谱线宽度测量
- 格式:docx
- 大小:213.09 KB
- 文档页数:4
原子吸收谱线的宽度
原子吸收谱线的宽度是指谱线在频率或波长上的展宽。
原子吸收谱线的宽度如下几个主要原因:
1. 自然展宽(Natural Broadening):根据不确定性原理,原子存在能级间的过渡是有一定的时间,因此导致谱线有一定的展宽。
自然展宽是由于能级之间的寿命有限,产生了能级的宽度。
自然展宽与能级寿命有关,能级寿命越短,自然展宽越大。
2. 热展宽(Thermal Broadening):由于原子处于热运动状态,热运动会导致原子产生多种速度,而不同速度的原子会产生多个微妙不同的多普勒效应引起的吸收峰,从而使谱线展宽。
热展宽与原子热运动速度的分布有关。
3. 压力展宽(Pressure Broadening):在高压条件下,原子与
周围气体分子碰撞的频率增加,这些碰撞对原子的能级造成扰动,从而导致谱线的展宽。
4. 光学展宽(Optical Broadening):光源本身的性质会对谱线
的宽度产生影响。
光源的发射带宽或仪器分辨率的限制会使得测得的谱线宽度变宽。
这些展宽机制可以是独立的影响,也可以相互作用。
因此,测量得到的原子吸收谱线的宽度是以上多种因素的综合结果。
测量激光谱线线宽一.实验目的加深了解法布里—泊罗标准具的多光束干涉原理;加深了解频域—时域对应测量的基本方法;掌握谱线线宽的测量方法。
二.实验内容掌握线宽测量光路的调整方法,掌握CCD系统在线宽测量上的应用;测量单频He-Ne 激光器的线宽;测定F-P标准具的精细常数。
三.实验原理1.F-P标准具多光束干涉原理使用F—P干涉仪测量He-Ne激光器谱线线宽的光路如下图1所示:图1:F—P干涉仪测量He-Ne激光器谱线线宽光路示意图激光束经凸透镜L1扩束,投射到F—P标准具上,F—P标准具将不同角度入射的光束变换为一组一组方向不同的平行光,换言之,某一角度入射的光线,经标准具两面多次反射之后,变成与光轴成某一角度的一组平行光,各组平行光经过透镜L2聚焦在L2焦平面不同半径位置上,形成一系列同心干涉条纹。
透镜L2实际为CCD前的镜头。
F—P是多光束干涉仪,其原理如图2所示:图2:多光束干涉原理图由多光束干涉计算结果表明:F—P腔标准具对于不同的波长的光波有不同的透射T:T=I出I0=T1T2V(1−RV)2+4RV∙sin2(K∙L′)(1)其中,I0:入射光强、I出:出射光强、r1:第一面的反射率、r2:二面的反射率、t1:第一面的透射率、t2:第二面的透射率、v:标准具内衰减系数、λ:波长、L:标准具厚度、α:折射角、L’ = Ln (n为玻璃折射率),R1=r12,R2=r22。
2.F-P标准具透过率T透射率T为极大值的条件即为:sin2(K×L′)=0,K×L′=mπ,m=1,2,3…即:2L’cosθ=mλ(2)3.自由光谱区当入射光为单色光时F—P仪的频谱是一系列的投射峰,相应地在屏空间上形成多级干涉条纹。
当射入光具有一定带宽时,当频率最小υ1的m级与频率最大υ2的m+1级重合时,Δυ=υ2−υ1即为仪器的自由光谱区。
Δυ=c2L‘cosθ(3)4. 标准具的透过率谱线宽度标准具的透过率谱线宽度δυ,即透过率为最大值的一半时所对应的频率宽度,在垂直入射近似下:T max=T1T2v (1−Rv)212T max =T 1T 2v 2(1−Rv )2=T 1T 2V (1−RV)2+4RV ∙sin 2[(K ∙L ′)+12δ(K ×L′)]联立解得:δυ=Δυ(1−RV)π=ΔυΔv π(4)5.精细常数标准具的精细常数有下式决定:F =Δυδυ(5)精细常数越大,标准具的分辨率越大。
谱线宽度测量摘要:谱线宽度测量实验测量的是谱线的半高全宽。
为此对谱线线型进行分析,判断谱线线型为Voigt线型,再使用该线型对实验图像进行拟合,最终计算得出谱线宽度。
一、实验原理实际的单色辐射都包含一定的波长范围,谱线是分布在很窄的光谱范围的辐射。
通常规定谱线强度等于峰值一半处的宽度为谱线宽度的标志。
实验目的是测量谱线宽度,为此需将光场在空域中的描述转换到频域进行描述。
常用方法有通过透射光栅、棱镜、闪耀光栅等一次性分光的和通过L-G板,F-P板,共焦干涉仪等在器件内部进行多次反射透射的干涉方法。
相对而言,后者更适合于测量谱线宽度,因其可以形成强度均匀的谱线组,而前者一次分光的器件棱镜是分辨率太低,光栅则是光的利用率太低。
本实验使用L-G板进行测量。
L-G板结构如右图,光进入L-G板后,在上下板面间多次反射和透射,形成一系列平行相干光束,在透镜焦面上产生干涉条纹组。
由于L-G板的角色散,不同波长的光将在不同的纵向位置产生产生干涉,即纵向上的位移对应着波长变化。
对于某个基准波长,L-G板有一定的自由光谱范围,当光线从板内掠面出射时,近似有自由光谱范围与波长满足:∆λ=λ22ℎ−1n2−1−12,而该自由光谱范围在空间上对应的便是该波长相邻两个干涉级的距离。
以自由光谱范围对纵向位移进行定标可以测得谱线宽度。
二、实验装置实验装置如下图所示:图2实验装置图低压汞灯发出光经过透镜准直进入L-G板,出射的光经过透镜汇聚在在棱镜摄谱仪的入射狭缝处并产生干涉,棱镜摄谱仪通过棱镜分光作用,把不同的谱线的干涉线组区分开来,并在输出焦平面上1:1成像,最后通过CCD采集数据到计算机。
三、实验现象与分析处理调节光路准直,移动透镜,使得出射光能较好汇聚在摄谱仪入射狭缝处。
在摄谱仪输出端可以用肉眼观测到入射光经过棱镜分光后出现4条色带,分别是黄色,绿色,蓝色,紫色。
对应汞灯的理论谱线,可知这4条谱线分别为576.96nm和579.06nm对应的交叠的黄光,546.07nm对应的绿光,435.84nm的蓝紫光还有404.66nm对应的紫光。
激光的谱线宽度
激光的谱线宽度是指激光光谱中的频率范围,通常以全宽半最大来表示。
这是通过测量光谱中光强度减半的频率范围来定义的。
激光的谱线宽度取决于多种因素,包括激光器的设计、激发源、放大介质等。
以下是一些影响激光谱线宽度的因素:
激光器类型:不同类型的激光器(例如气体激光器、半导体激光器、固体激光器等)具有不同的谱线宽度特性。
激发源的性质:激发源的特性,如波长、功率和稳定性,会影响激光谱线的宽度。
激光谐振腔:谐振腔的设计和长度也会对谱线宽度产生影响。
激光放大介质:使用的放大介质(例如气体、固体、液体等)的性质会影响激光的谱线宽度。
激光器的工作状态:激光器的工作状态,如温度和压力,也可能对谱线宽度产生影响。
激光器通常被设计为具有较窄的谱线宽度,特别是在科学、医学和通信等领域中需要高分辨率和精确频率的应用。
激光的谱线宽度越窄,其在精密测量和传输信息方面的性能就越好。
光信息专业实验报告:谱线宽度的测量【实验原理】实际的单色辐射都包含一定的波长范围。
所谓谱线,只不过是一个很狭窄的光谱区域辐射而已。
在这区域辐射的能量分布,从中心到边缘迅速递减,如图1所示。
通常规定在谱线强度等于峰值半处的宽度作为谱线宽度的标志及比较的标准,称此宽度为半高全宽,简称谱线宽度。
[1]图1 谱线强度曲线在透镜焦面上产生上下对称的两组干涉条纹,它们有固定的光程差Δ=2h(n2-sin2Φ)1/2 (1)故在透镜焦面上形成干涉极大值(亮条纹)的条件为:2h(n2-sin2Φ)1/2=Kλ K=1,2,3, (2)式中K为干涉光谱数序,λ为入射光波的波长,h为L—G板厚,n为L—G板的折射率,Φ为出射角。
设dΦ对应与光谱数序间隔dK的角距离,则相邻光谱数序(dK=1)的角距离为:dΦ= -λ(n2-sin2Φ)1/2(h sin2Φ)-1 (3)定义dΦ/dλ为盖格板的角色散。
由式(2)微分(K不变)得:dΦ/dλ=-2(sin2Φ)-1[(n2-sin2Φ)/λ-ndn/dλ] (4)图2 实验原理图当以两个不同波长λ1、λ2入射时对应有两套干涉条纹,它们的位置有相对位移。
当波长差(Δλ=λ1-λ2)大得使相邻数序重叠,我们称这时的Δλ值为色散范围。
一般Φ≈π/2,则色散范围为:Δλ=λ2(n2-1)1/2(2h)-1(n2-1-nλdn/dλ)-1 (5)当光线从板内掠面出射时Φ=90o,ε很小,可采用近似计算方法,则有sinΦ≈1,sin2Φ=(π-2ε).若ndn/dλ<<(n2-sin2Φ)/λ,则式(3)(4)(5)可化为:ΔΦ=-λ(n2-1)1/2/2hε (6)dΦ/dλ= -(n2-1)/λε (7)Δλ=λ2(2h)-1(n2-1)-1/2 (8)则波长λ与λ-dλ的干涉亮条纹相对角位移为:dΦ=[(n2-1)/λε]dλ (9)以L表示波长λ的干涉条纹相邻数序的线距离,l表示波长λ与λ-dλ的干涉条纹相同数序的线距离。
激光原理谱线宽度
激光原理谱线宽度,是激光技术中一个重要的指标,它可以反映激光器的性能、协同性和稳定性。
激光原理谱线宽度是指激光器输出的有效谱线宽度,它以半高宽的形式表示,它的大小可以反映激光输出的频率稳定性,即激光器输出的频率分布的紧凑程度。
激光原理谱线宽度可以由几个因素决定:一是激光器本身的结构,激光器结构越复杂、越可靠,其谱线宽度越窄;二是激光器工作时的环境因素,激光器的环境温度、湿度和振动都会影响激光谱线的宽度;三是激光器的激发方式,激发方式不同,激光谱线的宽度也会有所不同;四是激光器的反馈机制,反馈机制的设计可以改善激光的频率稳定性,从而改善激光谱线的宽度。
激光原理谱线宽度的重要性在于,它可以反映激光器的性能、协同性和稳定性。
它是衡量激光器质量的重要指标,它可以反映激光器的谱线窄化程度,也可以反映激光器的频率稳定性。
谱线宽度越窄,说明激光器的性能越好,谱线宽度越窄,激光器的频率稳定性越高。
激光原理谱线宽度的测量可以采用光谱仪或激光谱测量仪。
光谱仪可以测量激光谱线宽度,它可以读出激光器输出的谱线宽度,用半高宽来表示。
激光谱测量仪也可以测量激光谱线宽度,它可以读取激光谱线宽度,并可以用曲线图形来表示激光谱线的宽度。
激光原理谱线宽度是激光技术中重要的指标,它可以反映激光器的性能、协同性和稳定性。
正确的测量激光原理谱线宽度,可以使激光输出的频率分布更加紧凑,从而提高激光器的性能和稳定性。
总之,激光原理谱线宽度是激光技术中重要的指标,它反映了激光器的性能、协同性和稳定性。
激光原理谱线宽度的测量是激光技术中重要的环节,正确测量激光原理谱线宽度,可以使激光器的输出性能更加完善,从而提高激光器的性能和稳定性。
光谱宽度和线宽是描述光谱特性的两个常用参数。
光谱宽度指的是光谱或光谱特性的波长范围的量度,用于描述光谱分布的宽度。
它通常用于描述光源、发射光谱或吸收光谱的特性。
根据不同的定义方式,光谱宽度可以有不同的测量方法。
线宽则通常是指线状光谱的半高全宽,也就是单色辐射的波长范围。
线宽的大小可以用来衡量发射光谱的线型宽窄程度,其值越小,说明单色光的纯度越高。
在实践中,为了更精确地测量线宽,通常需要将光场在空域中的描述转换到频域进行描述,以便更好地形成强度均匀的谱线组,更方便地测量谱线宽度。
在实际应用中,可以根据不同的需求和测量条件选择适当的测量方法和参数,以准确描述光谱特性和性能。