谱线宽度、展宽
- 格式:ppt
- 大小:790.50 KB
- 文档页数:38
光源的谱线宽度是指光源发出的光在频率或波长上的分布范围。
谱线宽度可以用来描述光的频率或波长的分散程度,即光的单色性或色散性。
谱线宽度主要由光源的发射机制和环境条件等因素决定。
光源的发射机制包括原子、分子或固体材料的能级跃迁等过程,这些过程会导致光的频率或波长的分布。
环境条件如温度、压力等也会影响谱线宽度。
光源的谱线宽度可以通过测量光的频谱或波长谱来确定。
常用的测量方法包括光栅光谱仪、干涉仪等。
谱线宽度对于许多应用非常重要。
例如,在光谱分析中,谱线宽度决定了测量的分辨率和灵敏度。
在光通信中,谱线宽度决定了光纤传输的带宽和信号传输的速率。
在激光器中,谱线宽度决定了激光的单色性和相干性。
总之,光源的谱线宽度是描述光的频率或波长分布范围的重要参数,对于许多光学应用具有重要意义。
谱线宽度测量摘要:谱线宽度测量实验测量的是谱线的半高全宽。
为此对谱线线型进行分析,判断谱线线型为Voigt线型,再使用该线型对实验图像进行拟合,最终计算得出谱线宽度。
一、实验原理实际的单色辐射都包含一定的波长范围,谱线是分布在很窄的光谱范围的辐射。
通常规定谱线强度等于峰值一半处的宽度为谱线宽度的标志。
实验目的是测量谱线宽度,为此需将光场在空域中的描述转换到频域进行描述。
常用方法有通过透射光栅、棱镜、闪耀光栅等一次性分光的和通过L-G板,F-P板,共焦干涉仪等在器件内部进行多次反射透射的干涉方法。
相对而言,后者更适合于测量谱线宽度,因其可以形成强度均匀的谱线组,而前者一次分光的器件棱镜是分辨率太低,光栅则是光的利用率太低。
本实验使用L-G板进行测量。
L-G板结构如右图,光进入L-G板后,在上下板面间多次反射和透射,形成一系列平行相干光束,在透镜焦面上产生干涉条纹组。
由于L-G板的角色散,不同波长的光将在不同的纵向位置产生产生干涉,即纵向上的位移对应着波长变化。
对于某个基准波长,L-G板有一定的自由光谱范围,当光线从板内掠面出射时,近似有自由光谱范围与波长满足:∆λ=λ22ℎ−1n2−1−12,而该自由光谱范围在空间上对应的便是该波长相邻两个干涉级的距离。
以自由光谱范围对纵向位移进行定标可以测得谱线宽度。
二、实验装置实验装置如下图所示:图2实验装置图低压汞灯发出光经过透镜准直进入L-G板,出射的光经过透镜汇聚在在棱镜摄谱仪的入射狭缝处并产生干涉,棱镜摄谱仪通过棱镜分光作用,把不同的谱线的干涉线组区分开来,并在输出焦平面上1:1成像,最后通过CCD采集数据到计算机。
三、实验现象与分析处理调节光路准直,移动透镜,使得出射光能较好汇聚在摄谱仪入射狭缝处。
在摄谱仪输出端可以用肉眼观测到入射光经过棱镜分光后出现4条色带,分别是黄色,绿色,蓝色,紫色。
对应汞灯的理论谱线,可知这4条谱线分别为576.96nm和579.06nm对应的交叠的黄光,546.07nm对应的绿光,435.84nm的蓝紫光还有404.66nm对应的紫光。
光谱线展宽的物理机制 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN光谱线展宽的物理机制摘要本文首先介绍了原子光谱的形成和原子谱线的轮廓,以及用来定量描述谱线轮廓的三个物理量——谱线强度、中心频率和谱线半高宽。
接下来对光谱线展宽的各种物理机制作了定性或定量地分析。
详细地推导了谱线的自然展宽、多普勒展宽(高斯展宽)和洛伦兹展宽的半高宽公式。
并推导出了佛克脱半高宽、多普勒半高宽和洛伦兹半高宽之间的关系式。
给出了赫鲁兹马克展宽(共振展宽)的半高宽公式。
定性地分析了谱线的自吸展宽。
以类氢离子为例说明了同位素效应引起的同位素展宽。
定性地分析了原子的核自旋对谱线宽度的影响。
说明了在有外电场或内部不均匀强电场存在的情况下谱线会产生斯塔克变宽,在有外磁场存在的情况下谱线会产生塞曼变宽。
最后对光谱线展宽的各种物理机制做了一个简单的总结,指出光谱线展宽的实质是光的频率发生了变化,各种新频率光的叠加导致了光谱线的展宽。
并说明了对光谱线展宽的物理机制的研究,在提高光的单色性和物理量测量等方面具有重要的意义。
关键词:谱线展宽;物理机制;谱线轮廓;半高宽THE PHYSICAL MECHANISM OF SPECTRAL LINEBROADENINGABSTRACTFirstly, we introduce the formation of atomic spectrum and the outline of atomic spectral line in this paper, as well as three physical quantities—intensity of spectral line, center frequency and half width of spectral line profile which are used to describe spectral line profile quantitatively.Next we analyze various physical mechanism of spectral line broadening qualitatively or quantitatively. The natural half width of spectral line, half width of Doppler spectral line profil e (Gaussian spectral line profile) and half width of Lorentz spectral line profile are derived detailedly. And the relationship of half width of Voigt spectral line profile, half width of Doppler spectral line profile and half width of Lorentz spectral line profile is also derived detailedly. We introduce Holtsmark broadening (resonance broadening) and give half width of Holtsmark spectral line profile. It is introduced qualitatively how the Self-absorption broadening affects spectral line profile. Taking Hydrogenic ions for an example, we explain isotope broadening caused by Isotope effect. Spectral line broadening caused by nuclear spin is analyzed qualitatively. Stark effect can cause Stark broadening when there is external electric field or internal non-uniform strong electric field, and Zeeman effect can cause Zeeman broadening when there is external magnetic field.Finally, we make a summary on the physilcal mechanism of spectral line broadening, pointing out spectral line broadening is essentially a change in the frequency of spectral lines, and superposition of various spectral lines having a new frequency component leads to spectral linebroadening. The study on the physilcal mechanism of spectral line broadening has very important significance in many aspects, for example, the improving of spectral line's monochromaticity,the measurement of physical quantities and so on.KEY WORDS: spectral line broadening; physical mechanism; spectral Line profile; half width前言 (1)第一章原子谱线的轮廓 (2)§1.1 原子发光机理和光谱线的形成 (2)§1.2 原子谱线的轮廓 (2)第二章光谱线展宽的各种物理机制 (4)§2.1 自然宽度 (4)§2.2 多普勒展宽 (5)§2.3 洛伦兹展宽 (7)§2.4 赫鲁兹马克展宽 (9)§2.5 自吸展宽 (9)§2.6 佛克脱谱线宽度 (10)§2.7 谱线的超精细结构 (12)§2.7.1 同位素效应 (12)§2.7.2 原子的核自旋 (13)§2.8 场致变宽 (14)§2.8.1 斯塔克变宽 (14)§2.8.2 塞曼变宽 (15)总结 (17)参考文献 (18)致谢 (20)无论是原子的发射线轮廓或是吸收线轮廓,都是由各种展宽因素共同作用而成的。
2. 多普勒谱线展宽谱线展宽主要有自然展宽、碰撞展宽和多普勒展宽。
多普勒展宽直接于气体分子速度分布律有关,这一效应首先被里普奇(Lippich )在1870年提出,瑞利经过多年研究得到定量公式。
下面就导出多普勒谱线型函数。
假设发出激光的原子静止时其发光频率为0υ,当原子以x v 的速度沿x 轴向“接受器”运动时,由于多普勒效应使得“接受器”收到的频率为:⎪⎭⎫ ⎝⎛+≈-=c cx x υυυυυ1100 (14) 由于不同原子的x v 不同,所以“接受器”收到的是不同频率的光,使得激光谱线以0υ为中心被展宽。
由麦克斯韦速度分量分布律可以得到,速度x 分量在x v —x x dv v +的分子数比率为:()x kT mv x x M dv e kT m dv v f x 22122-⎪⎭⎫ ⎝⎛=π (15) 令()υg 代表其辐射频率落在υ附近单位频率间隔内的发光原子数比率,则有()()x x M dv v f d g =υυ()υg 与辐射强度()υI 成正比。
将c v x 00υυυ-=和υυd c dv x 0=代入(15)式,可得 ()()()υπυυυυυυd e kT m cd g kT mc 2020222--= 式中()υg 就是多普勒展宽的线型函数。
下面看一个例子。
例1:试由来自星体的光谱线或多普勒宽度确定星体的温度。
解: 静止原子由激发态回到基态发出的光波的频率0ν决定于两个态的能级差:E h ∆=0ν,h 为普朗克常数。
由于原子在运动,因而发射出来的光的频率不再是0ν而是一个分布,也就是谱线增宽了。
一个以速度v 运动的原子,沿x 轴发射的光的频率ν与0ν及x v 的关系为)1(0cv x -=νν, x v c =-)(00ννν 式中c 为光速。
横向产生的多普勒效应比纵向小得多而可以忽略。
由于在νννd +→之间的光强ννd I 与速度分量在x x x dv v v +→之间的原子数目X dN 成正比,即x v CdN dv I =由麦氏分布律x kT mv dv e kT m d x 2/2/12)2(-⋅=πN N 因而dv e I dv I kT mc v 2002)(20ννν--=上式表示原子发光的强度,由于多普勒效应引起的谱线强度按频率的分布,分布函数随频率变化的曲线如图1所示,图1 原子光谱中0υ谱线的多普勒加宽它是对0v 的一个对称分布曲线。
核磁谱线宽度与弛豫时间的关系
核磁共振(NMR)谱线宽度与弛豫时间之间存在着密切的关系。
核磁共振谱线宽度是描述NMR信号在频率轴上展宽的参数,而弛豫时间则是描述了核自旋在外加磁场中的热运动和相互作用导致的信号衰减的时间参数。
首先,我们来看T1弛豫时间。
T1弛豫时间是描述自旋系统中磁化强度沿外加磁场方向恢复到平衡态的时间。
在NMR谱线上,T1时间较长的核自旋会导致较窄的谱线宽度,因为这些核自旋的磁化强度恢复到平衡态的速度较慢,谱线展宽的程度较小。
相反,T1时间较短的核自旋会导致较宽的谱线,因为它们的磁化强度恢复到平衡态的速度较快,谱线展宽的程度较大。
其次,我们再来看T2弛豫时间。
T2弛豫时间是描述自旋系统中相干磁化强度衰减到初始值1/e时所需的时间。
在NMR谱线上,T2时间较长的核自旋会导致较窄的谱线宽度,因为这些核自旋的相干磁化强度衰减的速度较慢,谱线展宽的程度较小。
相反,T2时间较短的核自旋会导致较宽的谱线,因为它们的相干磁化强度衰减的速度较快,谱线展宽的程度较大。
另外,还有T2时间,它描述了自旋系统中各种不均匀因素导致
的相干磁化强度衰减的时间。
T2时间较短会导致较宽的谱线,因为
相干磁化强度衰减得较快,谱线展宽的程度较大。
总的来说,弛豫时间与核磁共振谱线宽度之间存在着直接的关系,弛豫时间越长,谱线宽度越窄;弛豫时间越短,谱线宽度越宽。
这种关系在NMR谱学中具有重要的意义,可以帮助我们理解样品的
性质和相互作用。
原子吸收光谱谱线宽度的影响
原子吸收光谱谱线宽度的影响主要体现在以下几个方面:
1. 自然展宽:能级间跃迁时,由于电子在能级之间的存在时间有限,存在能级中心的不确定性,导致谱线宽度有一个固有的自然展宽。
自然展宽与能级寿命相关,寿命越短,展宽越宽。
2. 碰撞展宽:在气体中,原子与其他物质发生碰撞会影响原子能级的寿命,从而导致谱线的展宽。
碰撞越频繁,展宽越宽。
碰撞展宽的大小与气体的密度和温度有关。
3. 多普勒展宽:原子运动引起的多普勒效应也会对谱线产生展宽。
根据多普勒效应,原子速度
越大,对光频率的偏移越大,从而导致谱线展宽。
多普勒展宽的大小与原子速度的分布和温度
有关。
4. 仪器展宽:测量过程中的仪器响应和分辨率也会对谱线宽度产生影响。
仪器的分辨率越低,
则谱线展宽越大。
总的来说,原子吸收光谱谱线宽度的影响因素非常复杂,包括自然展宽、碰撞展宽、多普勒展
宽和仪器展宽等多个方面的影响。
光谱的线宽展宽
线宽展宽是指光谱中的谱线在频率或波长方向上的展宽程度。
线宽展宽主要有两个原因:自然展宽和强度展宽。
1. 自然展宽:由于不确定性原理,能级存在一定的能量宽度不确定性,因此,能级之间的跃迁也会有一定的能量宽度。
这种能级间的跃迁导致的展宽称为自然展宽。
自然展宽与跃迁的寿命有关,寿命越短,自然展宽越大。
2. 强度展宽:强度展宽主要是由于不同原因导致的谱线强度的分布不均匀。
例如,光源的发射强度不均匀、光学仪器的分辨率限制、光路的散射等都会引起强度展宽。
总的来说,线宽展宽反映了谱线的稳定性和精细度。
在实际应用中,如果需要研究精细的谱线结构,需要尽量减小线宽展宽,提高光谱的分辨率;如果研究的是广谱特性,则允许一定的线宽展宽。
光谱线展宽的物理机制摘要本文首先介绍了原子光谱的形成和原子谱线的轮廓,以及用来定量描述谱线轮廓的三个物理量——谱线强度、中心频率和谱线半高宽。
接下来对光谱线展宽的各种物理机制作了定性或定量地分析。
详细地推导了谱线的自然展宽、多普勒展宽(高斯展宽)和洛伦兹展宽的半高宽公式。
并推导出了佛克脱半高宽、多普勒半高宽和洛伦兹半高宽之间的关系式。
给出了赫鲁兹马克展宽(共振展宽)的半高宽公式。
定性地分析了谱线的自吸展宽。
以类氢离子为例说明了同位素效应引起的同位素展宽。
定性地分析了原子的核自旋对谱线宽度的影响。
说明了在有外电场或内部不均匀强电场存在的情况下谱线会产生斯塔克变宽,在有外磁场存在的情况下谱线会产生塞曼变宽。
最后对光谱线展宽的各种物理机制做了一个简单的总结,指出光谱线展宽的实质是光的频率发生了变化,各种新频率光的叠加导致了光谱线的展宽。
并说明了对光谱线展宽的物理机制的研究,在提高光的单色性和物理量测量等方面具有重要的意义。
关键词:谱线展宽;物理机制;谱线轮廓;半高宽THE PHYSICAL MECHANISM OF SPECTRAL LINEBROADENINGABSTRACTFirstly, we introduce the formation of atomic spectrum and the outline of atomic spectral line in this paper, as well as three physical quantities—intensity of spectral line, center frequency and half width of spectral line profile which are used to describe spectral line profile quantitatively.Next we analyze various physical mechanism of spectral line broadening qualitatively or quantitatively. The natural half width of spectral line, half width of Doppler spectral line profile (Gaussian spectral line profile) and half width of Lorentz spectral line profile are derived detailedly. And the relationship of half width of Voigt spectral line profile, half width of Doppler spectral line profile and half width of Lorentz spectral line profile is also derived detailedly. We introduce Holtsmark broadening (resonance broadening) and give half width of Holtsmark spectral line profile. It is introduced qualitatively how the Self-absorption broadening affects spectral line profile. Taking Hydrogenic ions for an example, we explain isotope broadening caused by Isotope effect. Spectral line broadening caused by nuclear spin is analyzed qualitatively. Stark effect can cause Stark broadening when there is external electric field or internal non-uniform strong electric field, and Zeeman effect can cause Zeeman broadening when there is external magnetic field.Finally, we make a summary on the physilcal mechanism of spectral line broadening, pointing out spectral line broadening is essentially a change in the frequency of spectral lines, and superposition of various spectral lines having a new frequency component leads to spectral line broadening. The study on the physilcal mechanism of spectral line broadening has very important significance in many aspects, for example, the improving of spectral line's monochromaticity,the measurement of physical quantities and so on.KEY WORDS: spectral line broadening; physical mechanism; spectral Line profile; half width前言 (1)第一章原子谱线的轮廓 (2)§1.1 原子发光机理和光谱线的形成 (2)§1.2 原子谱线的轮廓 (2)第二章光谱线展宽的各种物理机制 (4)§2.1 自然宽度 (4)§2.2 多普勒展宽 (5)§2.3 洛伦兹展宽 (7)§2.4 赫鲁兹马克展宽 (9)§2.5 自吸展宽 (9)§2.6 佛克脱谱线宽度 (10)§2.7 谱线的超精细结构 (12)§2.7.1 同位素效应 (12)§2.7.2 原子的核自旋 (13)§2.8 场致变宽 (14)§2.8.1 斯塔克变宽 (14)§2.8.2 塞曼变宽 (15)总结 (17)参考文献 (18)致谢 (20)无论是原子的发射线轮廓或是吸收线轮廓,都是由各种展宽因素共同作用而成的。
原子光谱谱线展宽的测不准关系(实用版)目录一、引言二、原子光谱谱线展宽的原因三、测不准关系四、结论正文一、引言原子光谱谱线展宽是指原子在吸收或发射光子时,其谱线宽度变宽的现象。
这个现象与原子内部电子的能级结构密切相关。
在原子光谱谱线展宽的研究中,测不准关系是一个重要的概念。
本文将从原子光谱谱线展宽的原因入手,探讨测不准关系在其中的作用。
二、原子光谱谱线展宽的原因原子光谱谱线展宽主要是由于电子在原子中的运动不稳定所导致的。
在原子中,电子分布在不同的能级上,当电子从一个能级跃迁到另一个能级时,会吸收或发射一个光子。
这个过程会导致原子光谱谱线的展宽。
具体来说,原子光谱谱线展宽的原因主要有两个:1.多普勒效应:原子在吸收或发射光子时,由于热运动等原因,会导致原子的速度发生变化,从而产生多普勒效应。
多普勒效应会使得原子光谱谱线发生展宽。
2.量子不确定性:根据海森堡不确定性原理,粒子的位置和动量不能同时被精确测量。
在原子光谱谱线展宽的过程中,电子的跃迁涉及到能量和动量的变化,因此量子不确定性也会导致原子光谱谱线的展宽。
三、测不准关系测不准关系是指在测量一个物理量时,另一个物理量的不确定性会增加。
在原子光谱谱线展宽的研究中,测不准关系体现在以下两个方面:1.能量不确定性:由于量子不确定性,电子的能量不能被精确测量,因此原子光谱谱线的展宽能量也会存在不确定性。
2.宽度不确定性:原子光谱谱线展宽的宽度受到多普勒效应和量子不确定性的影响,因此其宽度也存在不确定性。
四、结论原子光谱谱线展宽的测不准关系是原子光谱研究的一个重要概念。
光谱线展宽的物理机制摘要本文首先介绍了原子光谱的形成和原子谱线的轮廓,以及用来定量描述谱线轮廓的三个物理量——谱线强度、中心频率和谱线半高宽。
接下来对光谱线展宽的各种物理机制作了定性或定量地分析。
详细地推导了谱线的自然展宽、多普勒展宽(高斯展宽)和洛伦兹展宽的半高宽公式。
并推导出了佛克脱半高宽、多普勒半高宽和洛伦兹半高宽之间的关系式。
给出了赫鲁兹马克展宽(共振展宽)的半高宽公式。
定性地分析了谱线的自吸展宽。
以类氢离子为例说明了同位素效应引起的同位素展宽。
定性地分析了原子的核自旋对谱线宽度的影响。
说明了在有外电场或内部不均匀强电场存在的情况下谱线会产生斯塔克变宽,在有外磁场存在的情况下谱线会产生塞曼变宽。
最后对光谱线展宽的各种物理机制做了一个简单的总结,指出光谱线展宽的实质是光的频率发生了变化,各种新频率光的叠加导致了光谱线的展宽。
并说明了对光谱线展宽的物理机制的研究,在提高光的单色性和物理量测量等方面具有重要的意义。
关键词:谱线展宽;物理机制;谱线轮廓;半高宽THE PHYSICAL MECHANISM OF SPECTRAL LINEBROADENINGABSTRACTFirstly, we introduce the formation of atomic spectrum and the outline of atomic spectral line in this paper, as well as three physical quantities—intensity of spectral line, center frequency and half width of spectral line profile which are used to describe spectral line profile quantitatively.Next we analyze various physical mechanism of spectral line broadening qualitatively or quantitatively. The natural half width of spectral line, half width of Doppler spectral line profile (Gaussian spectral line profile) and half width of Lorentz spectral line profile are derived detailedly. And the relationship of half width of Voigt spectral line profile, half width of Doppler spectral line profile and half width of Lorentz spectral line profile is also derived detailedly. We introduce Holtsmark broadening (resonance broadening) and give half width of Holtsmark spectral line profile. It is introduced qualitatively how the Self-absorption broadening affects spectral line profile. Taking Hydrogenic ions for an example, we explain isotope broadening caused by Isotope effect. Spectral line broadening caused by nuclear spin is analyzed qualitatively. Stark effect can cause Stark broadening when there is external electric field or internal non-uniform strong electric field, and Zeeman effect can cause Zeeman broadening when there is external magnetic field.Finally, we make a summary on the physilcal mechanism of spectral line broadening, pointing out spectral line broadening is essentially a change in the frequency of spectral lines, and superposition of various spectral lines having a new frequency component leads to spectral line broadening. The study on the physilcal mechanism of spectral line broadening has very important significance in many aspects, for example, the improving of spectral line's monochromaticity,the measurement of physical quantities and so on.KEY WORDS: spectral line broadening; physical mechanism; spectral Line profile; half width前言 (1)第一章原子谱线的轮廓 (2)§1.1 原子发光机理和光谱线的形成 (2)§1.2 原子谱线的轮廓 (2)第二章光谱线展宽的各种物理机制 (4)§2.1 自然宽度 (4)§2.2 多普勒展宽 (5)§2.3 洛伦兹展宽 (7)§2.4 赫鲁兹马克展宽 (9)§2.5 自吸展宽 (9)§2.6 佛克脱谱线宽度 (10)§2.7 谱线的超精细结构 (12)§2.7.1 同位素效应 (12)§2.7.2 原子的核自旋 (13)§2.8 场致变宽 (14)§2.8.1 斯塔克变宽 (14)§2.8.2 塞曼变宽 (15)总结 (17)参考文献 (18)致谢 (20)无论是原子的发射线轮廓或是吸收线轮廓,都是由各种展宽因素共同作用而成的。