机械设计教程-二、平面连杆机构-工程
- 格式:docx
- 大小:20.08 KB
- 文档页数:7
机械设计基础平面连杆机构1. 介绍平面连杆机构是机械设计中常见的一种机械结构,由若干杆件组成并通过铰链连接。
这种机构广泛应用于各种机械装置和系统中,如发动机、机械手等。
平面连杆机构的设计目标是通过合理配置连杆的长度和铰链位置来实现特定的运动,使它能够完成所需的工作。
在设计过程中,需要考虑机构的稳定性、刚度、运动路径等因素,以确保机构能够正常运行并满足设计要求。
本文将介绍平面连杆机构的基本原理、设计要点和常见应用实例。
2. 基本原理平面连杆机构的基本原理是利用杆件的长度和铰链的位置,通过特定的连杆结构来实现机构的运动。
2.1 连杆连杆是平面连杆机构中的主要组成部分,通常由刚性材料制成。
连杆通过铰链连接在一起,形成一个闭合的结构。
连杆的长度和形状对机构的运动特性有重要影响。
常见的连杆形状有直杆、曲杆和弧杆等。
在设计时,需要根据具体的运动要求和空间限制选择适当的连杆形状和长度。
2.2 铰链铰链是连杆机构中的连接件,用于连接连杆并允许相对运动。
铰链通常由轴和轴承组成,能够实现转动或滑动运动。
铰链的位置对机构的运动轨迹和运动范围有决定性影响。
在设计时,需要合理选择铰链的位置和类型,以满足设计要求。
3. 设计要点3.1 运动要求在设计平面连杆机构时,首先需要明确机构的运动要求。
例如,需要确定机构的运动类型(旋转、直线、滑动等)、运动范围、速度和加速度等。
这些要求将指导后续的连杆和铰链的设计。
3.2 连杆长度连杆的长度直接决定机构的运动幅度和工作空间。
在设计时,需要根据运动要求和空间限制选择合适的连杆长度。
较短的连杆长度可提高机构的刚度和稳定性,但限制了运动范围;较长的连杆长度可以实现更大的运动幅度,但可能会导致机构不稳定。
3.3 铰链位置铰链的位置是机构设计中的关键因素之一,它直接影响机构的运动轨迹和运动范围。
在选择铰链位置时,需要考虑到机构的运动要求、连杆长度以及其他约束条件,以实现所需的运动轨迹。
3.4 负载和刚度在设计平面连杆机构时,需要考虑机构受到的负载和所需的刚度。
第2章平面连杆机构2.1平面连杆机构的特点和应用连杆机构是由若干刚性构件用低副连接组成的机构,又称为低副机构。
在连杆机构中,若各运动构件均在相互平行的平面内运动,称为平面连杆机构;若各运动构件不都在相互平行的平面内运动,则称为空间连杆机构。
平面连杆机构被广泛应用在各类机械中,之所以广泛应用,是因为它有较显著的优点:(1)平面连杆机构中的运动副都是低副,其构件间为面接触,传动时压强较小,便于润滑,因而磨损较轻,可承受较大载荷。
(2)平面连杆机构中的运动副中的构件几何形状简单(圆柱面或平面),易于加工。
且构件间的接触是靠本身的几何约束来保持的,所以构件工作可靠。
(3)平面连杆机构中的连杆曲线丰富,改变各构件的相对长度,便可使从动件满足不同运动规律的要求。
另外可实现远距离传动。
平面连杆机构也存在一定的局限性,其主要缺点如下:(1)根据从动件所需要的运动规律或轨迹设计连杆机构比较复杂,精度不高。
(2)运动时产生的惯性力难以平衡,不适用于高速的场合。
(3)机构中具有较多的构件和运动副,则运动副的间隙和各构件的尺寸误差使机构存在累积误差,影响机构的运动精度,机械效率降低。
所以不能用于高速精密的场合。
平面连杆机构具有上述特点,所以广泛应用于机床、动力机械、工程机械等各种机械和仪表中。
如鹤式起重机传动机构(图2-1),摇头风扇传动机构(图2-2)以及缝纫机、颚式破碎机、拖拉机等机器设备中的传动、操纵机构等都采用连杆机构。
图2-1鹤式起重机图2-2 摇头风扇传动机构2.2平面连杆机构的类型及其演化2.2.1 平面四杆机构的基本形式全部用转动副组成的平面四杆机构称为铰链四杆机构,如图2-3所示。
机构的固定件4称为机架;与机架相联接的杆1和杆3称为连架杆;不与机架直接联接的杆2称为连杆。
能作整周转动的连架杆,称为曲柄。
仅能在某一角度摆动的连架杆,称为摇杆。
按照连架杆的运动形式,将铰链四杆机构分为三种基本型式:曲柄摇杆机构、双曲柄机构和双摇杆机构。
机械原理与设计平面连杆机构引言连杆机构是机械工程中非常重要的一类机构,广泛应用于各种机械装置中。
平面连杆机构是其中最简单、常见的一种连杆机构。
本文将介绍机械原理与设计平面连杆机构的基本概念、工作原理及设计要点。
一、连杆机构的基本概念连杆机构是指由刚性杆件连接而成的机械系统,它具有一定的自由度和特定的运动特性。
平面连杆机构是指所有杆件均在同一平面内运动的连杆机构。
平面连杆机构由连杆、铰链和主动副组成。
连杆:连杆是连接其他杆件的刚性杆件,具有一定的长度和形状。
铰链:铰链是连接连杆的关节,它允许连杆相对旋转,保持一定的约束。
主动副:主动副是指能够驱动整个机构运动的关节,通常由电机或气动装置驱动。
二、平面连杆机构的工作原理平面连杆机构的工作原理是利用连杆的长度、角度和铰链的位置来实现特定的运动。
在平面连杆机构中,主要有以下几种常见的运动形式:1.顺序运动:当主动副驱动时,各个连杆按照一定的顺序依次运动。
这种运动形式常见于内燃机的活塞连杆机构。
2.并联运动:当多个连杆同时受到主动副驱动时,它们以同步的方式进行运动。
这种运动形式可以用来实现机械手臂等装置的运动。
3.逆运动:当主动副驱动时,连杆和铰链的位置发生变化,使机构实现逆向运动。
这种运动形式常见于一些特殊装置的设计。
平面连杆机构的工作原理和运动形式可以通过机械原理的分析和运动学的计算来实现。
其中,机械原理用来推导连杆运动的基本方程,而运动学则用来分析连杆机构的运动特性和运动关系。
三、平面连杆机构的设计要点在设计平面连杆机构时,需要考虑以下几个要点:1.运动要求:根据具体的工作要求,确定机构需要实现的运动形式和工作速度等指标。
2.运动范围:根据工作空间和杆件的长度等约束条件,确定连杆机构的运动范围。
3.结构强度:根据承载力和杆件的材料等因素,设计连杆机构的结构强度和刚度,以确保机构的正常工作。
4.运动平稳性:通过运动学计算和动力学分析,确定机构的运动是否平稳,以及如何减小振动和冲击力。
2.6设计一偏置曲柄滑块机构。
已知滑块的行程H =50mm ,行程速比系数K =1.5,导路的偏距e =20mm 。
试求曲柄的长度l AB 和连杆的长度l BC ,并求作最大压力角αmax 。
解:行程速比系数K=1.5,则机构的极位夹角为︒=+-︒=+-︒=3615.115.118011180K K θ选定作图比例,先画出滑块的两个极限位置C 1和C 2,再分别过点C 1、C 2作与直线成︒=-︒5490θ的射线,两射线将于点O 。
以点O 为圆心,OC 2为半径作圆,最后再作一条与直线C 1C 2相距为mm e 20=的直线,该直线与先前所作的圆的交点就是固定铰链点A。
作图过程如题2.6图所示。
直接由图中量取mm AC 251=,mm AC 682=,所以曲柄AB 的长度为mm AC AC l AB 5.2122568212=-=-=连杆BC 的长度为mm AC AC l BC 5.4622568221=+=+=2.7试设计一曲柄摇杆机构,已知行程速比系数K =1.2,摇杆长L CD =300mm ,其最大摆2B 1B 2C 1C Aeθ21C C θ-︒90题2.6图O角ψmax =35°,曲柄长L AB =80mm 。
求连杆长L BC ,并验算最小传动角γmin 是否在允许的范围内。
解:简要作图步骤:作圆η。
以O 为圆心,OC 1为半径作圆,再以C 2为圆心,2l AB 为半径作圆,两圆交于S 点;●连接C 2S 延长交圆η于A 点;❍⏹机构在AB ′C′D 位置时有γmin =430<[γ]2.8图所示为脚踏轧棉机的曲柄摇杆机构。
铰链中心A 、B 在铅垂线上,要求踏板DC 在水平位置上下各摆动10°,且l DC =500mm ,l AD =1000mm 。
试求曲柄AB 和连杆BC 的长度l AB 和l BC ,并画出机构的止点位置。
mmml 005.0=μ20125.1125.118011180=+-=+-=θK K η212AC AC AB l l l -=212AC AC BC l l l +=D1C 2C ψA1B 2B Pθθ- 90SminγB 'C 'O解:1取长度比例尺做机构图mmmml20=μ()()mmAC AC l l AB752205.5260212=-=-=μ()()mmAC AC l l BC11252202.5260212=+=+=μ2.9图所示为一实验用小电炉的炉门装置,在关闭时为位置E 1,开启时为位置E 2,试设计一四杆机构来操作炉门的启闭(各有关尺寸见图)。
机械设计教程-二、平面连杆机构-工程
第二章平面连杆机构
一、定义:
若干构件通过低副(转动副或移动副)联接所组成的机构称作连杆机构,。
动副)联接所组成的机构称作连杆机构。
连杆机构中各构件的相对运动是平面运动还是空间运动,连杆机构又可以分为平面连杆机构和空间连杆机构。
平面连杆机构是由若干构件用平面低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。
§2.1平面四杆机构的类型及应用
2.1平面四杆机构的类型及应用
在此机构中,AD固定不动,称为机架;AB、CD两构件与机架组成转动副,称为连架杆;BC称为连杆。
在连架杆中,能作整周回转的构件称为曲柄,而只能在一定角度范围内摆动的构件称为摇杆。
一、铰链四杆机构基本类型
根据机构中有无曲柄和有几个曲柄,铰链四杆机构又有三种基本形式:
1.曲柄摇杆机构
:两连架杆中一个为曲柄而另一个为摇杆的机构。
雷达调整机构
缝纫机踏板机构
当曲柄为原动件时,可将曲柄的连续转动转变为摇杆的往复摆动,如图中的雷达天线机构;反之,当摇杆为原动件时,可将摇杆的往复摆动转变为曲柄的整周转动,如图所示的缝纫机踏板。
2.双曲柄机构
:两连架杆均为曲柄的四杆机构。
可将原动曲柄的等速转动转换成从动曲柄的等速或变速转动,如图所示的惯性筛驱动机构;
构的相对两杆平行且相等时,则成为平行四边形机构,如图所示。
注意:平行四边形机构在运动过程中,当两曲柄与机架共线时,在原动件转向不变、转速恒定的条件下,从动曲柄会出现运动不确定现象。
可以在机构中添加飞轮或使用两组相同机构错位排列。
3.双摇杆机构
.双摇杆机构
:两连架杆都是摇杆的机构,如图所示的鹤式起重机构,保证货物水平移动。
二、机构的演化
机构的演化方法有三种:
1)通过改变构件的形状和相对尺寸进行演化,如图2—8的演化;
2)通过改变运动副尺寸进行演化;
3)通过选用不同构件作为机架进行演化。
1.滑块机构
如图所示,当构件1能整周回转成为曲柄时,该机构称为曲柄滑块机构;否则该机构称为摆杆滑块机构。
2.导杆机构
在图a所示的对心曲柄滑块机构中,若改取构件1为机架,则机构演化为导杆机构。
图b。
3.曲柄摇块与曲柄转块机构
.曲柄摇块与曲柄转块机构
在图a中若改取构件2为机架,当l1< l2时,随构件1的转动,滑块3只在一定角度范围内摆动,该构件称为曲柄摇块机构;当l1> l2时,则滑块3可作整周转动,我们称为曲柄转块机构。
4.移动导杆机构
.移动导杆机构
在图a中,如取滑块3为机架,则该机构演化成移动导杆机构
§2.3四杆机构特性
四杆机构特性一、四杆机构存在曲柄的条件
铰链四杆机构的三种基本型式的区别在于它的连架杆是否为曲柄。
而且一般原动件为曲柄。
而在四杆机构中是否存在曲柄,取决于机构中各构件间的相对尺寸关系。
设a’和AB”。
由图可见,为使AB杆能转至位置AB’,各杆长度应满足:
第二章平面连杆机构
一、定义:
若干构件通过低副(转动副或移动副)联接所组成的机构称作连杆机构。
动副)联接所组成的机构称作连杆机构。
连杆机构中各构件的相对运动是平面运动还是空间运动,连杆机构又可以分为平面连杆机构和空间连杆机构。
平面连杆机构是由若干构件用平面低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。
§2.1平面四杆机构的类型及应用
2.1平面四杆机构的类型及应用
在此机构中,AD固定不动,称为机架;AB、CD两构件与机架组成转动副,称为连架杆;BC称为连杆。
在连架杆中,能作整周回转的构件称为曲柄,而只能在一定角度范围内摆动的构件称为摇杆。
一、铰链四杆机构基本类型
根据机构中有无曲柄和有几个曲柄,铰链四杆机构又有三种基本形式:
1.曲柄摇杆机构
:两连架杆中一个为曲柄而另一个为摇杆的机构。
雷达调整机构
缝纫机踏板机构
当曲柄为原动件时,可将曲柄的连续转动转变为摇杆的往复摆动,如图中的雷达天线机构;反之,当摇杆为原动件时,可将摇杆的往复摆动转变为曲柄的整周转动,如图所示的缝纫机踏板。
2.双曲柄机构
:两连架杆均为曲柄的四杆机构。
可将原动曲柄的等速转动转换成从动曲柄的等速或变速转动,如图所示的惯性筛驱动机构;
构的相对两杆平行且相等时,则成为平行四边形机构,如图所示。
注意:平行四边形机构在运动过程中,当两曲柄与机架共线时,在原动件转向不变、转速恒定的条件下,从动曲柄会出现运动不确定现象。
可以在机构中添加飞轮或使用两组相同机构错位排列。
3.双摇杆机构
.双摇杆机构
:两连架杆都是摇杆的机构,如图所示的鹤式起重机构,保证货物水平移动,
工程
《机械设计教程-二、平面连杆机构》(https://www.)。
二、机构的演化
机构的演化方法有三种:
1)通过改变构件的形状和相对尺寸进行演化,如图2—8的演化;
2)通过改变运动副尺寸进行演化;
3)通过选用不同构件作为机架进行演化。
1.滑块机构
如图所示,当构件1能整周回转成为曲柄时,该机构称为曲柄滑块机构;否则该机构称为摆杆滑块机构。
2.导杆机构
在图a所示的对心曲柄滑块机构中,若改取构件1为机架,则机构演化为导杆机构。
图b。
3.曲柄摇块与曲柄转块机构
.曲柄摇块与曲柄转块机构
在图a中若改取构件2为机架,当l1< l2时,随构件1的转动,滑块3只在一定角度范围内摆动,该构件称为曲柄摇块机构;当
l1> l2时,则滑块3可作整周转动,我们称为曲柄转块机构。
4.移动导杆机构
.移动导杆机构
在图a中,如取滑块3为机架,则该机构演化成移动导杆机构
§2.3四杆机构特性
四杆机构特性一、四杆机构存在曲柄的条件
铰链四杆机构的三种基本型式的区别在于它的连架杆是否为曲柄。
而且一般原动件为曲柄。
而在四杆机构中是否存在曲柄,取决于机构中各构件间的相对尺寸关系。
设a’和AB”。
由图可见,为使AB杆能转至位置AB’,各杆长度应满足:
a+d ≤ b+c ①
而为使AB杆能转至AB”,各杆长度关系应满足b ≤ (d-a)+c c ≤ (d-a)+b
可得: a+b ≤ d+c ②
a+c ≤d+b③
由①②③可以得出铰链四杆机构曲柄存在条件为:
1)连架杆和机架中必有一杆是最短杆;
2)最短杆与最长杆长度之和小于或等于其它两杆长度之和。
(称为杆长条件)
上述两个条件必须同时满足,否则机构不存在曲柄。
二、急回特性和行程速比系数
1)当主动件曲柄等速转动时,从动件摇杆摆回的平均速度大于摆出的平均速度,摇杆的这种运动特性称为急回特性
2)行程速比系数K
K=v2/v1=(180°+θ)/(180° -θ)
当机构存在极位夹角θ时,机构便具有急回运动特性。
且θ角越大,K值越大,机构的急回性质也越显著
牛头刨床机构
三、压力角与传动角
连杆BC与从动件CD之间所夹的锐角γ称为四杆机构在此位置的传动角。
显然γ越大,有效分力Pt越大,Pn越小,对机构的传动就越有利。
所以,在连杆机构中也常用传动角的大小及变化情况来描述机构传动性能的优劣。
为了保证机构传力性能良好,应使γmin≥ 40 ~50°
最小传动角的确定:对于曲柄摇杆机构,γmin出现在主动件曲柄与机架共线的两位置之一。
三、死点
如图:当以摇杆CD为主动件,则当连杆与从动件曲柄共线时,机构的传动角γ=0°,这时主动件CD通过连杆作用于从动件AB上的力恰好通过其回转中心,出现了不能使构件AB转动的“顶死”现象,机构的这种位置称为“死点”。
上的力恰好通过其回转中心,出现了不能使构件AB转动的“顶死”现象,机构的这种位置称为“死点”。
在工程上,为了使机构能够顺利通过死点而正常运转,必须采用适当的措施,如发动机上安装飞轮加大惯性力,或利用机构的组合错开死点位置,例如机车车轮的联动装置。
但是,也应注意到,在工程上也长有利用死点来实现一定工作要求的,例如飞机起落架、各类夹具中,如下图
§2.4四杆机构设计
2.4四杆机构设计连杆机构的设计方法有
:作图法、实验法及解析法。
图解法和实验法比较直观易懂,但设计精度要低。
解析法精度高,但计算要复杂,有时利用手工几乎无法完成。
一、按连杆预定位置设计四杆机构
二、按给行程速比系数K
K 设计四杆机构
如图2-21所示,已知摇杆CD长度及摆角,行程速比系数K。
要求设计曲柄摇杆机构。
步骤如下:
1)由公式,求出极位夹角θ。
2)任选固定铰D的位置,并作出摇杆两极限位置C1D和C2D,夹角为。
3)连接C1C2,作∠C1C2O=∠C2C1O= 90˚-θ,得交点O,以O 为圆心,OC1为半径作圆。
4)在圆上任取一点A为固定铰。
5)连接AC1、 AC2,则AC1、 AC2分别为曲柄与连杆重迭拉直共线位置,即:
AC1=BC-AB AC2=BC+AB
可分别求得AB与BC。