第二章 平面连杆机构
- 格式:doc
- 大小:621.50 KB
- 文档页数:9
第二章平面连杆机构及其设计【基本要求】1.了解平面四杆机构的基本型式,掌握其演化方法。
2.掌握平面四杆机构的工作特性。
3.了解连杆机构传动的特点及其功能。
4.掌握平面连杆机构运动分析的方法,学会将复杂的平面连杆机构的运动分析问题转化为可用计算机解决的问题。
5.了解平面连杆机构设计的基本问题,熟练掌握根据具体设计条件及实际需要,选择合适的机构型式和合理的设计方法,解决具体设计问题。
【重点难点】本章内容包括平面连杆机构和空间连杆机构两部分,其中平面连杆机构是本章的重点。
通过本章的学习,最终要求达到:根据实际需求,确定满足此需求的连杆机构类型,选择合适的设计方法设计出此连杆机构。
设计完成后需对所设计的连杆机构进行运动学和动力学分析,校验此机构是否实用,是否满足实际要求。
【学习内容】平面连杆机构是常用的低副机构,其中以由四个构件组成的四杆机构应用最广泛,而且是组成多杆机构的基础。
因此本章着重讨论四杆机构的基本类型、性质及常用设计方法。
2.1 铰链四杆机构的类型及应用2.2 铰链四杆机构的曲柄存在条件2.3 铰链四杆机构的演化2.4 平面四杆机构的基本特性2.5 平面四杆机构的设计平面连杆机构若各运动构件均在相互平行的平面内运动,则称为平面连杆机构。
空间连杆机构若各运动构件不都在相互平行的平面内运动,则称为空间连杆机构。
平面连杆机构较空间连杆机构应用更为广泛,故着重介绍平面连杆机构。
在平面连杆机构中,结构最简单的且应用最广泛的是由4个构件所组成的平面四杆机构,其它多杆机构可看成在此基础上依次增加杆组而组成。
●下面介绍平面四杆机构的基本型式及其演化。
铰链四杆机构所有运动副均为转动副的四杆机构称为铰链四杆机构。
它是平面四杆机构的基本型式。
2.1 铰链四杆机构的类型及应用2.1.1铰链四杆机构的类型由转动副联接四个构件而形成的机构,称为铰链四杆机构,奴图所示。
图中固定不动的构件AD是机架;与机架相连的构件AB、CD称为连架杆;不与机架直接相连的构件BC称为连杆。
第2章平面连杆机构2.1平面连杆机构的特点和应用连杆机构是由若干刚性构件用低副连接组成的机构,又称为低副机构。
在连杆机构中,若各运动构件均在相互平行的平面内运动,称为平面连杆机构;若各运动构件不都在相互平行的平面内运动,则称为空间连杆机构。
平面连杆机构被广泛应用在各类机械中,之所以广泛应用,是因为它有较显著的优点:(1)平面连杆机构中的运动副都是低副,其构件间为面接触,传动时压强较小,便于润滑,因而磨损较轻,可承受较大载荷。
(2)平面连杆机构中的运动副中的构件几何形状简单(圆柱面或平面),易于加工。
且构件间的接触是靠本身的几何约束来保持的,所以构件工作可靠。
(3)平面连杆机构中的连杆曲线丰富,改变各构件的相对长度,便可使从动件满足不同运动规律的要求。
另外可实现远距离传动。
平面连杆机构也存在一定的局限性,其主要缺点如下:(1)根据从动件所需要的运动规律或轨迹设计连杆机构比较复杂,精度不高。
(2)运动时产生的惯性力难以平衡,不适用于高速的场合。
(3)机构中具有较多的构件和运动副,则运动副的间隙和各构件的尺寸误差使机构存在累积误差,影响机构的运动精度,机械效率降低。
所以不能用于高速精密的场合。
平面连杆机构具有上述特点,所以广泛应用于机床、动力机械、工程机械等各种机械和仪表中。
如鹤式起重机传动机构(图2-1),摇头风扇传动机构(图2-2)以及缝纫机、颚式破碎机、拖拉机等机器设备中的传动、操纵机构等都采用连杆机构。
图2-1鹤式起重机图2-2 摇头风扇传动机构2.2平面连杆机构的类型及其演化2.2.1 平面四杆机构的基本形式全部用转动副组成的平面四杆机构称为铰链四杆机构,如图2-3所示。
机构的固定件4称为机架;与机架相联接的杆1和杆3称为连架杆;不与机架直接联接的杆2称为连杆。
能作整周转动的连架杆,称为曲柄。
仅能在某一角度摆动的连架杆,称为摇杆。
按照连架杆的运动形式,将铰链四杆机构分为三种基本型式:曲柄摇杆机构、双曲柄机构和双摇杆机构。
第2章平面连杆机构教案(精选5篇)第一篇:第2章平面连杆机构教案第2章平面连杆机构平面连杆机构——由若干个构件通过平面低副(转动副和移动副)联接而构成的平面机构,也叫平面低副机构平面连杆机构具有承载能力大、结构简单、制造方便等优点,用它可以实现多种运动规律和运动轨迹,但只能近似地实现所要求的运动。
最简单的平面连杆机构由四个构件组成,简称平面四杆机构。
是组成多杆机构的基础只介绍四杆机构§2-1 平面四杆机构的基本类型及其应用一,铰链四杆机构铰链四杆机构——全部由回转副组成的平面四杆机构,它是平面四杆机构最基本的形态。
如图2-1a所示,铰链四杆机构由机架4、连架杆(与机架相连的 1、3两杆)和连杆(与机架不相联的中间杆2)组成。
如图所示曲柄——能绕机架上的转动副作整周回转的连架杆。
摇杆——只能在某一角度范围(小于360°)内摆动的连架杆。
铰链四杆机构按照连架杆是曲柄还是摇杆分为曲柄摇杆机构、双曲柄机构、双摇杆机构三种基本型式。
1、曲柄摇杆机构曲柄摇杆机构——两连架杆中一个是曲柄,一个是摇杆的铰链四杆机构。
当曲柄为原动件时,可将曲柄的连续转动,转变为摇杆的往复摆动。
应用:雷达调整机构2、双曲柄机构两连架杆均为曲柄的铰链四杆机构称为双曲柄机构。
当原动曲柄连续转动时,从动曲柄也作连续转动如图所示在双曲柄机构中,若其相对两杆相互平行如右图所示,则成为或平行四边形机构(平行双曲柄机构)。
如图所示当平行四边形机构的四个铰链中心处于同一条直线上时,将出现运动不确定状态,一般采用相同机构错位排列的方法,来消除这种运动不确定状态。
如图所示应用:在机车车轮联动机构中,则是利用第三个平行曲柄来消除平行四边形机构在这种死点位置的运动不确定性。
3、双摇杆机构两连架杆均为摇杆的铰链四杆机构称为双摇杆机构应用:飞机起落架通过用移动副取代转动副、变更杆件长度、变更机架和扩大转动副等途径,可以得到铰链四杆机构的其他演化型式二,含一个移动副的四杆机构 1,曲柄滑块机构通过将摇杆改变为滑块,摇杆长度增至无穷大,可得到曲柄滑块机构,如图所示对心曲柄滑块机构与偏置曲柄滑块机构曲柄滑块机构应用于活塞式内燃机2、导杆机构在图所示曲柄滑块机构中,若改取杆1为固定构件,即得导杆机构。
第二章 平面连杆机构案例导入:通过雷达天线、汽车雨刮器、搅拌机等实际应用的机构分析引入四杆机构的概念,介绍四杆机构的组成、基本形式和工作特性。
第一节 铰链四杆机构一、铰链四杆机构的组成和基本形式 1.铰链四杆机构的组成如图1-14所示,铰链四杆机构是由转动副将各构件的头尾联接起的封闭四杆系统,并使其中一个构件固定而组成。
被固定件4称为机架,与机架直接铰接的两个构件1和3称为连架杆,不直接与机架铰接的构件2称为连杆。
连架杆如果能作整圈运动就称为曲柄,否则就称为摇杆。
2.铰链四杆机构的类型铰链四杆机构根据其两个连架杆的运动形式的不同,可以分为曲柄摇杆机构、双曲柄机构和双摇杆机构三种基本形式。
(1)曲柄摇杆机构。
在铰链四杆机构中,如果有一个连架杆做循环的整周运动而另一连架杆作摇动,则该机构称为曲柄摇杆机构。
如图2-1所示曲柄摇杆机构,是雷达天线调整机构的原理图,机构由构件AB 、BC 、固连有天线的CD 及机架DA 组成,构件AB 可作整圈的转动,成曲柄;天线3作为机构的另一连架杆可作一定围的摆动,成摇杆;随着曲柄的缓缓转动,天线仰角得到改变。
如图2-2所示汽车刮雨器,随着电动机带着曲柄AB 转动,刮雨胶与摇杆CD 一起摆动,完成刮雨功能。
如图2-3所示搅拌器,随电动机带曲柄AB 转动,搅拌爪与连杆一起作往复的摆动,爪端点E 作轨迹为椭圆的运动,实现搅拌功能。
(2)双曲柄机构。
在铰链四杆机构中,两个连架杆均能做整周的运动,则该机构称为双曲柄机构。
如图2-4所示惯性筛的工作机构原理,是双曲柄机构的应用实例。
由于从动曲柄3与主动曲柄1的长度不同,故当主动曲柄1匀速回转一周时,从动曲柄3作变速回转一周,机构利用这一特点使筛子6作加速往复运动,提高了工作性能。
当两曲柄的长度相等且平行布置时,成了平行双曲柄机构,如图2-5a )所示为正平行双曲柄机构,其特点是两曲柄转向相同和转速相等及连杆作平动,因而应用广泛。
火车驱动轮联动机构利用了同向等速的特点;路灯检修车的载人升斗利用了平动的特点,如图2-6a 、b)所示。
如图2-5b)为逆平行双曲柄机构,图2-1 雷达天线调整机构 图2-2 汽车雨刮器 图2-3 搅拌机图2-4 惯性筛工作机构具有两曲柄反向不等速的特点,车门的启闭机构利用了两曲柄反向转动的特点,如图2-6c)所示。
(3)双摇杆机构。
两根连架杆均只能在不足一周的围运动的铰链四杆机构称为双摇杆机构。
如图2-7所示为港口用起重机吊臂结构原理。
其中,ABCD 构成双摇杆机构,AD 为机架,在主动摇杆AB 的驱动下,随着机构的运动连杆BC 的外伸端点M 获得近似直线的水平运动,使吊重Q 能作水平移动而大大节省了移动吊重所需要的功率。
图2-8所示为电风扇摇头机构原理,电动机外壳作为其中的一根摇杆AB ,蜗轮作为连杆BC ,构成双摇杆机构ABCD 。
蜗杆随扇叶同轴转动,带动BC 作为主动件绕C 点摆动,使摇杆AB 带电动机及扇叶一起摆动,实现一台电动机同时驱动扇叶和摇头机构。
图2-9所示的汽车偏转车轮转向机构采用了等腰梯形双摇杆机构。
该机构的两根摇杆AB 、CD 是等长的,适当选择两摇杆的长度,可以使汽车在转弯时两转向轮轴线近似相交于其它两轮轴线延长线某点P ,汽车整车绕瞬时中心P 点转动,获得各轮子相对于地面作近似的纯滚动,以减少转弯时轮胎的磨损。
二、铰链四杆机构中曲柄存在的条件 1.铰链四杆机构中曲柄存在的条件铰链四杆机构的三种基本类型的区别在于机构中是否存在曲柄,存在几个曲柄。
机构中是否存在曲柄与各构件相对尺寸的大小以及哪个构件作机架有关。
可以证明,铰链四杆机构中存在曲柄的条件为:条件一:最短杆与最长杆长度之和不大于其余两杆长度之和。
条件二:连架杆或机架中最少有一根是最短杆。
2.铰链四杆机构基本类型的判别准则(1)满足条件一但不满足条件二的是双摇杆机构;(2)满足条件一而且以最短杆作机架的是双曲柄机构; (3)满足条件一而且最短杆为连架杆的是曲柄摇杆机构;图2-7 起重机吊臂结构原理图2-5 平行双曲柄机构图2-6 平行双曲柄机构的应用图2-9 汽车转向机构图2-8 电风扇摇头机构(4)不满足条件一是双摇杆机构。
【实训例2-1】 铰链四杆机构ABCD 如图2-10所示。
请根据基本类型判别准则,说明机构分别以AB 、BC 、CD 、AD 各杆为机架时属于何种机构。
解:经测量得各杆长度标于图2-10,分析题目给出铰链四杆机构知,最短杆为AD = 20,最长杆为CD = 55,其余两杆AB = 30、BC = 50。
因为 AD +CD = 20+55 = 75 AB +BC = 30+50 = 80 > L min +L max 故满足曲柄存在的第一个条件。
1)以AB 或CD 为机架时,即最短杆AD 成连架杆,故为曲柄摇杆机构;2)以BC 为机架时,即最短杆成连杆,故机构为双摇杆机构;3)以AD 为机架时,即以最短杆为机架,机构为双曲柄机构。
第二节 平面四杆机构的其它形式一、曲柄滑块机构在图2-11a )所示的铰链四杆机构ABCD 中,如果要求C 点运动轨迹的曲率半径较大甚至是C 点作直线运动,则摇杆CD 的长度就特别长,甚至是无穷大,这显然给布置和制造带来困难或不可能。
为此,在实际应用中只是根据需要制作一个导路,C 点做成一个与连杆铰接的滑块并使之沿导路运动即可,不再专门做出CD 杆。
这种含有移动副的四杆机构称为滑块四杆机构,当滑块运动的轨迹为曲线时称为曲线滑块机构,当滑块运动的轨迹为直线时称为直线滑块机构。
直线滑块机构可分为两种情况:如图2-11b )所示为偏置曲柄滑块机构,导路与曲柄转动中心有一个偏距e ;当e = 0即导路通过曲柄转动中心时,称为对心曲柄滑块机构,如图2-11c )所示。
由于对心曲柄滑块机构结构简单,受力情况好,故在实际生产中得到广泛应用。
因此,今后如果没有特别说明,所提的曲柄滑块机构即意指对心曲柄滑块机构。
应该指出,滑块的运动轨迹不仅局限于圆弧和直线,还可以是任意曲线,甚至可以是多种曲线的组合,这就远远超出了铰链四杆机构简单演化的畴,也使曲柄滑块机构的应用更加灵活、广泛。
图2-12所示为曲柄滑块机构的应用。
图2-12a )所示为应用于燃机、空压机、蒸汽机的活塞-连杆-曲柄机构,其中活塞相当于滑块。
图2-12b )所示为用于自动送料装置的曲柄滑块机构,曲柄每转一圈活塞送出一个工件。
当需要将曲柄做得较短时结构上就难以实现,通常采用图2-12c)所示的偏心轮机构,其偏心圆盘的偏心距e 就是曲柄的长度。
这种结构减少了曲柄的驱动力,增大了转动副的尺 图2-10图2-11 曲柄滑块机构图2-12 曲柄滑块机构的应用寸,提高了曲柄的强度和刚度,广泛应用于冲压机床、破碎机等承受较大冲击载荷的机械中。
二、导杆机构在对心曲柄滑块机构中,导路是固定不动的,如果将导路做成导杆4铰接于A 点,使之能够绕A 点转动,并使AB 杆固定,就变成了导杆机构,如图2-13所示。
当AB <BC 时,导杆能够作整周的回转,称旋转导杆机构,如图2-13a =所示。
当AB >BC 时导杆4只能作不足一周的回转,称摆动导杆机构,如图2-13b)所示。
导杆机构具有很好的传力性,在插床、刨床等要求传递重载的场合得到应用。
如图2-14a)所示为插床的工作机构,如图2-14b)所示为牛头刨床的工作机构。
三、摇块机构和定块机构在对心曲柄滑块机构中,将与滑块铰接的构件固定成机架,使滑块只能摇摆不能移动,就成为摇块机构,如图2-15a)所示。
摇块机构在液压与气压传动系统中得到广泛应用,如图2-15b)所示为摇块机构在自卸货车上的应用,以车架为机架AC ,液压缸筒3与车架铰接于C 点成摇块,主动件活塞及活塞杆2可沿缸筒中心线往复移动成导路,带动车箱1绕A 点摆动实现卸料或复位。
将对心曲柄滑块机构中的滑块固定为机架,就成了定块机构,如图2-16a)所示。
图2-16b)为定块机构在手动唧筒上的应用,用手上下扳动主动件1,使作为导路的活塞及活塞杆4沿唧筒中心线往复移动,实现唧水或唧油。
表2-1给出了铰链四杆机构及其演化的主要型式对比。
图2-13 导杆机构图2-14 导杆机构的应用图2-15 摇块机构及其应用图2-16定块机构及其应用所示的曲柄摇杆机构中,设曲柄AB 为主动件。
曲柄在旋转过程中每周有两次与连杆重叠,如图2-17中的B 1AC 1和AB 2C 2两位置。
这时的摇杆位置C 1D 和C 2D 称为极限位置,简称极位。
C 1D 与C 2D 的夹角ϕ称为最大摆角。
曲柄处于两极位AB 1和AB 2的夹角锐角θ称为极位夹角。
设曲柄以等角速度ω1顺时针转动,从AB 1转到AB 2和从AB 2到AB 1所经过的角度为(π+θ)和(π-θ),所需的时间为t 1和t 2 ,相应的摇杆上C 点经过的路线为C 1C 2弧和C 2C 1弧,C 点的线速度为v 1和v 2 ,显然有t 1>t 2 ,v 1<v 2 。
这种返回速度大于推进速度的现象称为急回特性,通常用v 1与v 2的比值K 来描述急回特性,K 称为行程速比系数,即K =θθ-+===002111222112180180//t t t C C t C C v v (2-1) 或有 111800+-=K K θ (2-2)可见,θ越大K 值就越大,急回特性就越明显。
在机械设计时可根据需要先设定K 值,然后算出θ值,再由此计算得各构件的长度尺寸。
急回特性在实际应用中广泛用于单向工作的场合,使空回程所花的非生产时间缩短以提高生产率。
例如牛头刨床滑枕的运动。
二、传力特性1.压力角和传动角表2-1 铰链四杆机构及其演化主要形式对比固定构件铰链四杆机构含一个移动副的四杆机构(e =0)4曲柄摇 杆机构曲柄滑 块机构1双曲柄 机构转动导 杆机构2曲柄摇 杆机构摇块 机构摆动导 杆机构3双摇杆 机构定块 机构图2-18 曲柄摇杆机构的压力角和传动角图2-17 曲柄摇杆机构的运动特性在工程应用中连杆机构除了要满足运动要求外,还应具有良好的传力性能,以减小结构尺寸和提高机械效率。
下面在不计重力、惯性力和摩擦作用的前提下,分析曲柄摇杆机构的传力特性。
如图2-18所示,主动曲柄的动力通过连杆作用于摇杆上的C 点,驱动力F 必然沿BC 方向,将F 分解为切线方向和径向方向两个分力F t 和F r ,切向分力F t 与C 点的运动方向v c 同向。
由图知F t = F αcos 或 F t = F γsinF r = F γsin 或 F r = F αcosα角是F t 与F 的夹角,称为机构的压力角,即驱动力F 与C 点的运动方向的夹角。
α随机构的不同位置有不同的值。