弹性力学 第六章 柱体的扭转与弯曲
- 格式:pdf
- 大小:614.09 KB
- 文档页数:23
弹性力学简答题汇总1. (8分)弹性力学中引用了哪五个基本假定?五个基本假定在建立弹性力学基本方程时有什么用途?答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分)1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。
3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。
因此,反应这些物理性质的弹性常数(如弹性模量E 和泊松比μ等)就不随位置坐标而变化。
4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。
5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸和形状进行计算。
同时,在研究物体的变形和位移时,可以将它们的二次幂或乘积略去不计,使得弹性力学的微分方程都简化为线性微分方程。
2. (8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征? 答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为:平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy 平面,外力沿板厚均匀分布,只有平面应力分量x σ,y σ,xy τ 存在,且仅为x,y 的函数。
平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy 平面,外力沿z 轴无变化,只有平面应变分量x ε,y ε,xy γ存在,且仅为x,y 的函数.3. (8分)常体力情况下,按应力求解平面问题可进一步简化为按应力函数 求解,应力函数 必须满足哪些条件?答:(1)相容方程:ϕ4∇=0(2)应力边界条件 (3)若为多连体,还须满足位移单值条件。
扭转问题的位移解法学习思路:本节讨论自由扭转问题的位移解法。
首先建立自由扭转的位移假设:一是刚截面假设;二是扭转的翘曲位移与轴线方向坐标无关。
通过上述假设,将柱体的扭转位移用横截面的翘曲表示,因此使得问题的基本未知量简化成为翘曲函数(x,y)。
基本未知量翘曲函数(x,y)。
确定后,通过基本方程,将应力分量、应变分量用翘曲函数表示。
位移表示的平衡微分方程要求翘曲函数满足调和方程。
因此只要选取的翘曲函数是调和函数,自然满足自由扭转问题的基本方程。
自由扭转问题的边界条件,可以分为两个部分:侧面边界条件和端面边界条件。
对于自由扭转,侧面边界不受力。
根据这一条件,可以转化为翘曲函数与横截面边界的关系。
端面采用合力边界条件,就是端面应力的合力为扭矩T。
这一边界条件,采用翘曲函数表达相当复杂。
学习要点:1. 扭转位移假设;2. 扭转翘曲函数满足的基本方程;3. 扭转边界条件;4. 扭转端面边界条件;当柱体受外力矩作用发生扭转时,对于非圆截面杆件,其横截面将产生翘曲。
如果横截面翘曲变形不受限制,称为自由扭转;如果横截面翘曲变形受到限制,就是约束扭转。
本章讨论的柱体扭转问题为自由扭转。
对于柱体的自由扭转,假设柱体的位移约束为固定左端面任意一点和相应的两个微分线素,使得柱体不产生刚体位移。
柱体右端面作用一力偶T,侧面不受力。
设柱体左端面形心为坐标原点,柱体轴线为z 轴建立坐标系。
柱体扭转时发生变形,设坐标为 z 的横截面的扭转角为,则柱体单位长的相对扭转角为。
而横截面的扭转角z。
对于柱体的自由扭转,首先考察柱体的表面变形。
观察可以发现,柱体表面横向线虽然翘曲,但是各个横向线的翘曲是基本相同的,而且横向线的轮廓线形状基本不变。
根据上述观察结论,对柱体内部位移作以下的假设:1.刚截面假设。
柱体扭转当横截面翘曲时,它在Oxy平面上的投影形状保持不变,横截面作为整体绕z 轴转动,如图所示。
当扭转角很小时,设OP=,则P点的位移为2.横截面的翘曲位移与单位长度的相对扭转角成正比,而且各个截面的翘曲相同,即w=(x,y)。
第六章平面问题的直角坐标解知识点平面应变问题应力表示的变形协调方程应力函数应力函数与双调和方程平面问题应力解法逆解法简支梁问题矩形梁的级数解法平面应力问题平面应力问题的近似性应力分量与应力函数应力函数与面力边界条件应力函数性质悬臂梁问题楔形体问题一、内容介绍对于实际工程结构的某些特殊形式,经过适当的简化和力学模型的抽象处理,就可以归结为弹性力学的平面问题,例如水坝,受拉薄板等。
这些问题的特点是某些基本未知量被限制在平面内发生的,使得数学上成为二维问题,从而简化了这些问题的求解困难。
本章的任务就是讨论弹性力学平面问题:平面应力和平面应变问题。
弹性力学平面问题主要使用应力函数解法,因此本章的工作从推导平面问题的基本方程入手,引入应力函数并且通过例题求解,熟悉和掌握求解平面问题的基本方法和步骤。
本章学习的困难是应力函数的确定。
虽然课程讨论了应力函数的相关性质,但是应力函数的确定仍然没有普遍的意义。
这就是说,应力函数的确定过程往往是根据问题的边界条件和受力等特定条件得到的。
二、重点1、平面应变问题;2、平面应力问题;3、应力函数表达的平面问题基本方程;4、应力函数的性质;5、典型平面问题的求解。
§6.1 平面应变问题学习思路:对于弹性力学问题,如果能够通过简化力学模型,使三维问题转化为二维问题,则可以大幅度降低求解难度。
平面应变问题是指具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束的弹性体。
这种弹性体的位移将发生在横截面内,可以简化为二维问题。
根据平面应变问题定义,可以确定问题的基本未知量和基本方程。
对于应力解法,基本方程简化为平衡微分方程和变形协调方程。
学习要点:1、平面应变问题;2、基本物理量;3、基本方程;4、应力表示的变形协调方程1、平面应变问题部分工程构件,例如压力管道、水坝等,其结构及其承载形式力学模型可以简化为平面应变问题,典型实例就是水坝,如图所示这类弹性体是具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束。
弹塑性⼒学总复习《弹塑性⼒学》课程第⼀篇基础理论部分第⼀章应⼒状态理论1.1 基本概念1.应⼒的概念应⼒:微分⾯上内⼒的分布集度。
从数学上看,应⼒sPF s ??=→?0lim ν由于微分⾯上的应⼒是⼀个⽮量,因此,它可以分解成微分⾯法线⽅向的正应⼒νσ和微分⾯上的剪应⼒ντ。
注意弹塑性⼒学中正应⼒和剪应⼒的正负号规定。
2.⼀点的应⼒状态(1)⼀点的应⼒状态概念凡提到应⼒,必须同时指明它是对物体内哪⼀点并过该点的哪⼀个微分⾯。
物体内同⼀点各微分⾯上的应⼒情况,称为该点的应⼒状态。
(2)应⼒张量物体内任⼀点不同微分⾯上的应⼒情况⼀般是不同的,这就产⽣了⼀个如何描绘⼀点的应⼒状态的问题。
应⼒张量概念的提出,就是为了解决这个问题。
在直⾓坐标系⾥,⼀点的应⼒张量可表⽰为=z zy zx yz yyx xz xy x ij στττστττσσ若已知⼀点的应⼒张量,则过该点任意微分⾯ν上的应⼒⽮量p就可以由以下公式求出:n m l p xz xy x x ττσν++= (1-1’a ) n m l p yz y yx y τστν++=(1-1’b )n m l p z zy zx z σττν++=(1-1’c )由式(1-1),还可进⼀步求出该微分⾯上的总应⼒p 、正应⼒νσ和剪应⼒v τ: 222z y x p p p p ++=(1-2a )nl mn lm n m l zx yz xy z y x τττσσσσν222222+++++=22ννστ-=p(1-2c )(3)主平⾯、主⽅向与主应⼒由⼀点的应⼒状态概念可知,通过物体内任⼀点都可能存在这样的微分⾯:在该微分⾯上,只有正应⼒,⽽剪应⼒为零。
这样的微分⾯即称为主平⾯,该⾯的法线⽅向即称为主⽅向,相应的正应⼒称为主应⼒。
主应⼒、主⽅向的求解在数学上归结为求解以下的特征问题:}{}]{[i n i ij n n σσ=(1-3)式中,][ij σ为该点应⼒张量分量构成的矩阵,n σ为主应⼒,}{i n 为主⽅向⽮量。
《弹性力学简明教程》习题提示和参考答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。
2-4 按习题2-2分析。
2-5 在的条件中,将出现2、3阶微量。
当略去3阶微量后,得出的切应力互等定理完全相同。
2-6 同上题。
在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。
其区别只是在3阶微量〔即更高阶微量〕上,可以略去不计。
2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。
2-8 在大边界上,应分别列出两个精确的边界条件;在小边界〔即次要边界〕上,按照圣维南原理可列出3个积分的近似边界条件来代替。
2-9 在小边界OA边上,对于图2-15〔a〕、〔b〕问题的三个积分边界条件相同,因此,这两个问题为静力等效。
2-10 参见本章小结。
2-11 参见本章小结。
2-12 参见本章小结。
2-13 注意按应力求解时,在单连体中应力分量必须满足〔1〕平衡微分方程,〔2〕相容方程,〔3〕应力边界条件〔假设>。
2-14 见教科书。
2-15 见教科书。
2-16 见教科书。
2-17 取它们均满足平衡微分方程,相容方程与x=0和的应力边界条件,因此,它们是该问题的正确解答。
2-18 见教科书。
2-19 提示:求出任一点的位移分量和,与转动量,再令,便可得出。
第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:〔1〕校核相容条件是否满足,〔2〕求应力,〔3〕推求出每一边上的面力从而得出这个应力函数所能解决的问题。
3-2 用逆解法求解。
由于本题中l>>h,x=0,l属于次要边界〔小边界〕,可将小边界上的面力化为主矢量和主矩表示。
3-3 见3-1例题。
3-4 本题也属于逆解法的问题。
首先校核是否满足相容方程。
再由求出应力后,并求对应的面力。
本题的应力解答如习题3-10所示。
应力对应的面力是:主要边界:所以在边界上无剪切面力作用。
《弹塑性力学》课程第一篇 基础理论部分第一章 应力状态理论1.1 基本概念1. 应力的概念应力:微分面上内力的分布集度。
从数学上看,应力sPF s ∆∆=→∆0lim ν由于微分面上的应力是一个矢量,因此,它可以分解成微分面法线方向的正应力νσ和微分面上的剪应力ντ。
注意弹塑性力学中正应力和剪应力的正负号规定。
2. 一点的应力状态(1)一点的应力状态概念凡提到应力,必须同时指明它是对物体内哪一点并过该点的哪一个微分面。
物体内同一点各微分面上的应力情况,称为该点的应力状态。
(2)应力张量物体内任一点不同微分面上的应力情况一般是不同的,这就产生了一个如何描绘一点的应力状态的问题。
应力张量概念的提出,就是为了解决这个问题。
在直角坐标系里,一点的应力张量可表示为⎪⎪⎪⎪⎭⎫⎝⎛=z zy zx yz yyx xz xy x ij στττστττσσ若已知一点的应力张量,则过该点任意微分面ν上的应力矢量p就可以由以下公式求出:n m l p xz xy x x ττσν++= (1-1’a ) n m l p yz y yx y τστν++=(1-1’b )n m l p z zy zx z σττν++=(1-1’c )由式(1-1),还可进一步求出该微分面上的总应力p 、正应力νσ和剪应力v τ: 222z y x p p p p ++=(1-2a )nl mn lm n m l zx yz xy z y x τττσσσσν222222+++++=(1-2b )22ννστ-=p(1-2c )(3)主平面、主方向与主应力由一点的应力状态概念可知,通过物体内任一点都可能存在这样的微分面:在该微分面上,只有正应力,而剪应力为零。
这样的微分面即称为主平面,该面的法线方向即称为主方向,相应的正应力称为主应力。
主应力、主方向的求解在数学上归结为求解以下的特征问题:}{}]{[i n i ij n n σσ=(1-3)式中,][ij σ为该点应力张量分量构成的矩阵,n σ为主应力,}{i n 为主方向矢量。
•弹性力学基本概念与原理•弹性力学分析方法与技巧•一维问题求解方法与实例分析•二维问题求解方法与实例分析•三维问题求解方法与实例分析•弹性力学在工程中应用与拓展弹性力学基本概念与原理弹性力学定义及研究对象弹性力学定义弹性力学是研究弹性体在外力作用下产生变形和内部应力分布规律的科学。
研究对象弹性力学的研究对象主要是弹性体,即在外力作用下能够发生变形,当外力去除后又能恢复原状的物体。
弹性体基本假设与约束条件基本假设弹性体在变形过程中,其内部各点之间保持连续性,且变形是微小的,即小变形假设。
约束条件弹性体的变形受到外部约束和内部约束的限制。
外部约束指物体边界上的限制条件,如固定端、铰链等;内部约束指物体内部的物理性质或化学性质引起的限制条件,如材料的不均匀性、各向异性等。
0102 03应力应力是单位面积上的内力,表示物体内部的力学状态。
在弹性力学中,应力分为正应力和剪应力。
应变应变是物体在外力作用下产生的变形程度,表示物体形状的改变。
在弹性力学中,应变分为线应变和角应变。
位移关系位移是物体上某一点位置的改变。
在弹性力学中,位移与应变之间存在微分关系,即位移的一阶导数为应变。
应力、应变及位移关系虎克定律及其适用范围虎克定律虎克定律是弹性力学的基本定律之一,它表述了应力与应变之间的线性关系。
对于各向同性材料,虎克定律可表示为σ=Eε,其中σ为应力,E为弹性模量,ε为应变。
适用范围虎克定律适用于小变形条件下的线弹性问题。
对于大变形或非线性问题,需要考虑更复杂的本构关系。
此外,虎克定律还受到温度、加载速率等因素的影响,因此在实际应用中需要注意其适用范围和限制条件。
弹性力学分析方法与技巧ABDC建立问题的数学模型根据实际问题,确定弹性体的形状、尺寸、边界条件、外力作用等,建立相应的数学模型。
选择合适的坐标系根据问题的特点和求解的方便性,选择合适的坐标系,如直角坐标系、极坐标系、柱坐标系等。
列出平衡方程根据弹性力学的基本方程,列出平衡方程,包括应力平衡方程、应变协调方程等。
弹塑性⼒学习题集(有图)·弹塑性⼒学习题集$殷绥域李同林编!…中国地质⼤学·⼒学教研室⼆○○三年九⽉⽬录—弹塑性⼒学习题 (1)第⼆章应⼒理论.应变理论 (1)第三章弹性变形.塑性变形.本构⽅程 (6)第四章弹塑性⼒学基础理论的建⽴及基本解法 (8)第五章平⾯问题的直⾓坐标解答 (9)第六章平⾯问题的极坐标解答 (11)第七章柱体的扭转 (13)(第⼋章弹性⼒学问题⼀般解.空间轴对称问题 (14)第九章* 加载曲⾯.材料稳定性假设.塑性势能理论 (15)第⼗章弹性⼒学变分法及近似解法 (16)第⼗⼀章* 塑性⼒学极限分析定理与塑性分析 (18)第⼗⼆章* 平⾯应变问题的滑移线场理论解 (19)附录⼀张量概念及其基本运算.下标记号法.求和约定 (21)习题参考答案及解题提⽰ (22){前⾔弹塑性⼒学是⼀门理论性较强的技术基础课程,它与许多⼯程技术问题都有着⼗分密切地联系。
应⽤这门课程的知识,能较真实地反映出物体受载时其内部的应⼒和应变的分布规律,能为⼯程结构和构件的设计提供可靠的理论依据,因⽽受到⼯程类各专业的重视。
《弹塑性⼒学习题集》是专为《弹塑性⼒学》(中国地质⼤学李同林、殷绥域编,研究⽣教学⽤书。
)教材的教学使⽤⽽编写的配套教材。
本习题集紧扣教材内容,选编了170余道习题。
作者期望通过不同类型习题的训练能有助于读者理解和掌握弹塑性⼒学的基本概念、基础理论和基本技能,并培养和提⾼其分析问题和解决问题的能⼒。
鉴于弹塑性⼒学课程理论性强、内容抽象、解题困难等特点,本书对所编习题均给出了参考答案,并对难度较⼤的习题给出了解题提⽰或解答。
…编者2003年9⽉%弹塑性⼒学习题第⼆章应⼒理论·应变理论~2—1 试⽤材料⼒学公式计算:直径为1cm 的圆杆,在轴向拉⼒P = 10KN 的作⽤下杆横截⾯上的正应⼒σ及与横截⾯夹⾓?=30α的斜截⾯上的总应⼒αP 、正应⼒ασ和剪应⼒ατ,并按弹塑性⼒学应⼒符号规则说明其不同点。
第6章 变分原理在结构力学中应用--柱体的扭转、薄板的弯曲本章继续介绍变分原理在结构力学中的应用,前三节是讲柱体扭转问题,后八节讲薄板弯曲问题。
6.1 柱体扭转的基本方程图6.1柱体扭转6.1.1变形假设柱体扭转时,其横截面在原平面上的投影只有刚体转动、但允许有轴向的自由翘曲。
如果取轴向为z 轴,横截面为xy 平面,α为单位长度的转角,z α为某个横截面的转角。
在xOy 平面内某一点在变形前后的位置分别为图6.2横截面变形cos ,sin x r y r θθ=='cos(),sin()x r y r θδθδ=+=+δδθθδθy r r r x x u -≈-≈-+=-=sin sin cos )cos(' δδθθδθx r r r y y v ≈≈-+=-=sin cos sin )sin('其中θ为该点变形前的角度,z αδ=为该点转过的角度。
因此位移场为zy u α-= zx v α=),(y x w αϕ=这里),(y x ϕ为自由翘曲函数,由此对应的应变为 0,0x y z xy εεεγ====)(y xxz -∂∂=ϕαγ)(x yyz +∂∂=ϕαγ 对应的变形协调条件为αγγ2-=∂∂-∂∂xy yzxz (6.1.1)6.1.2 平衡方程根据广义Hook 定律,由于 0,0x y z xy εεεγ====从而有0===z y x σσσ,因此应力平衡方程只剩一个0=∂∂+∂∂yx yzxz ττ (6.1.2)6.1.3 边界条件柱体两端边界上应用圣维南原理,有()d yz xz T x y S ττ=-⎰⎰ (6.1.3)其中T 为作用在柱体上的扭矩。
柱体两个侧面自由, 没有任何载荷, 那么应力边界条件为0=+y yz x xz n n ττ (6.1.4)其中(,)x y n n 为侧面的外法线方向。
6.2 柱体扭转的应力函数解法根据应力平衡方程0=∂∂+∂∂yx yzxz ττ 可以引进应力函数(,)x y Φ,也就是说假设 xz G yΦτα∂=∂ (6.2.1)yz G xΦτα∂=-∂ (6.2.2) 这样的xz τ和yz τ自动满足平衡方程。