06a直角投影定理
- 格式:ppt
- 大小:864.00 KB
- 文档页数:26
模型介绍1.射影定理定义①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.2.如图在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高,有射影定理如下: 注意:直角三角形斜边上有高时,才能用射影定理!例题精讲【例1】.在矩形ABCD 中,BE ⊥AC 交AD 于点E ,G 为垂足.若CG =CD =1,则AC 的长是.①AD 2=BD •DC ;②AB 2=BD •BC ;AC 2=CD •BC .解:∵四边形ABCD是矩形,∴AB=CD=1,∠ABC=90°,∵BE⊥AC,∴∠AGB=90°=∠ABC,∵∠BAG=∠CAB,∴△ABG∽△ACB,∴=,∴AG•AC=AB2(射影定理),即(AC﹣1)•AC=12,解得:AC=或AC=(不合题意舍去),即AC的长为,故答案为:.【例2】.如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣B.﹣C.﹣1D.﹣2解:设A(x1,0)(x1<0),B(x2,0)(x2>0),C(0,t),∵二次函数y=ax2+bx+2的图象过点C(0,t),∴t=2;∵AC⊥BC,∴OC2=OA•OB(射影定理),即4=|x1x2|=﹣x1x2,根据韦达定理知x1x2=,∴a=﹣.故选:A.【例3】.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3B.8C.D.2解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.变式训练【变式1】.如图,在△ABC中,若=AC,BC=2BD=6,DE⊥AC,则AC•EC的值是9.解:如图,∵在△ABC中,若AB=AC,BC=2BD=6,∴AD⊥BC,CD=BD=3.又DE⊥AC,∴∠CED=∠CDA=90°.∵∠C=∠C,∴△CDE∽△CAD.∴=,即AC•EC=CD2=9.(射影定理)故答案是:9.【变式2】.如图所示,在矩形ABCD中,AE⊥BD于点E,对角线AC,BD交于O,且BE:ED=1:3,AD=6cm,则AE=cm.解:设BE=x,因为BE:ED=1:3,故ED=3x,根据射影定理,AD2=3x(3x+x),即36=12x2,x2=3;由AE2=BE•ED,AE2=x•3x;即AE2=3x2=3×3=9;AE=3.【变式3】.如图,若抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,若∠OAC=∠OCB.则ac的值为()A.﹣1B.﹣2C.D.解:设A(x1,0),B(x2,0),C(0,c),∵二次函数y=ax2+bx+c的图象过点C(0,c),∴OC=c,∵∠OAC=∠OCB,OC⊥AB,∴△OAC∽△OCB,∴,∴OC2=OA•OB(即射影定理)即|x1•x2|=c2=﹣x1•x2,令ax2+bx+c=0,根据根与系数的关系知x1•x2=,∴,故ac=﹣1,故选:A.【变式4】.如图,正方形ABCD中,E为AB上一点,AF⊥DE于点F,已知DF=5EF=5,过C、D、F的⊙O与边AD交于点G,则DG=____________.解:连接CF、GF,如图:在正方形ABCD中,∠EAD=∠ADC=90°,AF⊥DE,∴△AFD∽△EAD,∴=,又∵DF=5EF=5,∴AD====CD,在Rt△AFD中,AF===,∵∠CDF+∠ADF=90°,∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC,∴=,∴=,∴AG=,∴DG=AD﹣AG=﹣【变式5】.如图,在△ABC中,以AC边为直径的⊙O交BC于点D,过点B作BG⊥AC 交⊙O于点E、H,连AD、ED、EC.若BD=8,DC=6,则CE的长为2.解:∵AC为⊙O的直径,∴∠ADC=90°,∵BG⊥AC,∴∠BGC=∠ADC=90°,∵∠BCG=∠ACD,∴△ADC∽△BGC,∴=,∴CG•AC=DC•BC=6×14=84,连接AE,∵AC为⊙O的直径,∴∠AEC=90°,∴∠AEC=∠EGC=90°,∵∠ACE=∠ECG,∴△CEG∽△CAE,∴=,∴CE2=CG•AC=84,∴CE=2.故答案为2.【变式6】.如图,四边形ABCD是平行四边形,过点A作AE⊥BC交BC于点E,点F在实战演练BC 的延长线上,且CF =BE ,连接DF .(1)求证:四边形AEFD 是矩形;(2)连接AC ,若∠ACD =90°,AE =4,CF =2,求EC 和AC的长.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵CF =BE ∴BE +CE =CF +CE ,即BC =EF ,∴AD =EF ,∵AD ∥EF ,∴四边形AEFD 是平行四边形,∵AE ⊥BC ,∴∠AEF =90°,∴平行四边形AEFD 是矩形;(2)解:如图,∵CF =BE ,CF =2,∴BE =2,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠BAC =∠ACD =90°,∵AE ⊥BC ,∴AE 2=BE •EC (射影定理),∴EC ===8,∴AC ===4.1.如图,在矩形ABCD 中,DE ⊥AC ,垂足为点E .若sin ∠ADE =,AD =4,则AB 的长为()A .1B .2C .3D .4解:∵DE ⊥AC ,∴∠ADE+∠CAD=90°,∵∠ACD+∠CAD=90°,∴∠ACD=∠ADE,∵矩形ABCD的对边AB∥CD,∴∠BAC=∠ACD,∵sin∠ADE=,BC=AD=4,∴=,∴=,∴AC=5,由勾股定理得,AB==3,故选:C.2.如图,在矩形ABCD中,BD=2.对角线AC与BD相交于点O,过点D作AC的垂线,交AC于点E,AE=3CE.则DE2的值为()A.4B.2C.D.4解:∵四边形ABCD是矩形,∴∠ADC=90°,AC=BD=2,∵AE=3CE,∴AE=AC=,CE=AC=,∵∠ADC=90°,∴∠DAC+∠ACD=90°,∵DE⊥AC,∴∠AED=∠CED=90°,∴∠ADE+∠DAC=90°,∴∠ADE=∠ACD,∴△ADE∽△DCE,∴=,∴DE2=AE•CE=×=,故选:C.3.如图,在正方形ABCD内,以D点为圆心,AD长为半径的弧与以BC为直径的半圆交于点P,延长CP、AP交AB、BC于点M、N.若AB=2,则AP等于()A.B.C.D.解:如图,设点S为BC的中点,连接DP,DS,DS与PC交于点W,作PE⊥BC于点E,PF⊥AB于点F,∴DP=CD=2,PS=CS=1,即DS是PC的中垂线,∴△DCS≌△DPS,∴∠DPS=∠DCB=90°,∴DS===,由三角形的面积公式可得PC=,∵BC为直径,∴∠CPB=90°,∴PB==,∴PE=FB==,∴PF=BE==,∴AF=AB﹣FB=,∴AP==故选:B.4.如图,点P是⊙O的直径BA延长线上一点,PC与⊙O相切于点C,CD⊥AB,垂足为D,连接AC、BC、OC,那么下列结论中:①PC2=PA•PB;②PC•OC=OP•CD;③OA2=OD•OP;④OA(CP﹣CD)=AP•CD,正确的结论有()个.A.1B.2C.3D.4解:①∵PC与⊙O相切于点C,∴∠PCB=∠A,∠P=∠P,∴△PBC∽△PCA,∴PC2=PA•PB;②∵OC⊥PC,∴PC•OC=OP•CD;③∵CD⊥AB,OC⊥PC,∴OC2=OD•OP,∵OA=OC,∴OA2=OD•OP;④∵AP•CD=OC•CP﹣OA•CD,OA=OC,∴OA(CP﹣CD)=AP•CD,所以正确的有①,②,③,④,共4个.故选:D.5.如图,在Rt△ABC中,∠A=90°,AB=AC=8,点E为AC的中点,点F在底边BC上,且FE⊥BE,则CF长.解:作EH⊥BC于H,如图,∵∠A=90°,AB=AC=8,∴BC=AB=16,∠C=45°,∵点E为AC的中点,∴AE=CE=4,∵△CEH为等腰直角三角形,∴EH=CH==4,∴BH=12在Rt△ABE中,BE==4,在Rt△BEF中,∵EH⊥BF,∴BE2=BH•BF,即BF==,∴CF=BC﹣BF=16﹣=.故答案为.6.如图,在矩形ABCD中,点E在边AD上,把△ABE沿直线BE翻折,得到△GBE,BG 的延长线交CD于点F.F为CD的中点,连结CG,若点E,G,C在同一条直线上,FG=1,则CD的长为2+2,cos∠DEC的值为﹣1.解:∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠BCD=∠A=∠D=90°,∴∠AEB=∠EBC,∠BCG=∠DEC,由折叠的性质得:BG=BA,∠EGB=∠A=90°,∠GEB=∠AEB,∴CD=BG,∴∠EBC=∠GEB,∴BC=EC,∵点E,G,C在同一条直线上,∴∠CGF=90°,∠CGB=180°﹣∠EGB=90°,∵F为CD的中点,∴CF=DF,设CF=DF=x,则BG=CD=2x,∵∠CFG=∠BFC,∴△CFG∽△BFC,∴=,∴CF2=FG•BF,即x2=1×(1+2x),解得:x=1+或x=1﹣(舍去),∴CD=2x=2+2,∵∠DEC+∠ECD=90°,∠GFC+∠ECD=90°,∴∠DEC=∠GFC,∴cos∠DEC=cos∠GFC===﹣1,故答案为:2+2,﹣1.7.如图,在平面直角坐标系中,直线y=kx+1分别交x轴,y轴于点A,B,过点B作BC ⊥AB交x轴于点C,过点C作CD⊥BC交y轴于点D,过点D作DE⊥CD交x轴于点E,过点E作EF⊥DE交y轴于点F.已知点A恰好是线段EC的中点,那么线段EF的长是.解:因为AB的解析式为y=kx+1,所以B点坐标为(0,1),A点坐标为(﹣,0),由于图象过一、二、三象限,故k>0,又因为BC⊥AB,BO⊥AC,所以在Rt△ABC中,BO2=AO•CO,代入数值为:1=•CO,CO=k,同理,在Rt△BCD中,CO2=BO•DO,代入数值为:k2=1•DO,DO=k2又因为A恰好是线段EC的中点,所以B为FD的中点,OF=1+1+k2,Rt△FED中,根据射影定理,EO2=DO•OF,即(k++)2=k2•(1+k2+1),整理得(k﹣)(k+)(k2+2)(k2+1)=0,解得k=.根据中位线定理,EF=2GB=2DC,DC==,EF=2.8.如图,在菱形ABCD中,过点D作DE⊥CD交对角线AC于点E,连接BE,点P是线段BE上一动点,作P关于直线DE的对称点P',点Q是AC上一动点,连接P'Q,DQ.若AE=14,CE=18,则DQ﹣P'Q的最大值为.解:如图,连接BD交AC于点O,过点D作DK⊥BC于点K,延长DE交AB于点R,连接EP′并延长,延长线交AB于点J,作EJ关于AC的对称线段EJ′,则点P′的对应点P″在线段EJ′上.当点P是定点时,DQ﹣QP′=DQ﹣QP″,当D,P″,Q共线时,QD﹣QP′的值最大,最大值是线段DP″的长,当点P与B重合时,点P″与J′重合,此时DQ﹣QP′的值最大,最大值是线段DJ′的长,也就是线段BJ的长.∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,∵AE=14.EC=18,∴AC=32,AO=OC=16,∴OE=AO﹣AE=16﹣14=2,∵DE⊥CD,∴∠DOE=∠EDC=90°,∵∠DEO=∠DEC,∴△EDO∽△ECD,∴DE2=EO•EC=36,∴DE=EB=EJ=6,∴CD===12,∴OD===4,∴BD=8,=×OC×BD=BC•DK,∵S△DCB∴DK==,∵∠BER=∠DCK,∴sin∠BER=sin∠DCK===,∴RB=BE×=,∵EJ=EB,ER⊥BJ,∴JR=BR=,∴JB=DJ′=,∴DQ﹣P'Q的最大值为.解法二:DQ﹣P'Q=BQ﹣P'Q≤BP',显然P'的轨迹EJ,故最大值为BJ.勾股得CD,OD.△BDJ∽△BAD,BD2=BJ*BA,可得BJ=.故答案为:.9.在矩形ABCD中,点E为射线BC上一动点,连接AE.(1)当点E在BC边上时,将△ABE沿AE翻折,使点B恰好落在对角线BD上点F处,AE交BD于点G.①如图1,若BC=AB,求∠AFD的度数;②如图2,当AB=4,且EF=EC时,求BC的长.(2)在②所得矩形ABCD中,将矩形ABCD沿AE进行翻折,点C的对应点为C',当点E,C',D三点共线时,求BE的长.解:(1)①∵四边形ABCD是矩形,∴AD=BC,∠BAD=90°,∵BC=AB,∴AD=AB,∴tan∠ABD==,∴∠ABD=60°,由折叠的性质得:AF=AB,∴△ABF是等边三角形,∴∠AFB=60°,∴∠AFD=180°﹣∠AFB=120°;②由折叠的性质得:BF⊥AE,EF=EB,∵EF=EC,∴EF=EB=EC,∴BC=2BE,∵四边形ABCD是矩形,∴∠ABC=90°,AD=BC=2BE,AD∥BC,∴△ADG∽△EBG,∴==2,∴AG=2EG,设EG=x,则AG=2x,∴AE=3x,在△ABE中,BG⊥AE,∴AB2=AG•AE(射影定理),即42=2x•3x,解得:x=(负值已舍去),∴AE=3x=2,∴BE===2,∴BC=2BE=4,即BC的长为4;(2)当点E,C',D三点共线时,如图3,由②可知,BC=4,∵四边形ABCD是矩形,∴∠ABC=∠BCD=90°,AD=BC=4,CD=AB=4,AD∥BC,∴∠DCE=90°,∠CED=∠B'DA,由折叠的性质得:AB'=AB=4,∠B'=∠ABC=90°,∴∠DCE=∠B',DC=AB',∴△CDE≌△B'AD(AAS),∴DE=AD=4,∴CE===4,∴BE=BC+CE=4+4.10.如图,已知⊙O的半径为2,AB为直径,CD为弦,AB与CD交于点M,将弧CD沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.(1)求证:PC是⊙O的切线;(2)点G为弧ADB的中点,在PC延长线上有一动点Q,连接QG交AB于点E,交弧BC于点F(F与B、C不重合).问GE▪GF是否为定值?如果是,求出该定值;如果不是,请说明理由.解:(1)∵PA=OA=2,AM=OM=1,CM=,又∵∠CMP=∠OMC=90°,∴PC==2,∵OC=2,PO=4,∴PC2+OC2=PO2,∴∠PCO=90°,∴PC与⊙O相切;(2)GE•GF为定值,理由如下:如图2,连接GA、AF、GB,∵点G为弧ADB的中点,∴,∴∠BAG=∠AFG,∵∠AGE=∠FGA,∴△AGE∽△FGA,∴,∴GE•GF=AG2,∵AB为直径,AB=4,∴∠BAG=∠ABG=45°,∴AG=2,∴GE•GF=AG2=8.11.如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG•CE=CB•EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CHD=∠CGB=90°,∴△CHD≌△BGC(AAS),∴CH=BG=a,∴GH=CG﹣CH=a=CH,∵DH=DH,∠CHD=∠GHD=90°,∴△DGH≌△DCH(SAS),∴CD=GD;(3)解:如图3,过点D作DQ⊥CE于Q,S△CDG=•DQ•CG=CH•DG,∴CH==a,在Rt△CQD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴=,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠CGH=∠CNG,∴△GHN∽△CHG,∴,∴HN==a,∴MN=HM﹣HN=a,∴=12.在平面直角坐标系中,已知A(﹣4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.(1)求过A,B,C三点的抛物线的解析式;(2)求点D的坐标;(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径;若不存在,请说明理由.解:(1)令二次函数y=ax2+bx+c,则,∴,∴过A,B,C三点的抛物线的解析式为y=﹣x2﹣x+2.(2)以AB为直径的圆的圆心坐标为O′(﹣,0),∴O′C=,OO′=;∵CD为⊙O′切线∴O′C⊥CD,∴∠O′CO+∠OCD=90°,∠CO'O+∠O'CO=90°,∴∠CO'O=∠DCO,∴△O'CO∽△CDO,∴=,即=,∴OD=,∴D坐标为(,0).(3)存在,抛物线对称轴为x=﹣,设满足条件的圆的半径为r,则E的坐标为(﹣+r,|r|)或F(﹣﹣r,|r|),而E点在抛物线y=﹣x2﹣x+2上,∴|r|=﹣(﹣+r)2﹣(﹣+r)+2;∴r1=﹣1+,r2=﹣1﹣(舍去),r3=1+,r4=1﹣(舍去);故以EF为直径的圆,恰好与x轴相切,该圆的半径为或1+.。
直⾓投影定理及推⼴的证明2019-04-14直⾓投影定理在“机械制图”中的点、线、⾯的内容是⼀个很重要的定理。
之所以重要,是由于其在解决点、线、⾯在空间中的相对位置以及度量问题⽅⾯,起到了很关键的作⽤。
⽽画法⼏何中此类内容所占的分量⼜很⼤,所以熟练掌握该定理,也就抓住了画法⼏何中的关键点。
下⾯就直⾓投影定理及其推⼴定理的证明作详细介绍。
⼀、直⾓投影定理及逆定理的证明 1直⾓投影定理⼀边平⾏于某⼀投影⾯的直⾓,在该投影⾯上的投影仍是直⾓。
2定理的证明如图1所⽰:图1 已知:AB∥H⾯,∠ABC是直⾓。
求证:∠abc仍是直⾓。
证明:AB∥H⾯,BbH⾯,ABBb。
⼜ABBC,ABBb,AB投射⾯BCcb。
AB//H⾯,ab// AB。
由于ab∥AB,AB投射⾯BCcb,即得ab投射⾯BCcb。
abbc,即∠abc仍是直⾓。
证毕。
由以上定理可以得到其反⽅向的推断,称为逆定理。
3直⾓投影定理的逆定理⼀夹⾓的两边在投影⾯上的投影是直⾓,且夹⾓的其中⼀边平⾏于该投影⾯,则此夹⾓必为直⾓(如图1所⽰)。
4逆定理的证明已知:H⾯上投影abbc,且AB∥H⾯。
求证:ABBC。
证明:由正投影原理可知:投射⾯BbcCH⾯。
由已知abbc,⼜由于正投影⽽知BbH⾯,Bbab,abBbcC。
由题知AB∥ab,ABBbcC,ABBC。
证毕。
以上两条定理是表征⼀直⾓的状态,即两条相交直线的状态,把它们作推⼴,可以应⽤到两条异⾯垂直(即交叉垂直)的直线状态上,其推⼴得到的结论,称为定理推论。
⼆、定理推论及其证明1定理推论空间交叉垂直的两直线,当其中有⼀条直线平⾏于投影⾯时,则两直线在该投影⾯的投影仍相互垂直(如图2所⽰)。
2定理推论的证明如图2所⽰:图2 已知:空间交叉垂直的两直线ABCD,且AB∥H⾯。
求证:abcd。
证明:⾸先作⼀条辅助线,如图2(a)所⽰,过AB直线上任⼀点(取B点)作直线BE∥CD,则有BEAB。
由直⾓投影定理可知:beab。
射影定理所谓射影,就是正投影。
直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式: 如图,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:(1)(BD)2=AD·DC,(2)(AB)2=AD·AC ,(3)(BC)2=CD·CA。
直角三角形射影定理的证明一、(主要是从三角形的相似比推算来的)在△BAD与△BCD中,∵∠ABD+∠CBD=90°,且∠CBD+∠C=90°,∴∠ABD=∠C,又∵∠BDA=∠BDC=90°∴△BAD∽△CBD∴ AD/BD=BD/CD即BD2=AD·DC。
其余同理可得可证有射影定理如下:AB2=AD·AC,BC2=CD·CA两式相加得:AB2+BC2=(AD·AC)+(CD·AC) =(AD+CD)·AC=AC2 。
二、用勾股证射影∵AD2=AB2-BD2=AC2-CD2,∴2AD2=AB2+AC2-BD2-CD2=BC2-BD2-CD2=(BC+BD)(BC-BD)-CD2=(BC+BD)CD-CD2=( BC+BD-CD)CD=2BD×CD.故AD2=BD×CD.运用此结论可得:AB2=BD2+AD2=BD2+BD×CD=BD×(BD+CD) =BD×BC,AC2 =CD2+AD2=CD2+BD×CD=CD(BD+CD)=CD×CB.综上所述得到射影定理。
同样也可以利用三角形面积知识进行证明。
三、用三角函数证明由等积法可知:AB×BC=BD×AC在Rt△ABD和Rt△ABC中,tan∠BAD=BD/AD=BC/AB故AB×BC=BD×AC两边各除以tan∠BAD得:AB^2=AD×AC 同理可得BC2=CD·CA 在Rt△ABD和Rt△BCD中tan∠BAD=BD/AD cot∠BCD=CD/BD又∵tan∠BAD=cot∠BCD故BD/AD=CD/BD得BD^2=AD×CD。
直角三角形中的射影定理公式1. 射影定理的来历说到射影定理,大家可能会想:“这是什么神秘的东西?”其实,它就是直角三角形的一个小秘密,帮助我们理解三角形的关系。
想象一下,你在户外野餐,看到阳光下的三角形影子,突然就明白了这个定理的意义。
就像阳光照在你身上,给你带来了温暖,射影定理也让我们看到了三角形之间的奇妙联系。
1.1 什么是射影定理射影定理,说白了,就是在直角三角形中,某个角的高度(也就是从那个角到底边的垂直距离)跟其他两个边之间的关系。
你可以把这个定理想象成一个小魔法,帮我们找出三角形中的隐藏长度。
比如说,你在解一道几何题,突然发现这个定理能让你轻松解决难题,心中那种“原来如此”的感觉,简直让人如释重负!1.2 公式介绍接下来,我们来看看公式。
这公式可不复杂,写成一句话就是:一个直角三角形中,高度的平方等于两个直角边长度的乘积。
用数学语言来说就是:h² = a * b。
这h就是高度,a和b是直角边。
听起来是不是简单得像吃饭?这就跟做菜一样,只要掌握了基本的配方,哪怕是小白也能做出美味的菜肴。
2. 实际应用那么,射影定理能用在哪里呢?嘿嘿,别着急,这里就有好多小故事!想象一下,你在家装修,准备挂一幅画。
你要测量画的高度,得考虑到下面的家具和墙壁,运用射影定理,你可以准确计算出合适的高度。
这就像是一场数学和生活的完美结合,真是生活中的“数学小能手”啊。
2.1 在建筑中的应用再说说建筑行业,很多时候建筑师需要设计各种形状的房子,他们会用到射影定理。
比如说,要建一座斜屋顶,设计师可以通过这个定理,确保屋顶的斜度和高度都在合适的范围内。
想象一下,如果没有这个定理,屋顶可能会歪得像个“小山丘”,那可就笑话了!2.2 在航海中的应用再来谈谈航海。
船长在海上航行时,需要准确判断船只与岸边的距离。
通过运用射影定理,船长可以算出最安全的航线,避免与礁石“亲密接触”。
所以说,射影定理不仅在数学课堂上有用,生活中也是处处皆是,简直就是我们的“救命稻草”!3. 小结总结一下,射影定理就像一个隐藏在直角三角形中的小宝藏。
射影定理直角三角形射影定理,又称“欧几里德定理”,定理内容是直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式表达为:如右图,在Rt△ABC中,∠ACB=90°,cd是斜边ab上的高,则有射影定理如下:①CD²;=AD·DB,②BC²=BD·BA ,③AC²=AD·AB ;④AC·BC=AB·CD (等积式,可用面积来证明)1概述射影定理直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式Rt△ABC中,∠ACB=90°,cd是斜边ab上的高,则有射影定理如下:(1)(CD)^ 2;=AD·DB, (2)(BC)^2;=BD·BA , (3)(AC)^2;=AD·AB 。
等积式(4)ACXBC=ABXCD(可用面积来证明)2直角三角形所谓射影,就是正投影。
直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
[1]公式: 如图,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:(1)(BD)^2=AD·DC,(2)(AB)^2=AD·AC ,(3)(BC)^2=CD·CA。
等积式(4)AB×BC=AC×BD(可用“面积法”或相似来证明)(5)(AB)^2/(BC)^2=AD/CD [1]直角三角形射影定理的证明射影定理简图(几何画板):(主要是从三角形的相似比推算来的)一、在△BAD与△BCD中,∵∠ABD+∠CBD=90°,且∠CBD+∠C=90°,∴∠ABD=∠C,又∵∠BDA=∠BDC=90°∴△BAD∽△CBD∴AD/BD=BD/CD即BD²=AD·DC。
射影定理怎么巧妙记
从“数”的角度。
以等式AB²=BD·BC为例。
该等式出现的三条边:AB、BD、BC共由四个字母A、B、C、D组成,且都有一个公共的端点B,这个公共的端点一定是出现在斜边上的,这样就确定了一个字母,然后再将其他三个字母依次填入即可。
1
直角三角形射影定理,又称“欧几里德定理”,定理的内容是直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式表达为:在Rt△ABC中,∠ACB=90°,cd是斜边ab上的高,则有射影定理如下:①CD²;=AD·DB,②BC²=BD·BA,③AC²=AD·AB;
④AC·BC=AB·CD。
2
1.从一点向一条直线或一个平面作垂线,垂足就是这个点的射影。
一条线段上的各点的射影的连线就是这条线段的射影。
2.古书上指蜮,因为据说蜮这种动物能含沙喷射人影使人致病。
射影也是蜮的别名。
几何证明射影就是正投影,从一点到过顶点垂线垂线的垂足,叫做这点在这条直线上的正投影。
一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影,即射影定理。
直角三角形射影定理直角三角形射影定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)2=BD·DC,(2)(AB)2=BD·BC ,(3)(AC)2=CD·BC 。
证明:在△BAD与△ACD中,∠B+∠C=90°,∠DAC+∠C=90°,∴∠B=∠D AC,又∵∠BDA=∠ADC=90°,∴△BAD∽△ACD相似,∴AD/BD=CD/AD,即(A D)^2=BD·DC。
其余类似可证。
注:由上述射影定理还可以证明勾股定理。
由公式(2)+(3)得:(AB)2+(AC)2=BD·BC+CD·BC =(BD+CD)·BC=(BC)2即(AB)2+(AC)2=(BC)2。
任意三角形射影定理任意三角形射影定理又称“第一余弦定理”:设⊿ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有a=b·cosC+c·cosB,b=c·cosA+a·cosC,c=a·cosB+b·cosA。
注:以“a=b·cosC+c·cosB”为例,b、c在a上的射影分别为b·cosC、c·cosB,故名射影定理。
证明1:设点A在直线BC上的射影为点D,则AB、AC在直线BC上的射影分别为BD、CD,且BD=c·cosB,CD=b·cosC,∴a=BD+CD=b·cosC+c·cosB. 同理可证其余。
关于射影定理年级:高一 科目:数学 时间:12/3/2009 21:55:48 新6038898射影定理到底是什么意思啊?我班老师讲的时候我没听明白,事后问他他有不肯讲。
老师,你能给我讲细一点吗?解:射影定理射影定理 直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。
分析:Rt ΔABC 中,∠ACB =90° CD ⊥AB(1)AC 2=AD ×AB BC 2=BD ×AB(2)CD 2=AD ×DB文字描述:(1)直角三角形直角边的平方等于它在斜边上的射影与斜边的积(2)直角三角形斜边上的高等于两直角边在斜边上射影的积。
例:在Rt ΔABC 中,∠ACB =90°,CD ⊥AB 于D ,DE ⊥AC 于E ,DF ⊥BC 于F 求证:33BCAC BF AE = 证明:由∠ACB =90° CD ⊥AB 得AC 2=AD ×AB ,BC 2=BD ×AB ∴BD AD AB BD AB AD BCAC 22==⨯⨯ 由∠CDA =90° DE ⊥AC ,得AD 2=AE ×AC同理BD 2=BF ×BC∴BC BF AC AE BDAD 22⨯⨯= ∴BCBF AC AE BD AD BC AC 2244⨯⨯== ∴BF AE BCAC 33= 评注:直角三角形斜边上的高将其分成的两个直角三角形都与原三角形相似,由此推出的射影定理内容为:CD 2=AD ×DB BC 2=BD ×BA ,AC 2=AD ×AB。