前线轨道理论
- 格式:pdf
- 大小:539.70 KB
- 文档页数:8
●Woodward-Hoffmann规则一:4n电子的热电环化反应,如果按照顺旋方式进行是允许的;4n+2电子的热电环化反应,如果按照对旋的方式进行时允许的。
●顺旋:多烯烃的末端碳原子或环烯烃的饱和碳原子,以相同方向(同为顺时针或同为逆时针)旋转成键或断键,这种方式称为顺旋。
顺旋:多烯烃的末端碳原子或环烯烃的饱和碳原子,以不相同方向旋转成键或断键,这种方式称为对旋。
●最高已占分子轨道(HOMO)在4n+2的体系中是对称的;最低未占分子轨道(LUMO)在4n+2的体系中是反对称的。
●前线轨道理论:忽略较低的能级轨道,只考虑HOMO。
前线轨道理论能简单、形象化,但是理论上不完善,在理论上应该有更精确的处理方法。
在电环化反应中,对旋是允许的,顺旋是禁阻的。
●轨道对称性守恒:反应物中的每个轨道的对称性,在反应后对称性保持不变。
●用相关图法处理电环化反应遵循轨道对称性守恒。
●相关图法处理4n+2体系的热环化反应(对旋):以1,3,5-己三烯为例:(1)形成6个分子轨道(2)用能量最低的形成键,和的对称性相同,都是镜面对称的。
(3)是由6个原子轨道组成,键是2个原子轨道组成,故转化为时,可以想象其中有4个原子轨道的系数降低为0。
(4) 1,3,5-己三烯的,不能转化为1,3环己二烯的,因为前者的的对称性是镜面反对称,后者的的对称性是镜面对称,对称性不匹配。
故1,3,5-己三烯的事转化为1,3环己二烯的,同理1,3,5-己三烯的事转化为1,3环己二烯的(5)能量分配很合理,故反应是允许的。
用相关图法处理4n体系的热环化反应(对旋):以1,3-丁二烯为例:(1)用能量最低的形成键(2)用1,3-丁二烯的形成环丁烯的;用1,3-丁二烯的形成环丁烯的。
理由同4n+2体系,因为对称性不守恒。
(3) 1,3-丁二烯的上有2个电子,而要形成的环丁烯的电子在上。
但是1,3-丁二烯要转化为环丁烯的,如果发生这样的转化,就会形成能量很高的环丁烯的激发态。
什么是前线轨道理论前线轨道理论是一种分子轨道理论,由日本理论化学家福井谦一于1951年提出。
这一理论将分子周围分布的电子云根据能量细分为不同能级的分子轨道,认为有电子排布的能量最高的分子轨道(即最高占据轨道HOMO)和没有被电子占据的能量最低的分子轨道(即最低未占轨道LUMO)是决定一个体系发生化学反应的关键,其他能量的分子轨道对于化学反应虽然有影响但是影响很小,可以暂时忽略。
HOMO和LUMO便是所谓前线轨道。
前线轨道理论研究分子在化学反应过程中的机理,认为分子中这种前线轨道类似于原子中的价轨道,对于分子的化学性质起决定性作用。
分子进行化学反应时,只和前线轨道有关,反应的条件和方式取决于前线轨道的对称性。
前线轨道理论提出后,首先被伍德沃德和霍夫曼用于对协同反应规律的解释,即分子轨道对称守恒原理中。
这一原理在解释双分子反应时认为,电子从一个分子的最高被占据轨道流向另一个分子的最低空轨道,使旧键断裂新键生成。
因此,最高被占据轨道和最低空轨道必须满足对称性匹配原则,才能产生净的有效重叠,否则过渡状态能量太高,反应不能进行。
同时相互作用的最高被占据轨道和最低空轨道应该满足能量相近原则,能量差不得大于6eV。
利用前线轨道理论,还可以很好地解释有机协同反应选律等。
例如,应用前线轨道理论可以很好地说明烯烃的亲电加成方向问题和碳基的亲核加成问题。
前线轨道理论认为烯烃的亲电加成中,烯烃的HOMO 和试剂的LUMO是起决定性作用的分子轨道。
作为亲电试剂的质子应加到烯烃HOMO系数最大的碳原子上。
当烯烃的双键碳上连有供电基时,供基电基具有的高能级的被占轨道,其能量与烯烃轨道能量相近,他们之间可发生相互作用,使究轨道发生极化。
以上信息仅供参考,如需了解更多信息,建议查阅相关书籍或咨询专业人士。
homo和福井函数
“homo”和“福井函数”是两个不同的概念,“福井函数”与“双描述符”是目前流行的预测反应位点的方法。
“homo”是指分子轨道理论中的最高占据轨道,“HOMO和LUMO便是所谓前线轨道”。
“福井函数”是日本理论化学家福井谦一在1951年提出的前线轨道理论中的一个重要概念,他认为在分子的反应中,电子主要从能量最高的占据轨道(HOMO)转移到能量最低的未占据轨道(LUMO),这两个轨道是决定分子化学反应的关键,于是将这两个轨道命名为前线轨道。
福井谦一对前线轨道理论进行了进一步的发展和完善,发现前线轨道的对称性可以解释以前难以理解的化学反应过程。
“homo”和“福井函数”在化学和材料科学等领域中都有着广泛的应用,对于理解和研究分子的化学反应和性质具有重要意义。
前线轨道理论及其应用摘要:前线轨道理论是一种简化且有效的分子轨道理论。
它能成功地说明大量反应事实和规律。
本文综合了数篇文献的研究内容,介绍前线轨道理论及其应用情况。
关键词:前线轨道理论; 应用1.前言前线轨道理论是由福井谦一教授于五十年代初提出的一种化学理论,它以分子轨道理论为理论基础,但是没有超越实验化学家的经验和理论范围,以其简单、有效和化学概念明确的特点,赢得了众多科学工作者的关注。
本文综合了数篇文献的研究内容,将2.理论思想早在1952年福井[1]就在HMO理论的基础上提出了最高占据轨道(highest occupied MO)、最低空轨道(lowest unoccupied MO)的概念。
并称HOMO, LUMO 这两种特殊的分子轨道为“前线轨道”[2]。
考虑到在化学反应中原子的价电子起着关键作用,可以联想到,在分子的所有MO中,能量最高的HOMO上的电子最活泼最易失去;能量最低的LUMO最易接受电子。
因此,有理由认为在分子反应中,这些特殊的MO贡献最大,对反应起主导作用。
这一概念和观点,起初只引起了极少数人的注意。
但是福井等人却注意到了这一点,并且进行了深入的研究。
他们将“前线轨道及各种前线轨道间的相互作用”发展成为了解分子反应能力和预测反应机理的强有力的理沦方法—“前线轨道理论”,35年来前线轨道理论大致经过了七个重要发展阶段[3]。
前线电子密度基本概念的提出和研究;前线电子密度在共轭化合物中应用的研究;在饱和化合物中应用的研究;在立体选择反应中推广应用的研究;解释,说明化学反应中的HOMO-LUMO的相互作用;建立化学反应途径的极限反应坐标理论(简称IRC);提出化学反应的相互作用前线轨道理论(简称IFO)。
今天,这一理论已成为讨论化学问题的必不可少的工具,对于人们的化学实践具有重要的指导意义。
3.前线轨道理论分子中的轨道根据电子填充情况不同可分为被占轨道,空轨道和半占轨道[4]。
前线轨道理论在化学中的应用前线轨道理论相信大家都很熟悉了,这是福井谦一的成名理论。
HOMO是最高占据轨道,可以给出电子,具有亲核性;LUMO是最低未占据轨道,可以接受电子,具有亲电性。
大部分的有机反应都可以用HOMO与LUMO的重叠来得到令人满意的解释但是一旦涉及到过渡金属,稀土金属,以及锕系金属时,因为涉及到d 轨道与f轨道,很少有人用前线轨道理论去解释反应性了,这其实是比较可惜的。
对于很多金属有机体系,其实前线轨道理论也能给出许多直观和令人满意的解释。
其中的精髓,就是下面这张图,需要重点阐述一下。
这画的是反键轨道,图左边是过渡金属,右边是主族元素;上面的图等值面小一点,下面的图等值面大一点,但其实都是同一个反键轨道。
下面这个等值面比较大的反键轨道看上去还是比较正常的,过渡金属的d轨道与旁边原子的p轨道相位是相反的,不重叠。
但是看上图这个等值面比较小的图,就能发现好玩的地方了。
因为过渡金属的d轨道比较“胖”,所以大家可以看到,尽管是在反键轨道中,但是d轨道因为足够胖,还是可以在外层和相邻原子的p轨道发生相同相位的重叠。
明白了这一点后,就可以开始解释许多有趣的实验现象了。
大部分例子都在论文中,这里仅举一例。
大家都知道,烯烃的[2+2]环加成反应是轨道对称性禁阻的,所以一般不能发生,福井谦一用他的前线轨道理论满意地解释了这一实验事实。
但是过渡金属参与的[2+2]环加成反应却可以顺利进行(烯烃复分解反应),这又是为什么呢?看下图一眼就能明白。
正是因为过渡金属Ru的d轨道足够大,于是和相邻C原子的p轨道发生重叠,LUMO构成了一个同相位重叠的区域,可以顺利地与另一分子烯烃的HOMO很好地交盖。
如果没有过渡金属,很显然两分子烯烃的LUMO与HOMO的相位是不匹配的,所以反应就不能发生了。
正是因为过渡金属的d轨道比较胖,相位也很特别,所以才展示出了与主族元素完全不同的反应性。
分子轨道理论的发展及其应用姓名:班级:学号:v分子轨道理论(Molecular Orbital ,简称MO )最初是由Mulliken 和Hund 提出,经过Huckel (简单分子轨道理论,简称HMO), Roothaan (自洽场分子轨道理论),福井谦一(前线分子轨道理论,简称FMO), Woodward和Hofmann (分子轨道对称守恒原理)等众多科学家的不断探索,形成了一套成熟的理论,与价键理论(VB)和配位场理论(LF)—通解决分子结构问题。
分子轨道理论经过半个世纪的迅猛发展,已经成为当代化学键理论的主流。
如今多用于共轭分子的性质的研究,量子化学的研究,分子的化学活性和分子间的相互作用的研究,基元化学反应的研究,指导某些复杂有机化合物的合成。
1 分子轨道理论分子轨道理论的基本观点是把分子看做一个整体,其中电子不再从属于某一个原子而是在整个分子的势场范围内运动。
分子中每个垫子是在原子核与其他电子组成的平均势场中运动,其运动状态可用单电子波函数表示,称为分子轨道[1]。
1.1 分子轨道理论的产生1926-1932年,在讨论分子(特别是双原子分子)光谱是,Mulliken⑵和HuncP] 分别对分子中的电子状态进行分类,得出选择分子中电子量子数的规律,提出了分子轨道理论。
他们还提出能级相关图和成键、反键轨道等重要概念。
1931-1933年,Huckel提出了一种简单分子轨道理论(HMO)⑷,用以讨论共轭分子的性质,相当成功,是分子轨道理论的重大进展。
1951年,Roothaan在Hartree-Fock方程[5]⑹的基础上,把分子轨道写成原子轨道的线性组合,得到Roothaan方程⑺。
1950年,Boys用Gauss函数研究原子轨道,解决了多中心积分的问题,从Hartree-Fock-Roothaan方程出发,应用Gauss 函数,是今天广为应用的自洽场分子轨道理论的基础,在量子化学的研究中占有重要地位。