前线轨道理论在有机化学中的应用
- 格式:pdf
- 大小:479.22 KB
- 文档页数:8
●Woodward-Hoffmann规则一:4n电子的热电环化反应,如果按照顺旋方式进行是允许的;4n+2电子的热电环化反应,如果按照对旋的方式进行时允许的。
●顺旋:多烯烃的末端碳原子或环烯烃的饱和碳原子,以相同方向(同为顺时针或同为逆时针)旋转成键或断键,这种方式称为顺旋。
顺旋:多烯烃的末端碳原子或环烯烃的饱和碳原子,以不相同方向旋转成键或断键,这种方式称为对旋。
●最高已占分子轨道(HOMO)在4n+2的体系中是对称的;最低未占分子轨道(LUMO)在4n+2的体系中是反对称的。
●前线轨道理论:忽略较低的能级轨道,只考虑HOMO。
前线轨道理论能简单、形象化,但是理论上不完善,在理论上应该有更精确的处理方法。
在电环化反应中,对旋是允许的,顺旋是禁阻的。
●轨道对称性守恒:反应物中的每个轨道的对称性,在反应后对称性保持不变。
●用相关图法处理电环化反应遵循轨道对称性守恒。
●相关图法处理4n+2体系的热环化反应(对旋):以1,3,5-己三烯为例:(1)形成6个分子轨道(2)用能量最低的形成键,和的对称性相同,都是镜面对称的。
(3)是由6个原子轨道组成,键是2个原子轨道组成,故转化为时,可以想象其中有4个原子轨道的系数降低为0。
(4) 1,3,5-己三烯的,不能转化为1,3环己二烯的,因为前者的的对称性是镜面反对称,后者的的对称性是镜面对称,对称性不匹配。
故1,3,5-己三烯的事转化为1,3环己二烯的,同理1,3,5-己三烯的事转化为1,3环己二烯的(5)能量分配很合理,故反应是允许的。
用相关图法处理4n体系的热环化反应(对旋):以1,3-丁二烯为例:(1)用能量最低的形成键(2)用1,3-丁二烯的形成环丁烯的;用1,3-丁二烯的形成环丁烯的。
理由同4n+2体系,因为对称性不守恒。
(3) 1,3-丁二烯的上有2个电子,而要形成的环丁烯的电子在上。
但是1,3-丁二烯要转化为环丁烯的,如果发生这样的转化,就会形成能量很高的环丁烯的激发态。
前线轨道理论在化学中的应用前线轨道理论相信大家都很熟悉了,这是福井谦一的成名理论。
HOMO是最高占据轨道,可以给出电子,具有亲核性;LUMO是最低未占据轨道,可以接受电子,具有亲电性。
大部分的有机反应都可以用HOMO与LUMO的重叠来得到令人满意的解释但是一旦涉及到过渡金属,稀土金属,以及锕系金属时,因为涉及到d 轨道与f轨道,很少有人用前线轨道理论去解释反应性了,这其实是比较可惜的。
对于很多金属有机体系,其实前线轨道理论也能给出许多直观和令人满意的解释。
其中的精髓,就是下面这张图,需要重点阐述一下。
这画的是反键轨道,图左边是过渡金属,右边是主族元素;上面的图等值面小一点,下面的图等值面大一点,但其实都是同一个反键轨道。
下面这个等值面比较大的反键轨道看上去还是比较正常的,过渡金属的d轨道与旁边原子的p轨道相位是相反的,不重叠。
但是看上图这个等值面比较小的图,就能发现好玩的地方了。
因为过渡金属的d轨道比较“胖”,所以大家可以看到,尽管是在反键轨道中,但是d轨道因为足够胖,还是可以在外层和相邻原子的p轨道发生相同相位的重叠。
明白了这一点后,就可以开始解释许多有趣的实验现象了。
大部分例子都在论文中,这里仅举一例。
大家都知道,烯烃的[2+2]环加成反应是轨道对称性禁阻的,所以一般不能发生,福井谦一用他的前线轨道理论满意地解释了这一实验事实。
但是过渡金属参与的[2+2]环加成反应却可以顺利进行(烯烃复分解反应),这又是为什么呢?看下图一眼就能明白。
正是因为过渡金属Ru的d轨道足够大,于是和相邻C原子的p轨道发生重叠,LUMO构成了一个同相位重叠的区域,可以顺利地与另一分子烯烃的HOMO很好地交盖。
如果没有过渡金属,很显然两分子烯烃的LUMO与HOMO的相位是不匹配的,所以反应就不能发生了。
正是因为过渡金属的d轨道比较胖,相位也很特别,所以才展示出了与主族元素完全不同的反应性。
配位化学论文分子轨道理论的发展及其应用160113004 2013级化教一班马慧敏一、前言价建理论、分子轨道理论和配位场理论是三种重要的化学键理论。
三、四十年代,价键理论占主要的地位。
五十年代以来由于分子轨道理论容易计算且得到实验(光电能谱)的支持,取得了巨大的发展,逐渐占优势。
价建理论不但在理论化学上有重要的意义(下文中将详细介绍)。
在应用领域也有重要的发展,如分子轨道理论计算有机化合物的吸收光谱用于染料化学;前线分子轨道理论在选矿中的研究等等。
二、简介1、分子轨道理论产生和发展在分子轨道理论出现以前,价键理论着眼于成键原子间最外层轨道中未成对的电子在形成化学键时的贡献,能成功地解释了共价分子的空间构型,因而得到了广泛的应用。
但如能考虑成键原子的内层电子在成键时贡献,显然更符合成键的实际情况。
1932年,美国化学家 Mulliken RS和德国化学家HundF 提出了一种新的共价键理论——分子轨道理论(molecular orbital theory),即MO法。
该理论注意了分子的整体性,因此较好地说明了多原子分子的结构。
目前,该理论在现代共价键理论中占有很重要的地位。
以下是各个年代提出的关于分子轨道理论的一些重要理论和方法,是分子轨道理论发展过程中的几个里程碑!1926-1932年,在讨论分子光谱时,Mulliken和Hund提出了分子轨道理论。
认为:电子是在整个分子轨道中运动,不是定域化的。
他们还提出能级图、成键、反键轨道等重要的概念。
1931-1933年,Hukel提出了一种简单的分子轨道理论,用于讨论共轭分子的性质,相当成功。
1950年,Boys用Guass函数研究原子轨道,解决了多中心积分问题,是今天广为利用的自洽场分子轨道理论的基础,在量子化学的研究中占有重要地位。
1951年,Roothaan在Hartree-Fock方程的基础上,把分子轨道写成原子轨道的线性组合,得到Roothaan方程。
七、理论和概念1马氏规则:卤化氢等极性试剂与不对称烯烃发生亲电加成反应时,酸中的氢原子加在含氢较多的双键碳原子上,卤素或其它原子及基团加在含氢较少的双键碳原子上。
这一规则称为马氏规则。
2分子轨道对称守恒原理:分子轨道对称守恒原理认为:化学反应是分子轨道进行重新组合的过程,在一个协同反应中,分子轨道的对称性是守恒的,即由原料到产物,轨道的对称性始终不变,因为只有这样,才能用最低的能量形成反应中的过渡态。
因此分子轨道的对称性控制着整个反应的进程。
3分子轨道理论的基本思想:分子轨道理论在处理分子时,并不引进明显的价键结构的概念。
它强调分子的整体性,认为分子中的原子是按一定的空间配置排列起来的,然后电子逐个加到由原子实和其余电子组成的“有效”势场中,构成了分子。
并将分子中单个电子的状态函数称为分子轨道,用波函数ψ(x, y, z)来描述。
每个分子轨道iψ都有一个确定的能值E i与之相对应,E i近似地等于处在这个轨道上的电子的电离能的负值,当有一个电子进占iψ分子轨道时,分子就获得E i的能量。
分子轨道是按能量高低依次排列的。
参与组合的原子轨道上的电子则将按能量最低原理、鲍里不相容原理和洪特规则进占分子轨道。
根据电子在分子轨道上的分布情况,可以计算分子的总能量。
4 s−反式构象:双烯体的两个双键处于单键的异侧称为s−反式构象。
5引发剂:有些化合物十分活泼,极易产生活性质点自由基,这些化合物称之为引发剂。
6双位反应性能:一个负离子有两个位置可以发生反应,称其具有双位反应性能。
7反应势能图:以反应进程(自左向右,左边为反应物,右边为生成物)为横坐标,反应物、过渡态和生成物的势能变化为纵坐标来作图,这种图称为反应势能图。
8内型加成产物:当双烯体上有给电子取代基、而亲双烯体上有不饱和基团如与烯键(或炔键)共轭时,优先生成内型加成产物。
内型加成产物是指:双烯体中的C(2)—C(3)键和亲双烯体中与烯键(或炔键)共轭的不饱和基团处于连接平面同侧时的生成物。
第16章周环反应16.1 复习笔记一、周环反应和分子轨道对称守恒原理1.周环反应(1)定义:在化学反应过程中,能形成环状过渡态(cyclic transition state)的协同反应(synergistic reaction)统称为周环反应。
(2)协同反应是一种基元反应(elementary reaction)。
其含义是:在反应过程中,若有两个或两个以上的化学键破裂和形成时,都必须相互协调地在同一步骤中完成。
(3)周环反应具有如下的特点:①反应过程中没有自由基或离子这一类活性中间体产生。
②反应速率极少受溶剂极性和酸、碱催化剂的影响,也不受自由基引发剂和抑制剂的影响。
③反应条件一般只需要加热或光照,而且在加热条件下得到的产物和在光照条件下得到的产物具有不同的立体选择性(stereoselectivity),是高度空间定向反应。
④遵循微观可逆性原理。
(4)周环反应主要包括电环化反应(electrocyclic reaction)、环加成反应(cycloaddition)和σ迁移反应(σmigrate reaction)。
2.分子轨道对称守恒原理电环化反应在加热和光照条件下具有不同的立体选向性。
分子轨道对称性是控制这类反应进程的关键因素。
分子轨道对称守恒原理认为:化学反应是分子轨道进行重新组合的过程,在一个协同反应中,分子轨道的对称性是守恒的,即由原料到产物,轨道的对称性始终不变。
因此分子轨道的对称性控制着整个反应的进程。
二、前线轨道理论1.前线轨道理论的概念和中心思想(1)基本概念①最高占有轨道(HOMO):已占有电子的能级最高的轨道。
②最低未占有轨道(LUMO):未占有电子的能级最低的轨道。
③单占轨道(single occupied molecular orbital):有的共轭体系中含有奇数个电子,它的已占有电子的能级最高的轨道中只有一个电子。
用SOMO表示。
单占轨道既是HOMO,又是LUMO。
环加成反应摘要:环加成反应在有机合成中有非常重要的应用,其基础理论前线轨道理论也是有机化学中非常重要的理论。
本文主要简介环加成反应和前线轨道理论,并对前线轨道在环加成反应中的应用做简要介绍。
关键词:环加成反应前线轨道理论 Diels-Alder反应环加成反应(Cycloaddition Reaction)是两个共轭体系结合成环状分子的一种双分子反应, 它是由两个或多个不饱和化合物(或同一化合物的不同部分)结合生成环状加合物,并伴随有系统总键级数减少的化学反应。
这类反应是合成单环及多环化合物的一种重要方法。
有关环加成反应最早是德国化学家Diels与其学生Alder等在1928年通过环戊二烯与顺丁烯二酸酐发生[4+2]环加成实现的。
常见的环加成反应类型除[4+2]外,还包括[3+2], [2+2+2], [3+2+2], [4+2+2]等。
环加成反应的主要特点是可以将不饱和链状化合物直接转变成环状化合物,包括三元、四元到九元、十元环等,且原子利用率高。
在天然产物的全合成、药物化学等领域有着广泛的应用。
1、前线轨道理论简介前线轨道是由日本理论化学家福井谦一提出的,他指出化合物分子的许多性质主要出最高占据分子轨道相最低未占分子轨道所决定的。
凡是处于前线轨道的电子,可优先配对。
这对选择有机合成反应路线起决定性作用。
鉴于前线轨道理论对于有机化学发展的重要性,他获得了1981年的诺贝尔化学奖。
1.1 前线轨道的几个基本概念分子周围的电子云,根据能量的不同,可以分为不同的能级轨道,根据能量最低原理,电子优先排入能量低的轨道。
前线轨道理论中,将用HOMO表示;未占有电子的能量最低的轨道称之为最低占有轨道,用LUMO表示(如图1-1)。
有的共轭轨道中含有奇数个电子,它的最高已占有轨道只有一个电子,这种单电子占有的轨道称之为单占轨道,用SOMO表示。
在分子中,HOMO轨道对于电子的束缚最为薄弱,LUMO轨道对电子的吸引力最强,因而前线轨道认为,分子加发生化学反应,本质上就是HOMO轨道与LUMO轨道的相互作用,形成新的化学键的过程。
《有机化合物的结构》前线轨道理论应用《有机化合物的结构:前线轨道理论应用》在有机化学的领域中,理解有机化合物的结构及其反应性是至关重要的。
前线轨道理论作为一种强有力的工具,为我们深入探究有机化合物的结构和反应机理提供了独特的视角和深刻的见解。
前线轨道理论的核心概念是前线轨道,即最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)。
这些轨道在化学反应中起着关键作用,因为它们决定了分子之间相互作用的方式和反应的可能性。
以乙烯为例,其分子轨道可以通过量子化学计算或简单的理论模型来描述。
乙烯的π键对应的轨道就是前线轨道的一部分。
当乙烯参与加成反应时,例如与氢气的加成,氢气分子的电子会与乙烯的前线轨道相互作用。
氢气分子的电子会填充到乙烯的 LUMO 中,从而形成新的化学键,使反应得以发生。
再来看苯这种具有特殊芳香性的有机化合物。
苯的分子轨道呈现出高度的对称性,其 HOMO 和 LUMO 的分布对于苯的化学性质有着重要影响。
在苯的亲电取代反应中,亲电试剂会进攻苯环的特定位置,这与苯的前线轨道的电子分布密切相关。
由于苯环的特殊结构和前线轨道的特征,使得亲电取代反应具有一定的选择性和规律性。
前线轨道理论在解释有机反应的选择性方面也表现出色。
比如在烯烃的亲电加成反应中,不同取代基的烯烃反应活性和选择性有所不同。
当烯烃分子中存在给电子基团时,会增加 HOMO 的能量,使其更容易与亲电试剂相互作用,从而提高反应活性。
相反,当存在吸电子基团时,会降低 HOMO 的能量,反应活性相对降低。
在共轭体系中,前线轨道理论的应用更加广泛。
例如,在 1,3-丁二烯的电环化反应中,通过分析前线轨道的对称性和相互作用,可以准确预测反应的立体选择性和产物的构型。
这种预测对于设计和控制有机合成反应具有重要的指导意义。
不仅如此,前线轨道理论还能帮助我们理解有机光化学过程。
在光激发下,分子中的电子会从 HOMO 跃迁到 LUMO,从而产生激发态。
前线轨道理论及其应用摘要:前线轨道理论是一种简化且有效的分子轨道理论。
它能成功地说明大量反应事实和规律。
本文综合了数篇文献的研究内容,介绍前线轨道理论及其应用情况。
关键词:前线轨道理论; 应用1.前言前线轨道理论是由福井谦一教授于五十年代初提出的一种化学理论,它以分子轨道理论为理论基础,但是没有超越实验化学家的经验和理论范围,以其简单、有效和化学概念明确的特点,赢得了众多科学工作者的关注。
本文综合了数篇文献的研究内容,将2.理论思想早在1952年福井[1]就在HMO理论的基础上提出了最高占据轨道(highest occupied MO)、最低空轨道(lowest unoccupied MO)的概念。
并称HOMO, LUMO 这两种特殊的分子轨道为“前线轨道”[2]。
考虑到在化学反应中原子的价电子起着关键作用,可以联想到,在分子的所有MO中,能量最高的HOMO上的电子最活泼最易失去;能量最低的LUMO最易接受电子。
因此,有理由认为在分子反应中,这些特殊的MO贡献最大,对反应起主导作用。
这一概念和观点,起初只引起了极少数人的注意。
但是福井等人却注意到了这一点,并且进行了深入的研究。
他们将“前线轨道及各种前线轨道间的相互作用”发展成为了解分子反应能力和预测反应机理的强有力的理沦方法—“前线轨道理论”,35年来前线轨道理论大致经过了七个重要发展阶段[3]。
前线电子密度基本概念的提出和研究;前线电子密度在共轭化合物中应用的研究;在饱和化合物中应用的研究;在立体选择反应中推广应用的研究;解释,说明化学反应中的HOMO-LUMO的相互作用;建立化学反应途径的极限反应坐标理论(简称IRC);提出化学反应的相互作用前线轨道理论(简称IFO)。
今天,这一理论已成为讨论化学问题的必不可少的工具,对于人们的化学实践具有重要的指导意义。
3.前线轨道理论分子中的轨道根据电子填充情况不同可分为被占轨道,空轨道和半占轨道[4]。
前线分子轨道法及应用在结构化学课的第三章“分子轨道理论”中,我们循着大师们探索的步伐,学习他们的智慧所探索出的分子内部的奥秘。
小小的分子由分子核外部旋转不息的电子构成,像一个个微小的星系,构成了现实世界的点点滴滴。
它们之中有的相对稳定,有的却十分活泼,相对于恒星数以万亿年的生命周期也不过是一瞬罢了,但相对与人类自身来说,却是值得我们仔细探究的千变万化。
研究分子轨道理论,目的是为了发现它的电子排布规律并以此来判断物质的静态性质和化学反应发生合理方向和可控性。
日本理论化学家福井谦一在1951年提出的前线分子轨道理论能广泛地应用于许多反应机理,与美国的伍德沃德和霍夫曼在1965年提出的分子轨道对称性守恒原理结论基本一致,它在实践中的广泛应用证明了这个理论的可靠性,得到了广泛的认可,而福井谦一也获得了1981年的诺贝尔化学奖。
前线分子轨道理论概括起来有以下4个要点:1、基元反应时,起作用的是一个分子的最高被占分子轨道(HOMO)与另一分子的最低未被占分子轨道(LUMO),最高被占分子轨道和最低未被占分子轨道统称为前线分子轨道;2、一个分子的HOMO与另一个分子的LUMO对称性要匹配才能发生作用;3、相互作用的前线分子轨道能量要想近(<0.6ev);4、在前线分子轨道中电子的转移要化学合理,即转移的结果要与旧键断裂、新键生成相适应。
前线分子轨道可以用来分析双分子化学反应进行的难易原因及反应所需的条件和反应的方式。
如前线分子轨道理论可以用来解释两个乙烯环加成环丁烷的反应条件及轨道叠加情况。
CH2=CH2+CH2=CH2→CH2-CH2CH2-CH2该反应在加热条件下反应很难进行,但在光照条件下可以进行。
如下图所示,加热条件下,乙烯的LOMO与另一分子的LUMO对称性不匹配,反应不能发生。
但当光照时,不分乙烯分子被激发,电子由∏轨道跃迁到对应的反键轨道上,使其变成LOMO,则与另一乙烯分子的LUMO对称性匹配,反应顺利进行。