6 平面四杆机构解析
- 格式:ppt
- 大小:1.87 MB
- 文档页数:53
平面四杆机构的基础知识曲柄杆长条件:最短杆与最长杆这和小于其他两杆长度之和最短杆为机架时----双曲柄最短杆为连架杆-----曲柄摇杆机构最短杆为连杆-------双摇杆机构行程速比系数=180+A/180-A A位极位夹角K值越大,机构的急回特性越显著。
曲柄与机架共线时曲柄摇杆机构中传动角最小压力角和传动角存在曲柄的必要条件:满足感长条件最短杆为机架或连架杆死点压力角=90度存在死点的条件是尖顶实际轮廓=理论轮廓滚子互为法向等距曲线基圆:中心到理论轮廓的最小距离压力角:从动件受力方向与速度方向的夹角压力角越小越好基圆半径越小,压力角越大凸轮机构中等速运动规律(刚性冲击)等加速运动等减速运动(柔性冲击)余弦加速运动(柔性冲击)凸轮轮廓曲线设计:1、基圆2、偏心圆3、做偏心圆的切线4、在切线自基圆量取从动件的位移量看压力角的标注从动件受力方向与速度方向的夹角斜齿轮正确啮合的条件、模数压力角螺旋角匹配标准参数取在法面上几何尺寸计算在端面渐开线齿轮切制分为仿形法和展成法齿形系数YFa只与齿数有关与修正系数P89小齿轮的弯曲应力大于大齿轮的弯曲应力大齿轮的弯曲强度大于小齿轮的弯曲强度一对齿轮的接触应力是相等的(作用力与反作用力),小齿轮的分度圆直径和中心距决定齿面接触疲劳强度不发生跟切得最少齿数p81渐开线曲率半径(渐开线离基圆越近,曲率半径越小,渐开线月弯曲渐开线离基圆越近,压力角越小轮齿折断一般发生在齿根疲劳点蚀首先出现在节线附近的齿根面上(闭式软齿面齿轮传动中)齿面磨损是开式齿轮传动的主要失效形式齿面胶合出现在高速重仔的闭式齿轮传动中齿面塑性变形出现在低速重载或濒繁起动的软齿面齿轮传动中斜齿轮弯曲强度计算应按当量齿数查修正系数和齿形系数分度圆和节圆半径在标准圆柱齿轮中相等啮合角就是齿轮在节圆处的压力角避免因装配误差使齿轮产生轴向错位导致实际齿宽减小。
第二章平面连杆机构2.1 平面四杆机构的基本形式铰链四杆机构所有运动副均为转动副的四杆机构称为铰链四杆机构,它是平面四杆机构的基本形式,其他四杆机构都可以看成是在它的基础上演化而来的。
选定其中一个构件作为机架之后,直接与机架链接的构件称为连架杆,不直接与机架连接的构件称为连杆,能够做整周回转的构件被称作曲柄,只能在某一角度范围内往复摆动的构件称为摇杆。
在铰链四杆机构中,有的连架杆能做整周转动,有的则不能,两构件的相对回转角为360 º的转动副称为整转副。
整转副的存在是曲柄存在的必要条件,按照连架杆是否可以做整周转动,可以将其分为三种基本形式,即曲柄摇杆机构,双曲柄机构和双摇杆机构。
曲柄摇杆机构铰链四杆机构的两个连架杆中若一个为曲柄,另一杆为摇杆,则此机构称为曲柄摇杆机构。
曲柄摇杆机构的功能是:将转动转换为摆动,或将摆动转换为转动。
图2-1 铰链四杆机构(2)双曲柄机构铰链四杆机构的两个连架杆若都是曲柄,则为双曲柄机构。
在双曲柄机构中,常见的还有正平行四边形机构(又称正平行双曲柄机构)和反平行四边形机构(又称反平行双曲柄机构)。
双曲柄机构的功能是:将等速转动转换为等速同向、不等速同向、不等速反向等多种转动。
图2-2 平行四边形机构图2-3 双摇杆机构双摇杆机构铰链四杆机构的两个连架杆都是摇杆,则称为双摇杆机构。
双摇杆机构的功能是:将一种摆动转换为另一种摆动。
图2-4 双摇杆机构图2-5 鹤式起重机2.2 铰链四杆机构中曲柄存在的条件在铰链四杆机构中,有的连架杆能做整周转动,有的则不能。
两构件的相对回转角为360º的转动副为整转副。
整转副的存在条件是曲柄存在的必要条件,而铰链四杆机构三种基本形式的区别在于机构中是否存在曲柄和有几个曲柄,为此,需要明确整转副和曲柄存在的条件。
(1)整转副存在的条件——长度条件铰链四杆机构中有四个转动副,其能否做整周转动,取决于四构件的相对长度。
在铰链四杆机构中,若最长构件长度lmax与最短构件长度lmin之和小于或等于其余两构件长度之和(其余两构件长度分别为l1、l2),则该机构中必存在整转副,且最短构件两端的转动副为整转副。
平面四杆机构动力学分析平面四杆机构是一种常用的机构形式,它由四个连杆构成,每个连杆的两个端点分别与两个固定点和两个动点连接。
平面四杆机构广泛应用于工程和机械领域,如发动机连杆机构、机床传动机构等。
在对平面四杆机构进行动力学分析时,需要考虑连杆的运动学特性以及受力情况,以求得机构的运动学和动力学性能参数。
本文将介绍平面四杆机构动力学分析的基本方法和步骤。
首先,对平面四杆机构进行运动学分析,即确定连杆的几何参数和运动特性。
通过连杆的长度、角度和位置关系,可以建立连杆运动学方程。
平面四杆机构一般有两个输入连杆和两个输出连杆,输入连杆一般由驱动源(如电机)控制,输出连杆用于传递或产生所需的运动。
其次,根据连杆的几何关系和运动学方程,可以推导得到平面四杆机构的速度和加速度方程。
速度方程描述了各连杆的速度与输入连杆的关系,加速度方程描述了各连杆的加速度与输入连杆的关系。
通过求解速度和加速度方程,可以得到每个连杆的线速度和角速度,以及各连杆的线加速度和角加速度。
接下来,进行平面四杆机构的力学分析。
根据连杆的几何关系和受力分析,可以推导得到每个连杆的力学方程。
力学方程描述了各连杆受到的力和力矩与其他连杆的关系。
通过求解力学方程,可以得到每个连杆的受力和力矩大小以及方向,以及各连杆之间的力传递关系。
最后,根据连杆的运动学和力学特性,可以得到平面四杆机构的动力学性能参数,如位置、速度和加速度的关系、力和力矩的大小和方向等。
这些参数可以用于分析机构的运动和受力情况,并进一步优化设计。
需要注意的是,平面四杆机构的动力学分析是一个复杂的过程,需要考虑各连杆之间的相互作用和约束条件。
同时,还需要考虑连杆的质量和惯量等因素,以求得更精确的分析结果。
因此,在实际应用中,常采用计算机辅助分析方法,如数值模拟和仿真技术,以提高分析的准确性和效率。
综上所述,平面四杆机构的动力学分析是一项重要的工作,对于优化设计和性能评估具有重要意义。
3.4 图解法设计平面四杆机构3.4.1按连杆位置设计四杆机构1.给定连杆的三个位置给定连杆的三个位置设计四杆机构时,往往是已知连杆B C的长度L B C和连杆的三个位置B1C1和B2C2和B3C3时,怎样设计四杆机构呐?图解过程。
::1::::2::2.给定连杆的两个位置给定连杆的两个位置B1C1和B2C2时与给定连杆的三个位置相似,设计四杆机构图解过程如下。
①选定长度比例尺绘出连杆的两个位置B1C1、B2C2。
②连接B1B2、C1C2,分别作线段B1B2和C1C2的垂直平分线B12和C12,分别在B12和C12上任意取A,D两点,A,D两点即是两个连架杆的固定铰链中心。
连接A B1、C1D、B1C1、A D,A B1C1D即为所求的四杆机构。
③测量A B1、C1D、A D计算l A B、L C D L A D的长度,由于A点可任意选取,所以有无穷解。
在实际设计中可根据其他辅助条件,例如限制最小传动角或者A、D的安装位置来确定铰链A、D的安装位置。
例设计一振实造型机的反转机构,要求反转台8位于位置Ⅰ(实线位置)时,在砂箱7内填砂造型振实,反转台8反转至位置Ⅱ(虚线线位置)时起模,已知连杆B C长0.5m和两个位置B1C1、B2C2.。
要求固定铰链中心A、D在同一水平线上并且A D=B C。
自己可以试着在纸上按比例作出图形,再求出各杆长度。
若想对答案请点击例题祥解3.4.2 按行程速度变化系数设计四杆机构1.设计曲柄摇杆机构按行程速度变化系数K设计曲柄摇杆机构往往是已知曲柄机构摇杆L3的长度及摇杆摆角ψ和速度变化系数K。
怎样用作图法设计曲柄摇杆机构?2.设计曲柄摆动导杆机构已知机架长度l4和速度变化系数K,设计曲柄导杆机构。
①求出极位夹角②根据导杆摆角ψ等于曲柄极位夹角θ,任选一点C后可找出导杆两极限C m、C n。
③作∠M C N的角评分线,取C A=,得到A点,过A点作C m和C n的垂线B1和B2两点,A B1(或A B2)即为曲柄。
实验六平面四杆机构实验一、实验目的1.了解曲柄摇杆机构和曲柄滑块机构位移、速度、加速度的变化规律;2.了解位移、速度、加速度的测定方法;3.增加对两种机构的运动规律的感性认识;4.比较曲柄(导杆)摇杆机构与曲柄(导杆)滑块两种机构的性能差别。
二、实验设备及工具1.QY-I曲柄(导杆)摇杆机构实验台;2.QH-I曲柄(导杆)滑块机构实验台;3.活动扳手,固定扳手,内六角扳手,螺丝刀,钢直尺。
三、实验台机械结构1.曲柄(导杆)摇杆机构实验台:图1如图1所示,其机构由曲柄、导杆、连杆、摇杆机构组成,其尺寸均可调。
可拼装曲柄摇杆机构,其底板在水平方向与机架构成一弹性系统,通过对水平方向振动变化的测试,可了解机构惯性力对机架振动的影响。
各构件长度可调范围如下:曲柄:20——60 ㎜导杆:0——50 ㎜连杆:0——220 ㎜摇杆:0——150 ㎜2.曲柄(导杆)滑块机构实验台图2如图2所示:其机构由曲柄、导杆、连杆、滑块组成,长度尺寸均可调节,可拼曲柄(导杆)滑块机构。
其联接结构与曲柄(导杆)摇杆机构相同,底板与机架的支承方式也相同。
各构件长度调节范围如下:曲柄:0——60 ㎜导杆:0——150 ㎜连杆:0——220 ㎜滑块偏心距:0——10 ㎜四、实验内容与步骤(一)系统联接及启动1.连接通讯线本实验必须通过计算机来完成。
将计算机串行口,通过标准的通讯线,连接到实验仪背面的接口。
2.打开实验软件,熟悉软件界面及各项操作的功能。
(可参阅操作系统软件简介)(二)组合机构实验操作(1)观察曲柄(导杆)摇杆机构,记录机构参数。
(2)打开实验仪上的电源,此时带有LED 数码管显示的面板上将显示"0"。
(3)启动曲柄(导杆)摇杆机构,在机构电源接通前应将电机调速电位器逆时针旋转至最低速位置,然后接通电源,并顺时针转动调速电位器,使转速逐渐加至每分 40 转,注意显示面板上实时显示曲柄轴的转速。
(4)机构运转正常后,在软件界面右侧的采样参数选择区内选择相应的采样方式和采样常数。
平面四杆机构的类型,特点及应用概念平面四杆机构是一种重要的机械构件,具有固定点簇、连杆及活动点簇等关键组成部分。
根据不同的连接方式和功能需求,平面四杆机构可以分为平行四杆机构、菱形四杆机构、双曲线四杆机构、半圆四杆机构等多种类型。
下面本文将对这些机构类型的特点及应用进行相关介绍。
一、平行四杆机构平面四杆机构中的平行四杆机构,最为常见。
平行四杆机构由两对等长连杆组成,各自平行滑动,所以叫做平行四杆机构。
平行四杆机构的特点是连接点严格固定,适合转动相同方向的连续运动,如车床上的顶轴和平面磨床的进给机构就采用了平行四杆机构。
二、菱形四杆机构菱形四杆机构是由一对等长的对边固定的菱形和一对等长杆件组成的机构。
其中,两个杆件与菱形的对角线相连,另外两个杆件则与菱形两条平行线相连。
通过这样的联结方式,菱形四杆机构可以实现不同方向的运动,如旋钮开关,废乳机械的减速机构等都采用了菱形四杆机构。
三、双曲线四杆机构双曲线四杆机构是由双曲面、两个相交的固定点、两个关节和两个等长杆组成的平面四杆机构,主要是用来实现一定的负载传递和动力,例如工件阻力和重力等。
双曲线四杆机构的优点在于具有一定的自适应能力,可以自动调整杆长度,达到更稳定的运动效果。
应用领域包括夹持,钻床等。
四、半圆四杆机构半圆四杆机构是由两条半圆弧及两对连杆构成的平面四杆机构。
通过调整连接点的位置及杆长度,可以实现转轴轨迹的变化。
半圆四杆机构在工业生产中被广泛应用,如水平挖掘机,转子泵等。
在应用平面四杆机构的过程中,大多数机构的运动往往还需要与其它机构进行配合才能实现更复杂多变的功能。
此外在机器人领域中,四杆机构也得到了广泛应用,如各类机器人的手臂,就是利用四杆机构的特性来完成精细灵活的动作。
总的来说,平面四杆机构是机械领域中一类非常基础且重要的构件。
通过不同的连接方式和调整,可以实现多样化的运动功能,并被广泛应用在工业生产及机器人领域中。
第三章 平面四杆机构的设计§3—1 平面连杆机构的特点、类型及应用1.1 概 述连杆机构:各构件之间用低副和刚性构件连接起来实行运动传递的机构。
如图2-1 分为平面连杆机构和空间连杆机构 。
连杆机构由连架杆,连杆和机架组成。
平面连杆机构的特点:1.2平面连杆机构的基本类型和结构特点:由于连杆机构的构件一般呈杆状,也以其构件的数量称为多杆机构。
平面杆机构是最基本最常用的连杆机构。
1.2.1 平面连杆机构的基本类型:1) 曲柄摇杆机构 2)双曲柄机构 3)双摇杆机构 1.2.2 平面连杆机构演化 1) 转动副转化为移动副 2)取不同的构件为机架 3)变换构件的形态 4)扩大转动副的尺寸§3—2 平面连杆机构的运动特性2.1平面连杆机构的运动特性:(1Grashoff 定理(简称曲柄存在条件):如图示a + d ≤b + cb ≤ d – a +c c ≤d – a + b a ≤ c a + b ≤ c + da ≤b a +c ≤ b +d a ≤ d a + d ≤ b + c在全铰链四杆机构中,如果最短杆与最长杆杆长之和小于或等于其余两杆杆长之和,则必然存在作整周转动的构件。
若不满足上述条件,即最短杆与最长杆杆长之和大于其余两杆杆长之和,则不存在作整周转动的构件。
(2)四杆机构从动件的急回特性:如图示四杆机构从动件的回程所用时间小于工作行程所用的时间,称为该机构急回特性。
急回特性用行程速比系数K 表示。
212112ϕϕ===t t v v K极位夹角θ—— 从动摇杆位于两极限位置时,原动件两位置所夹锐角。
θ越大,K 越大,急回特性越明显。
§3—3 平面连杆机构的传力特性3.1. 传动角与压力角:如图示在机构处于某一定位置时,从动件上作用力与作用点绝对速度方向所夹的锐角 α 称为压力角。
压力角的余角 γ( γ = 90°— α) 作为机构的传力特性参数,故称为传动角。
工程力学中的平面四杆机构的力学分析工程力学中,机构是指由若干构件组成的结构,能够实现特定功能的装置。
平面四杆机构是一种常见且重要的机构,在众多工程应用中发挥着重要作用。
本文将对平面四杆机构的力学分析进行详细探讨,以便更好地理解和应用于实际工程设计中。
1. 平面四杆机构的定义和基本结构平面四杆机构由四根杆件和若干铰链连接而成,其中两根杆件称为主杆件,另外两根杆件称为从杆件。
主杆件与从杆件分别通过两个固定的铰链连接,形成一个封闭的链环结构。
平面四杆机构的基本结构如图1所示。
[插入图1平面四杆机构的基本结构]2. 平面四杆机构的运动约束条件由于铰链的特性,平面四杆机构具有一定的运动约束条件。
根据实际应用需求,平面四杆机构可以实现以下几种运动:2.1 行走机构行走机构是平面四杆机构的一种常见运动模式,用于实现直线行走。
在行走机构中,主杆件沿着一条直线路径移动,从而驱使从杆件实现步进运动。
该机构常用于工程设备的行走机构中,如履带式输送机等。
2.2 摇摆机构摇摆机构是平面四杆机构的另一种典型运动形式,用于实现往复摆动。
在摇摆机构中,主杆件通过旋转,引导从杆件做往复运动。
摇摆机构广泛应用于水泵、风扇等设备中,实现节律性的液体或气体输送。
2.3 连杆机构连杆机构是平面四杆机构中的一种特殊形式,用于实现固定长短的连杆运动。
主杆件和从杆件的长度可以通过调整来改变杆件的运动轨迹和速度,进而实现对工程装置的精确操控。
3. 平面四杆机构的力学分析方法为了更好地理解和应用平面四杆机构,需要进行力学分析,以确定各杆件之间的力学关系。
以下是常用的几种力学分析方法:3.1 克氏图法克氏图法是一种常用的力学分析方法,利用平面四杆机构的平面图形,推导出杆件之间的运动学方程和力学方程。
通过解这些方程组,可以得到各杆件的位置、速度、加速度以及承受的力。
3.2 动力学分析动力学分析是在运动学基础上,研究机构内各杆件所受力的分布和大小。
通过应用牛顿第二定律和动量守恒定律,可以推导出杆件的受力情况和所需的驱动力。