分形
- 格式:doc
- 大小:153.00 KB
- 文档页数:20
分形和混沌的基本概念和应用在科学和数学领域中,分形和混沌是两个非常重要的概念。
它们不仅有着丰富的理论内涵,而且在实际应用中也有着广泛的用途。
本文旨在介绍分形和混沌的基本概念、性质以及其应用领域。
一、分形的基本概念和性质分形最初是由法国数学家Mandelbrot所提出的。
分形,定义简单点来说,就是在各种尺度下都表现出相似性的图形。
比如说,我们在放大树叶时,会发现树叶的分支和小结构上会有许多特征,在不断放大过程中,树叶上的分支和结构会产生类似于整个树叶的结构。
这个例子就是分形学的一个典型例子。
分形的最重要的特性是自相似性和不规则性。
自相似性是指,在分形中,任意一部分都与整个结构相似,这种相似性具有尺度不变性,即不会因为放大或缩小而改变。
不规则性是指,分形的形状十分奇特,与传统的几何图形相比,分形形状复杂多变,没有任何几何规律可循。
分形广泛用于科学研究、艺术美学、计算机图像处理等领域。
在生物学、地震学、天文学中也有广泛应用。
例如,在生物学中,许多生物组织和器官都具有分形结构,如肺组织、血管系统、神经元等。
利用分形理论可以更好地研究这些生物结构的形态和发展规律。
此外,在土地利用和城市规划领域,也可以应用分形理论来研究城市建筑的空间结构和空间分布规律。
二、混沌的基本概念和性质混沌又称为非线性动力学。
混沌指的是用微观因素推算出宏观效应的过程,该过程结果不可预测,但随着时间的推移,能够生成复杂、有规律的系统。
混沌体系可用方程式表示出来,但由于该方程式是个非线性方程式,所以其结果会随这方程式微小变化而产生巨大的差异。
混沌具有以下几个突出的性质:灵敏依赖于初始条件,长期不稳定,难以预测和控制。
混沌理论可以用于预测经济和金融领域中出现的一些紊乱现象,如股市波动。
混沌最初应用在天文学领域,例如研究太阳系中行星之间的轨道。
这些轨道不像我们所想的那样规律。
然而,混沌的发现不仅在天文学领域中应用,也在许多其它领域解决一些不规则的问题。
分形原理及其应用
分形原理,也称为分形几何原理,是由波兰数学家曼德尔布罗特于1975年首次提出的。
分形原理指的是存在于自然界和人
造物体中的重复模式,这些模式在不同的尺度上都呈现出相似的结构和特征。
换句话说,分形是一种具有自相似性的形态。
分形原理的应用十分广泛,下面列举几个主要领域:
1. 自然科学领域:生物学、地理学、气象学、天文学等都能从分形原理中获得启示。
例如,树叶、花瓣和岩石都具有分形结构,通过分析这些结构可以揭示它们的生长和形成规律。
2. 数学与计算机图形学:分形理论为图形图像的生成、压缩和渲染提供了新的思路和方法。
通过分形原理,可以生成具有逼真效果的山水画、云彩图等。
3. 经济学和金融学:金融市场中的价格变动往往呈现出分形特征,通过分析分形模式可以帮助预测市场走势和制定投资策略。
4. 艺术设计:分形原理在艺术设计中被广泛应用。
通过将分形结构应用到艺术作品中,可以创造出独特而美丽的图案和形态。
5. 计算机网络和通信:分形技术可以用于改进数据传输的效率和可靠性。
通过在网络中应用分形压缩算法,可以减少数据传输的带宽需求,提高网络性能。
综上所述,分形原理作为一种有着广泛应用价值的理论,已经
渗透到了各个学科和领域中,为科学研究和技术创新提供了新的思路和方法。
分形定义与特点解析
哎呀,说起这个分形啊,它就像咱们四川的山山水水,层层叠叠,复杂又迷人。
分形嘛,简单来说,就是那些看起来自相似,不管你咋个放大缩小,它都长得差不多的图形或者结构。
就像你站在峨眉山脚看金顶,跟你在金顶上看周围的云海,那种层层叠叠、云雾缭绕的感觉,差不多就是分形的一个味儿。
分形的特点,第一就是自相似性,就像我前面说的,它自个儿跟自个儿像,不管大小,都有那么一股子“家族脸”。
第二呢,就是无限复杂性,你越往细里看,它就越复杂,好像永远都看不完,跟咱们四川的竹林一样,一根竹子里头还有无数小枝丫,小枝丫上又有更细的,没完没了。
再来说说它的应用,那可就广了。
在自然界里头,雪花、河流的分支、树叶的脉络,都是分形的杰作。
在科学里头,分形理论还被用来研究天气变化、股市波动这些看似杂乱无章,实则暗藏规律的东西。
就连咱们画画、设计里头,也经常能见到分形的影子,让作品看起来更加生动、有层次感。
所以说,分形这个东西,它不仅仅是数学上的一个概念,更是大自然和人类智慧的一种奇妙结合。
咱们四川人讲究的是“巴适”,我觉得分形就挺“巴适”的,既复杂又简单,既抽象又具体,让人越看越有味儿。
分形的特点及构造方法分形是数学中的一个重要概念,它具有独特的特点和构造方法。
作为一位初中数学特级教师,我将在本文中向大家介绍分形的特点以及构造方法,希望能够帮助中学生及其父母更好地理解和应用分形。
一、分形的特点分形最显著的特点就是自相似性。
自相似性是指一个物体的各个部分都与整体具有相似的形状或结构。
换句话说,无论是放大还是缩小,这个物体的形状都会重复出现。
例如,我们可以观察一片树叶,发现树叶的小分支和整个树叶的形状非常相似,这就是分形的自相似性。
另一个特点是分形的复杂性。
分形形状通常是非常复杂的,往往无法用简单的几何图形来描述。
例如,分形图形中的曲线可以不连续,具有很多细节和尖锐的边缘。
这种复杂性使得分形在自然界和科学研究中具有广泛的应用价值。
二、分形的构造方法1. 基于迭代的构造方法迭代是分形构造的基本方法之一。
通过不断重复相同的操作,可以构造出具有自相似性的分形图形。
例如,康托尔集合就是通过迭代的方式构造出来的。
首先,将一条线段分成三等分,然后去掉中间那一段,再对剩下的两段线段进行相同的操作。
重复这个过程无限次,最后得到的就是康托尔集合,它具有自相似性和复杂的形状。
2. 基于分形几何的构造方法分形几何是研究分形的数学工具,通过一些几何变换和规则,可以构造出各种各样的分形图形。
例如,科赫曲线就是通过分形几何构造出来的。
首先,将一条线段分成三等分,然后将中间那一段替换为一个等边三角形的两条边,再对剩下的两段线段进行相同的操作。
重复这个过程无限次,最后得到的就是科赫曲线,它具有分形的特点。
三、分形的应用分形不仅仅是数学中的一个概念,它还具有广泛的应用价值。
在自然界中,很多自然现象都具有分形的特点,例如云朵的形状、山脉的轮廓、河流的分布等。
通过研究这些分形现象,我们可以更好地理解自然界的规律。
在科学研究中,分形也被广泛应用于物理学、生物学、经济学等领域。
例如,在物理学中,分形可以用来描述复杂的物理现象,如分形电阻、分形结构的磁体等。
分形原理及其应用
分形是一种几何图形,它具有自相似的特性,即整体的形状和局部的形状都具
有相似性。
分形原理最早由法国数学家Mandelbrot提出,他认为自然界中的许多
现象都可以用分形来描述。
分形原理不仅在数学领域有着广泛的应用,还在生物学、物理学、经济学等领域都有着重要的意义。
在数学领域,分形可以用来描述自然界中的许多复杂现象,比如云彩的形状、
树叶的脉络、河流的分布等。
利用分形原理,我们可以更好地理解这些现象背后的规律。
而在生物学领域,分形原理也有着广泛的应用。
比如,我们可以利用分形原理来研究植物的生长规律,动物的群体分布等。
在物理学领域,分形可以用来描述许多复杂的物理现象,比如分形几何可以用来描述分形维度,分形维度可以用来描述物体的复杂程度。
除了在基础科学领域有着广泛的应用之外,分形原理还在工程技术领域有着重
要的意义。
比如,在图像处理领域,我们可以利用分形原理来进行图像的压缩和识别。
在信号处理领域,分形原理也可以用来进行信号的分析和处理。
在金融领域,分形原理可以用来描述股票价格的波动规律,从而帮助投资者进行风险管理。
总的来说,分形原理是一种非常有用的数学工具,它不仅可以用来描述自然界
中的复杂现象,还可以在工程技术领域有着广泛的应用。
随着科学技术的不断发展,相信分形原理会有更多的应用场景被发现,为人类的发展带来更多的帮助和便利。
希望本文的介绍能够让读者对分形原理有更深入的了解,并且能够在实际应用
中发挥更大的作用。
分形原理的应用领域还在不断扩大,希望大家能够关注并且深入研究,为人类的发展做出更大的贡献。
数学的分形几何分形几何是一门独特而迷人的数学领域,它研究的是自相似的结构和形态。
分形几何的概念由波蒂亚·曼德博(Benoit Mandelbrot)在1975年首次提出,之后得到了广泛应用和发展。
本文将介绍分形几何的基本概念和应用领域,旨在帮助读者更好地了解这一令人着迷的学科。
一、分形几何的基本概念分形(fractal)是一种非几何形状,具有自相似的特点。
简单来说,分形就是在各个尺度上都具有相似性的图形。
与传统的几何图形相比,分形图形更加复杂、细致,其形状常常无法用传统的几何方法进行描述。
分形几何的基本概念包括分形维度、分形特征和分形生成等。
1. 分形维度分形维度是分形几何中的重要概念之一。
传统的几何图形维度一般为整数,如直线的维度为1,平面的维度为2,而分形图形的维度可以是非整数。
分形维度能够描述分形的复杂程度和空间占据情况,是衡量分形图形特性的重要指标。
2. 分形特征分形几何的分形特征是指分形图形所具有的一些独特性质。
其中最著名的就是自相似性,即分形图形在不同尺度上具有相似的形态和结构。
此外,分形图形还具有无限的细节,无论放大多少倍都能够找到相似的结构。
3. 分形生成分形图形的生成是分形几何中的关键问题之一。
分形图形可以通过递归、迭代等方式进行生成,比如著名的分形集合——曼德博集合就是通过迭代运算得到的。
分形生成的过程常常需要计算机的辅助,对于不同的分形形状,生成算法也有所不同。
二、分形几何的应用领域分形几何的独特性质使其在许多领域中得到广泛应用。
以下列举了几个典型的应用领域。
1. 自然科学分形几何在自然科学中有着广泛的应用。
例如,分形理论可以用来研究自然界中的地形、云雾形态等。
通过分形几何的方法,我们能够更好地理解和描述自然界的复杂性,揭示出隐藏在表面之下的规律。
2. 经济金融分形几何在经济金融领域也有着重要的应用。
金融市场的价格走势往往具有分形特征,通过分形几何的方法可以更好地预测未来的市场走势和波动。
学习分形形了解分形形的特点和构造方法学习分形:了解分形的特点和构造方法分形(fractal)一词由波兰数学家曼德尔布罗特(Benoit Mandelbrot)于1975年引入,用于描述一类自相似的几何图形或物体。
分形具有许多独特的特点,如无穷细节、复杂性、自相似性等。
本文将介绍分形的特点和构造方法。
一、分形的特点1. 无穷细节:分形具有无穷多的细节和复杂性,无论放大或缩小图像,都能够发现新的细节。
这使得分形在数学、自然科学和艺术等领域具有广泛应用。
2. 自相似性:分形是自相似的,即整体的结构与其局部结构相似。
无论是整体还是局部的形状都能够在较小或较大的尺度上找到相似的结构。
这种自相似性是分形的重要特征。
3. 复杂性:分形的复杂性指的是其结构和形态的复杂程度。
相比于传统的几何图形,分形形状更为复杂,无法用简单的几何形状或方程式描述。
4. 维度非整:分形的维度通常是非整数维的,例如,柯赛雪垫(Koch曲线)的维度介于1和2之间。
这种非整数维度是分形与传统几何学的重要区别之一。
5. 噪声与规则性:分形能够通过噪声与规则性的结合来表现出不规则的形态。
分形结构的噪声性质使得其在模拟自然界中的山脉、云朵等不规则物体时非常逼真。
二、分形的构造方法1. 迭代函数系统(IFS):迭代函数系统是构造分形图形的一种常用方法。
它通过对函数的重复应用来生成自相似结构。
柯赛雪垫和谢尔宾斯基地毯(Sierpinski carpet)都是通过迭代函数系统构造的。
2. 分形树:分形树是用于模拟植物的分枝结构的一种方法。
通过对树干进行重复分支并在每个分支的末端再次生成分支,可以构造出栩栩如生的分形树形结构。
3. 噪声函数:噪声函数是基于随机数生成的分形图形构造方法之一。
通过使用不同频率和振幅的噪声函数叠加,可以产生具有细节丰富的分形图像。
4. 分形几何的数学公式:柯赛雪垫、曼德尔布罗特集合等分形图形可以使用数学公式进行描述和生成。
数学中的分形理论随着人类对自然界了解的不断深入,我们发现很多自然形态都呈现出一种神秘而美妙的特质:分形。
分形是一种几何对象,具有自我相似的特征,在自然界和人工模拟中均有广泛的应用。
很多分形现象都涉及到数学分析,因此,了解数学中的分形理论是很有意义的。
一、什么是分形?1982年,美国数学家麦德里·曼德博士首先提出了分形的概念,他表示:“一种比几何图形概念更具体的新理论。
”通俗来讲,分形是指一类自相似的物体或形态。
自相似的意思是说,想象你把这个物体放大,那么这个物体的某个部分,将会与其他部分相似,如此反复,直到无穷大。
在数学中,通过不断重复一部分内容,会得到一个类似整体的图案,我们称之为分形。
分形由多个重复出现的基本形状组成,这些基本形状被称为迭代函数中的自相似部分,不断迭代后便可得到分形的自相似性质。
分形具有自相似、无限细节、非整数维度和结构复杂等特征。
二、分形的应用分形理论广泛应用于各个领域,如自然界、艺术和科技等。
以下简单介绍几个分形的应用领域:1.自然景观许多自然景观都具有分形结构,例如云彩、大麻鸡爪、树的枝干、树叶排列、岩石表面等。
早期的科学家们通常认为自然景观是遵循一定规则的,但他们无法解释这些规则。
分形具有解释自然现象的能力,例如,海岸线有无限多的下垂崖、山脉覆盖着大小不一的山峰,每个山峰又有自己的小山、小河和树木等。
分形理论可以用来解释这些结构和广泛的自然现象,揭示它们的本质规律。
2.压缩图像图像可以看成是二维的平面矩阵,它们可以按任意比例或任意比例进行压缩和缩小。
分形压缩算法是一种快速且节省空间的压缩方法,它是通过深入分析图像的各个部分来实现对图像的压缩。
与其他压缩方法相比,分形压缩算法可以保留大量的图像细节和标记,从而提供更准确的图像还原。
3.金融市场分形也可以应用于金融市场,例如股票市场、外汇市场和商品市场等。
这些市场的行情是非常波动的,并且形成许多买入和卖出的机会。
分形公式大全分形公式是一种表示分形特征的数学公式,它可以描述自相似、无限细节和复杂的结构。
下面是一些常见的分形公式及其相关参考内容。
1. Mandelbrot集公式:Mandelbrot集是分形几何中最著名的一个例子,它由下面的公式定义:Z(n+1) = Z(n)² + C其中,Z(n)是一个复数,C是一个常数。
这个公式对于不同的C值会产生不同的形状,形成了Mandelbrot集的分形特征。
关于Mandelbrot集的更多内容,可以参考书籍《The Fractal Geometry of Nature》 by Benoit B. Mandelbrot。
2. Julia集公式:Julia集是类似于Mandelbrot集的分形图形,它由下面的公式定义:Z(n+1) = Z(n)² + C其中,Z(n)和C都是复数。
当给定不同的C值时,Julia集的形状也会有所不同。
关于Julia集的更多内容,可以参考书籍《The Science of Fractal Images》by Heinz-Otto Peitgen和Dietmar Saupe。
3. 分岔图公式:分岔图是描述非线性动力系统中稳定性变化的一种分形图形。
它由下面的公式定义:f(x) = r * x * (1-x)其中,r是参数,x是状态变量。
当r的值在一定范围内变化时,分岔图会展现出分形的特征。
关于分岔图的更多内容,可以参考书籍《Chaos: Making a New Science》by James Gleick。
4. 树形分形公式:树形分形是一种描述树状结构的分形图形,它由下面的公式定义:x(n+1) = r * x(n) * cos(theta) - y(n) * sin(theta)y(n+1) = r * x(n) * sin(theta) + y(n) * cos(theta)其中,x(n)和y(n)是当前点的坐标,x(n+1)和y(n+1)是下一个点的坐标,r是缩放参数,theta是旋转角度。
作为一门新兴学科,分形不但受到了科研人员的青睐,而且因为其广泛的应用价值,正受到各行各业人士的关注。
那么,在我们开始学习分形之前,首先应该明白的一件事情是:我们正在学习什么?或者说:什么是分形?严格地而且正式地去定义分形是一件非常复杂而且困难的事情。
但是,有一些不太正规的定义却可以帮助我们理解分形的含义。
在这些定义中,最为流行的一个定义是:分形是一种具有自相似特性的现象、图像或者物理过程。
也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已。
让我们来看下面的一个例子。
上图是一棵厥类植物,仔细观察,你会发现,它的每个枝杈都在外形上和整体相同,仅仅在尺寸上小了一些。
而枝杈的枝杈也和整体相同,只是变得更加小了。
那么,枝杈的枝杈的枝杈呢?自不必赘言。
如果你是个有心人,你一定会发现在自然界中,有许多景物都在某种程度上存在这种自相似特性,即它们中的一个部分和它的整体或者其它部分都十分形似。
其实,远远不止这些。
从心脏的跳动、变幻莫测的天气到股票的起落等许多现象都具有分形特性。
这正是研究分形的意义所在。
上图中的风景图片又是说明分形的另一很好的例子。
这张美丽的图片是利用分形技术生成的。
在生成自然真实的景物中,分形具有独特的优势,因为分形可以很好地构建自然景物的模型。
**********************************************************除了自相似性以外,分行具有的另一个普遍特征是具有无限的细致性。
上面演示的是Mandelbrot集,只要选对位置进行放大,就会发现:无论放大多少倍,图象的复杂性依然丝毫不会减少。
但是,注意观察上图,我们会发现:每次放大的图形却并不和原来的图形完全相似。
(程序)不管你信不信,上面的这张月球表面的照片也是用分形技术生成的。
如果你把图片放大观看,也可以看到更加细致的东西。
因为,分形能够保持自然物体无限细致的特性,所以,无论你怎么放大,最终,还是可以看见清晰的细节。
Koch雪花和Sierpinski三角形也是比较典型的分形图形,它们都具有严格的自相似特性。
但是在前面说述的Mandelbrot集合却并不严格自相似。
所以,用“具有自相似”特性来定义分形已经有许多局限了,在接下来的课程中,我们将继续探讨分形的含义。
**********************************************************其实,分形的研究可以上溯到很久以前。
大约100年前分形的思想已经开始出现在数学领域。
但是,就像其它的一些革命性的思想一样,分形的研究受到了主流学术的谴责,被人们认为只是研究一些数学中的怪异现象。
那个时候著名的数学家 Charles Hermite 把分形称为“怪物”,这代表了绝大多数人的观点。
IBM公司的数学家 Benoit B. Mandelbrot 认真地研究了分形与自然的关系。
他向人们展示了分形广泛地存在于我们身边,一些现象都能够用分形来进行准确的描述。
他和他的同事们用分形来描述树和山等复杂事物。
他还扩展了维数的概念,开创性地提出了分数维的概念,并创造了“fractal”一词。
“fractal”就是我们所说的“分形”,也叫“分维”,台湾的学者则称之为“碎形”。
为了褒奖 Mandelbrot 的突出贡献,人们把他称为“分形之父”。
象所有伟大的思想家(例如牛顿、爱因斯坦)一样,Mandelbrot 的工作也建立在前期一些数学家的研究成果之上。
Gaston Julia、Pierre Fatou 以及 Felix Hausdorff 等一些伟大的科学家都是这个领域的先驱,他们都为 Mandelbrot 的开创性研究铺平了道路。
Mandelbrot 的研究成果激励了许多在这个领域感兴趣的学者,并继而使分形成为现代科学中的热门学科。
分形的许多理论和应用刚刚被人们发现。
尽管分形的应用十分广泛,但在当前的研究中,图像压缩是分形应用中比较诱人的一个领域。
因为自然景物可以利用分形表述,所以,分形在压缩图像上非常有用。
现在,我们开始认识分形的特性。
***********************************************************通过前面的介绍,我们已经知道:分形最明显的特征是自相似性,其它的特征包括无限复杂、无限细致等。
但是,分形的正式定义是依据分维(分数维)来判断的。
因为分维的概念非常复杂,所以,我们先继续研究分形的自相似特性,为分数维的研究奠定基础。
自然界中许多植物具有自相似特性,例如,我们在前面所介绍的分形植物。
在这棵厥类植物中,枝杈是整个植物的小版本,而枝杈的枝杈则是更小的版本。
这种特性可以无限地持续下去。
这里的自相似体现在:每一个边都是由它的更小版本组成,而整个图形并没有重复。
也就是说,这时的自相似的实质应该是某一个部分在其它地方重复出现。
Julia 集也是一个非常好的具有自相似特征的分形图形。
仔细观察下面的图画你会发现,许多部分都在其它地方重复出现。
上面这幅图是真实拍摄的一张厥类植物的图片。
它也具有自相似特性。
但是,它并不像计算机生成的分形图形那样严格地自相似,这大概是因为在成长过程中,受到了许多外界因素的影响吧。
正是因为分形所具有的自相似特性,才使分形如此重要并且具有实际应用意义。
很多物体都可以通过分形来精确描述。
因为分形可以描述植物、雪花等自然物体,同样也可以生成风景图像,甚至是音乐作品。
我们通过前面的介绍还了解到:分形的另一个重要特征是具有无限精细和无限复杂性。
但是,应该记住,无论是自相似性还是无限精细性都不能用来科学地定义分形,因为这些都只是分形中普遍存在的特点。
为了定义分形,必须引进分维的概念。
从下节开始,我们将探讨分维,这是一个很有趣但也很难掌握的概念。
********************************************************** 为了构造Koch曲线,我们首先作一条直线,然后在直线的中央作一个等边三角形,于是,直线变得复杂一些。
然后,再在每一条线段的中央分别作一个等边三角形,这条直线变得更加复杂。
依照此法,无限制地进行下去,就形成了Koch曲线。
这个时候,这条直线开始接近一个平面,因为它明显地具有“高度”,但是,更精确地说,它却并不是一个平面,或者说,并不是一个二维的曲线。
它的维数只有1.2618。
为什么这样说呢?因为它高过一维,但却不到二维?听起来是不是够玄乎的?不过,不要着急,我们将介绍更多的例子来帮助你来理解分维的概念。
分维?你是说还有一个2.8126维的物体吗?是的!尽管听起来似乎比较荒诞,但这是事实。
在这个概念的基础上才有分形学的发展,这个概念也可能会进一步改变我们的世界观。
在前面我们曾介绍过“分形之父” Benoit Mandelbrot ,他正是从分维的概念出发创造了“分形”(Fractal)这个词。
因为这是一个非常复杂的问题,所以我们必须慢速前进。
让我们先作一个类比。
牛顿是1600年代时代的人物。
牛顿的运动学定律可以使人们预测运动物体的运动情况。
但是,当运动物体的速度接近光速时,这个定理就变得极不准确。
于是,在1900初,爱因斯坦发明了相对论。
这个成果发展了牛顿定律。
如果你去检验相对论,你会发现,在低速的情况下,相对论的结果等同于牛顿定律。
那么,这和分维有什么联系呢?象相对论发展了传统力学一样,分维是对传统维数概念的进一步发展。
它并不和你所了解的分维知识相冲突,而是一种发展!正是要拓展关于维数的概念,而引进分数维的概念。
我们生活在一个具有长度、宽度和深度的三维世界里。
你可能知道:一个平面是二维的,一条直线是一维的,而一个点呢?零维的!我们能够想象具有类似维数的任何物体。
但是,你能想象一个具有1.2618维的物体吗?或许不能吧?那么Koch曲线就是1.2618维的。
在Sierpinski三角形中,我们首先作一个完全填充的三角形(二维)。
然后,我们从中间移去一个三角形,然后再在剩下的三角形中分别移去一个三角形。
最终它的面积等于零了,于是,它的维数自然小于 2 ,但是却永远达不到 1 ,因为,无论何处,它都不接近一条线。
所以,它的维数也在2与1之间,经过数学计算,它的真正维数大约是1.5850。
现在你理解了分维的概念了吗?但愿如此吧!尽管这种思想非常奇怪,但却非常美妙,特别对于数学研究来说。
********************************************************* 现在,你已经了解分维的意思了,那么,怎么计算分维呢?在学习分维的计算方法之前,你应该对代数知识(特别是对数)知识有一定的了解。
假如你把一条直线分为 N 段,那么,你就有了原始直线的 N 个更小的版本,每一个都按照一个比例系数 r 减小,在这里Nr = 1。
对一个正方形来说,也分成几个小的正方形,也让每一正方形的每边的缩放比例为 r 。
注意,这个时候 N 和 r 的关系是 Nr^2 = 1。
现在,我们可以归纳出分维来了。
假设你把一个 d 维物体分为 N 等份,每一份的缩放比例是 r,二者的关系是Nr^d = 1。
经过数学计算,我们可以得到d = (log N) / (log (1/r))。
对于Koch曲线来说,我们把它分成了四个等份,而每一等份是原来尺寸的 (1/3)。
所以有 N = 4 和 r = 1/3。
运用上面的等式,可以计算 d = (log 4) / (log 3) ≈ 1.261859507143。
在Sierpinski三角形中,我们把三角形分成了三个相等的部分。
而每一部分的边长和高只是原先三角形的 (1/2) ,所以 N =3 并且 r = 1/2 ,根据等式计算的结果则是 d = (log 3) / (log 2),结果大约等于 1.584962500721.现在,你应该知道怎么计算简单的分维了吧?还有很多种方法是专门用来计算非自相似分形的分维数的。
在后续的文章中,你将会知道通过分形的方法可以计算海岸线,但是海岸线却并不是真正的自相似,所以必须运用近似计算方法。
***********************************************************现在我们已经知道分形的原理,并且也初步学会了分维的计算,下一步我们要学习什么呢?当然是分形的生成和分形的应用了。
在这里,我们将开始学习通过不同的方式来创造分形。
在学习的过程中,你也能了解分形的种类。
如果你能理论联系实际的绘画,马上你就可以运用自己所学的知识了。
你可以创造很多种不同类型的分形图形,有些较为简单,而有些则比较复杂。
我们已经在前面的课程中认识了一些分形图形,我们将在以后的课程中逐渐学习它们的制作方法,下面,我们首先来认识几类分形图形。