时也测的是电源电压。

2. “用拆除法”确定电流路径 因为电压表的理想内阻无穷大,通过它的电流为零,可将其从电路中“拆除”,即使电压表两端断开,来判断电流路径。如图6所示,用“拆除法”不难确定,R1和R2串联,再与R3并联。 图 6 四 .“去掉法”突破电流表的障碍 由于电流表的存在,对于弄清电流路径,简化电路存在障碍。因电流表的理想内阻为零,故可采用“去掉法”排除其障碍,即将电流表从电路中“去掉”,并将连接电流表的两个接线头连接起来。如图7,去掉电流表后得到的等效电路如图8所示。这样就可以很清楚地看清电路的结构了。

(整理)基本放大电路的分析方法.

3.2 基本放大电路的分析方法 3.2.1 放大电路的静态分析 放大电路的静态分析有计算法和图解分析法两种。 (1)静态工作状态的计算分析法 根据直流通路可对放大电路的静态进行计算 (03.08) I = I B (03.09) C V =V CC-I C R c (03.10) CE I 、I C和V CE这些量代表的工作状态称为静态工作点,用Q表示。 B 在测试基本放大电路时,往往测量三个电极对地的电位V B、V E和V C即可确定三极管的工作状态。 (2)静态工作状态的图解分析法 放大电路静态工作状态的图解分析如图03.08所示。 图03.08 放大电路静态工作状态的图解分析 直流负载线的确定方法:

1. 由直流负载列出方程式V CE=V CC-I C R c 2. 在输出特性曲线X轴及Y轴上确定两个特殊点 V CC和V CC/R c,即可画出直流负载线。 3. 在输入回路列方程式V BE =V CC-I B R b 4. 在输入特性曲线上,作出输入负载线,两线的交点即是Q。 5. 得到Q点的参数I BQ、I CQ和V CEQ。 例3.1:测量三极管三个电极对地电位如图03.09所示,试判断三极管的工作状态。 图03.09 三极管工作状态判断 例3.2:用数字电压表测得V B=4.5V 、V E=3.8V 、V C =8V,试判断三极管的工作状态。 电路如图03.10所示 图03.10 例3.2电路图 3.2.2 放大电路的动态图解分析 (1) 交流负载线 交流负载线确定方法:

1.通过输出特性曲线上的Q点做一条直线,其斜率为1/R L'。 2.R L'= R L∥R c,是交流负载电阻。 3.交流负载线是有交流输入信号时,工作点Q的运动轨迹。 4.交流负载线与直流负载线相交,通过Q点。 图03.11 放大电路的动态工作状态的图解分析 (2) 交流工作状态的图解分析 动画 图03.12 放大电路的动态图解分析(动画3-1)通过图03.12所示动态图解分析,可得出如下结论: 1. v i→↑ v BE→↑ i B→↑ i C→↑ v CE→↓ |-v o|↑; 2. v o与v i相位相反; 3.可以测量出放大电路的电压放大倍数; 4.可以确定最大不失真输出幅度。 (3) 最大不失真输出幅度 ①波形的失真

电路一般分析方法步骤汇总

线性电路主要分析方法步骤汇总 网孔电流法的一般步骤 步骤: 1)确定网孔,假定网孔电流的绕行方向; 2)列写KVL方程; 3)联立求解。 说明: 1)对于含有电流源的支路: a)若在单一网孔支路上,少列一个方程; b)若在两网孔公共支路上,要假定电压变量,多列一个方程,即:网孔电流与电流源电流关系的方程; 2)对于含有受控源的支路: a)列方程时,受控源视为独立源; b)如果控制量不是网孔电流,则要补充一个方程,即:网孔电流与控制量之间关系的方程。 结点电压法的一般步骤 步骤: 1)选参考结点; 2)列写独立结点电压方程; 3)联立求解。 说明: 1)对于含有纯电压源的支路: a)如果电压源接在独立结点和参考点之间,这个独立结点电压就等于电压源电压,可以少解一个方程; b)如果电压源接在两个独立结点之间,则要在电压源支路假定电流变量,多列一个方程,即:结点电压与电压源电压之间的关系方程; 2)对于含有受控源的支路: a)列方程时,受控源视为独立源; b)如果控制量不是结点电压,则要补充一个方程,即:结点电压与控制量之间的关系方程。

一端口网络的戴维宁等效电路 (1) 开路电压Uoc 的计算 戴维宁等效电路中的电压源电压即为一端口开路电压Uoc ,电压源的极性与所求开路电压极性相同。计算Uoc 的方法视电路形式而定(结点电压法、网孔电流法)。 (2)等效电阻的计算 等效电阻为将一端口网络内部独立电源全部置零(电压源短路,电流源开路)后,所得无源一端口网络的输入电阻。 常用下列方法计算: A 、当网络内部不含有受控源时可采用电阻串、并联和△-Y 互换的方法计算等效电阻; B 、外加电源法(加压求流或加流求压):eq u R i =(此时一端 口内部独立电源全部置零) C 、开路电压,短路电流法:oc eq sc u R i =(此时一端口内部独立电源全部保留) 一阶电路初始值的计算 如何判断一阶电路?电路含有一个独立的动态元件;有带开 关的直流激励、或已知初始储能和直流激励、或有阶跃函数激励。 求初始值的步骤: 1. 由换路前电路(一般为稳定状态)求u C (0-)和i L (0-); 2. 由换路定律得 u C (0+) 和 i L (0+); 3. 画0+等效电路。 在0+时刻等效电路中,电容用u C (0+)的电压源替代,电感用i L (0+)的电流源替代。 4. 由0+电路求所需各变量的值即为0+值 三要素法求解一阶电路的步骤 1、求响应量的初始值; 2、求响应量的稳态值; 画出t →∞时稳态电路,其中电容和电感分别用开路和短路置

电路的分析方法电子教案

第2章 电路的分析方法 本章要求: 1. 掌握支路电流法、叠加原理和戴维宁定理等电路的基本分析方法。 2. 理解实际电源的两种模型及其等效变换。 3. 了解非线性电阻元件的伏安特性及静态电阻、动态电阻的概念,以及简单非线性电阻电路的图解分析法。 重点: 1. 支路电流法; 2. 叠加原理; 3.戴维宁定理。 难点: 1. 电流源模型; 2. 结点电压公式; 3. 戴维宁定理。 2.1 电阻串并联联接的等效变换 1.电阻的串联 特点: 1)各电阻一个接一个地顺序相联; 2)各电阻中通过同一电流; 3)等效电阻等于各电阻之和; 4)串联电阻上电压的分配与电阻成正比。 两电阻串联时的分压公式: 2.电阻的并联 特点: 1)各电阻联接在两个公共的结点之间; 2)各电阻两端的电压相同; 3)等效电阻的倒数等于各电阻倒数之和; 4)并联电阻上电流的分配与电阻成反比。 U R R R U 2111+=U R R R U 2 122+=

两电阻并联时的分流公式: 2.3 电源的两种模型及其等效变换 1.电压源 电压源是由电动势 E 和内阻 R 0 串联的电源的电路模型。若 R 0 = 0,称为理想电压源。 特点: (1) 内阻R 0 = 0; (2) 输出电压是一定值,恒等于电动势(对直流电压,有 U ≡ E ),与恒压源并联的电路电压恒定; (3) 恒压源中的电流由外电路决定。 2.电流源 电流源是由电流 I S 和内阻 R 0 并联的电源的电路模型。若 R 0 = ∞,称为理想电流源。 特点: (1) 内阻R 0 = ∞ ; (2) 输出电流是一定值,恒等于电流 I S ,与恒流源串联的电路电流恒定; (3) 恒流源两端的电压 U 由外电路决定。 3.电压源与电流源的等效变换 等效变换条件: E = I S R 0 0 R E I = S 注意: ① 电压源和电流源的等效关系只对外电路而言,对电源内部则是不等效的。 ② 等效变换时,两电源的参考方向要一一对应。 ③ 理想电压源与理想电流源之间无等效关系。 ④ 任何一个电动势 E 和某个电阻 R 串联的电路,都可化为一个电流为 I S 和这个电阻并联的电路。 4.电源等效变换法 (1) 分析电路结构,搞清联接关系; (2) 根据需要进行电源等效变换; (3) 元件合并化简:电压源串联合并,电流源并联合并,电阻串并联合并; I R R R I 2121+=I R R R I 2 112+=

三相交流电路电压、电流的分析与测量(含数据处理)

三相交流电路电压、电流的分析与测量 一、实验目的 1.掌握三相负载作星形联接、三角形联接的方法,验证这两种接法时线、相电压及线、相电流之间的关系。 2.充分理解三相四线供电系统中中线的作用。 二、原理说明 1.三相负载可接成星形(又称“Y”接)或三角形(又称"△"接),当三相对称负载作Y 形联接时,线电压U l是相电压U p 的倍。线电流I l等于相电流I p,即 U l=p I l=I p 当采用三相四线制接法时,,流过中线的电流I0=0,所以可以省去中线。 当对称三相负载作△形联接时,有 I1U1=Up 2.不对称三相负载作Y联接时,必须采用三相四线制接法,即Y0接法。而且中线必须牢固联接,以保证三相不对称负载的每相电压维持对称不变。 倘若中线断开,会导致三相负载电压的不对称,致使负载轻的那一相的相电压过高,使负载遭受损坏;负载重的一相相电压又过低,使负载不能正常工作。尤其是对于三相照明负载,无条件地一律采用Y0接法。 3.当不对称负载作△接时,Il≠,但只要电源的线电压Ul 对称,加在三相负载上的电压仍是对称的,对各相负载工作没有影响。 四、实验内容 1.三相负载星形联接(三相四线制供电) 按图6-3-3-1 线路组接实验电路。即三相灯组负载经三相自耦调压器接通三相对称电源,将三相调压器的旋柄置于三相电压输出为0V的位置,经指导教师检查后。方可合上三相电源开关,然后调节调压器的输出,使输出的三相线电压为220V,按表6-3-3-1数据表格所列各项要求分别测量三相负载的线电压、相电压、线电流(相电流)、中线电流、电源与负载

中点的电压,记录之。并观察各相灯组亮暗的变化程度,特别要注意观察中线的作用。 图6-3-3-1 三相负载星形联接的实验线路 2.负载三角形联接(三相三线制供电) 按图6-3-3-2改接线路,经指导教师检查合格后接通三相电源,调节调压器,使其输出线电压为220V,并按表6-3-3-2数据表格要求进行测试 5.用实验数据和观察到的现象,总结三相四线供电系统中中线的作用。 答:当三相负载不对称时,中线提供各相电流的回路。 6.不对称三角形联接的负载,能否正常工作?实验是否能证明这一点? 答:对于不对称负载作△接时,Il≠Ip,但只要电源的线电压Vl对称,加三相负载上的电压仍是对称的,对各相负载工作没有影响 7.根据不对称负载三角形联接时的相电流值作相量图,并求出线电流值,然后与实验测得的线电流作比较,分析之。

非线性电路的分析方法研究

高频电子线路 课程论文 论文题目:非线性电路的分析方法研究 专业:08电子信息工程本科 小组成员: DZU Joecindy 指导老师:王丽 完成时间:2011年12月22日 非线性电路的分析方法研究 【摘要】我们要将电路元件的范围及其相应的分析方法进行拓展,引入对非线性二端元件的分析和总结。非线性二端元件就是接线端自变量和接线端的函数具有非线性关系的元件。

下面我们将对非线性电路的分析方法进行研究,从而对其分类和总结。 【关键词】非线性电路 直接分析法 数值分析法 图形分析法 分段线性分析法 小信号分析法 前 言 到目前为止,我们已经学习过若干种线性元件的电路,也学习过这些元件构成的线性电路分析法。本文将就非线性问题进行分类和归纳总结。 1.直接分析法 此方法一般应用于对非线性二端元件的函数关系较简单时使用,结合并运用线性元件电路的分析方法和一些定理,同时列写出非线性的补充方程,最后通过求解数学问题并结合电路实际解答的方法。 我们首先用直接分析法求解图1.1所示的简单非线性电阻电路。假设图中非线性电阻的特性可表示为下列v-i 关系: 2,00,0 D D D D Kv v i v ?>=?≤? 常熟K 大于零。 D i 图1.1 该电路的求解过程:

(D v -E )/R +D i = 0 (1.1) 补充方程: D i = K D v 2 (1.2) 注意该元件在D v 大于零的时候才能工作。如果D v <0 则 D i = 0 用原件的非线性v-i 关系替换式(1.1)中的D i 就得到了用节点电压表示的节点方程: (D v -E )/R + Kv D 2 = 0 (1.3) 化简式(1.3),得到下列二次方程: RK D v 2 + D v – E = 0 求出D v 并选择正解,即: D v = (1.4) 对应的i D 表达式可通过将上式替换式(1.2)得到,即: D i = 12K RK ?-+ ?? 小结:这类分析方法很有局限性,通常只适用于函数关系较简单的非线性求解问题,对于较复杂的问题,下面我们将讨论到。 2.数值分析法 当所求非线性的函数关系不是简单的函数关系时,已经不能用已有的公式去求解,这是就需要在误差精度允许的范围内,运用计算方法学的知识寻求所需的解,下面介绍常用到的计算方法: 在《电路基理论基础》一书中给出的3种方法: ① 前向欧拉法(Forward Euler method ): (以后本文均以(,)dy f y x dx =表示dy dx ) 1k y + = k y + h f (k y , k x ) 其中h 为积分步长 ② 后向欧拉法 (Backward Euler method )

十种复杂电路分析方法

十种复杂电路分析方法 Jenny was compiled in January 2021

电路问题计算的先决条件是正确识别电路,搞清楚各部分之间的连接关系。对较复杂的电路应先将原电路简化为等效电路,以便分析和计算。识别电路的方法很多,现结合具体实 一、特征识别法 串并联电路的特征是;串联电路中电流不分叉,各点电势逐次降低,并联电路中电流分叉,各支路两端分别是等电势,两端之间等电压。根据串并联电路的特征识别电路是简化电路的一种最基本的方法。 例1.试画出图1所示的等效电路。 解:设电流由A端流入,在a点分叉,b点汇合,由B端流出。支路a—R1—b和a—R2—R3(R4)—b各点电势逐次降低,两条支路的a、b两点之间电压相等,故知R3和R4并联后与R2串联,再与R1并联,等效电路如图2所示。 二、伸缩翻转法 在实验室接电路时常常可以这样操作,无阻导线可以延长或缩短,也可以翻过来转过去,或将一支路翻到别处,翻转时支路的两端保持不动;导线也可以从其所在节点上沿其它导线滑动,但不能越过元件。这样就提供了简化电路的一种方法,我们把这种方法称为伸缩翻转法。 例2.画出图3的等效电路。 解:先将连接a、c节点的导线缩短,并把连接b、d节点的导线伸长翻转到R3—C—R4支路外边去,如图4。

再把连接a、C节点的导线缩成一点,把连接b、d节点的导线也缩成一点,并把R5连到节点d的导线伸长线上(图5)。由此可看出R2、R3与R4并联,再与R1和R5串联,接到电源上。 三、电流走向法 电流是分析电路的核心。从电源正极出发(无源电路可假设电流由一端流入另一端流出)顺着电流的走向,经各电阻绕外电路巡行一周至电源的负极,凡是电流无分叉地依次流过的电阻均为串联,凡是电流有分叉地分别流过的电阻均为并联。 例3.试画出图6所示的等效电路。 解:电流从电源正极流出过A点分为三路(AB导线可缩为一点),经外电路巡行一周,由D 点流入电源负极。第一路经R1直达D点,第二路经R2到达C点,第三路经R3也到达C 点,显然R2和R3接联在AC两点之间为并联。二、三络电流同汇于c点经R4到达D点,可知R2、R3并联后与R4串联,再与R1并联,如图7所示。 四、等电势法(不讲) 在较复杂的电路中往往能找到电势相等的点,把所有电势相等的点归结为一点,或画在一条线段上。当两等势点之间有非电源元件时,可将之去掉不考虑;当某条支路既无电源又无电流时,可取消这一支路。我们将这种简比电路的方法称为等电势法。 例4.如图8所示,已知R1=R2=R3=R4=2Ω,求A、B两点间的总电阻。 解:设想把A、B两点分别接到电源的正负极上进行分析,A、D两点电势相等,B、C两点电势也相等,分别画成两条线段。电阻R1接在A、C两点,也即接在A、B两点;R2接在

复杂电路分析教案

课题 1.3 复杂电路分析 教学 目标 【知识目标】懂得复杂电路分析 【能力目标】1掌握基尔霍夫定律 2会用支路电流法 3掌握等效电压源定理(戴维南定理) 【德育目标】培养学生独立思考的能力 教 学 重 点 基尔霍夫定律 教学 难点 戴维南定理 教 学 时 间 2课时(第4周) 教具 准备 粉笔和黑板 教学组织与实施 教师活动 学生活动 【新课导入】对复杂电路的分析计算,只用欧姆定律是不够的,还要用到基尔霍夫定律和相关的定理。 【新课讲授】基尔霍夫定律是电路中电压和电流所遵循的基本规律,也是分析和计算电路的基础。 1.基尔霍夫电流定律 任意时刻,流入电路中任一节点的电流之和恒等于流出该节点的电流之和。 对于图中的节点a ,在图示各电流的参考方向下,依KCL ,有 I1+I3+I5=I2+I4 或 I1+I3+I5-I2-I4=0 即 ΣI=0 a I 2 I 1 I 5 I 4 I 3 写出基尔霍夫电流定理 公式

流入电路中任一节点的电流代数和恒等于零。 流入节点的电流前取正号,流出节点的电流前取负号。基尔霍夫电流定律是根据电荷守恒法则得到,也是电流连续性原理的集中表现。 例在图示电路中,已知I1=1A ,I2=2A, I6=3A, 求支路电流I3、I4和I5 。 解:首先设定各支路电流的参考方向如图中所示,由于部分支路电流已知, 根据KCL,有I4=I1+I6=1+3=4A I5=I4-I2=4-2=2A I3=I6-I5=3-2=1A 2 基尔霍夫电压定律 基尔霍夫电压定律可以确定电路任一回路中各部分电压之间的相互关系。基尔霍夫电压定律指出:对于电路的任一回路,沿任一方向饶行一周,各元件电压的代数和等于零,即 ΣU=0 应用基尔霍夫电压定律时,首先选定回路的饶行方向,回路中元件电压方向与饶行方向相同者取正号,反之取负号。例如图示电路,共有三个回路,如果选择顺时针方向为各回路的方向,由基尔霍夫电压定律可以列出各回路电压方程如下 理解例题解法 写出基尔霍夫电压定理公式

相关主题
文本预览
相关文档 最新文档