《弹性力学》第六章 温度应力问题的基本解法
- 格式:ppt
- 大小:979.50 KB
- 文档页数:3
弹性力学知识点总结弹性力学是固体力学的重要分支,主要研究弹性体在外界因素作用下产生的应力、应变和位移。
以下是对弹性力学主要知识点的总结。
一、基本假设1、连续性假设:假定物体是连续的,不存在空隙。
2、均匀性假设:物体内各点的物理性质相同。
3、各向同性假设:物体在各个方向上的物理性质相同。
4、完全弹性假设:当外力去除后,物体能完全恢复到原来的形状和尺寸,不存在残余变形。
5、小变形假设:变形量相对于物体的原始尺寸非常小,可以忽略高阶微量。
二、应力分析1、应力的定义:应力是单位面积上的内力。
2、应力分量:在直角坐标系下,有 9 个应力分量,分别为正应力(σx、σy、σz)和剪应力(τxy、τyx、τxz、τzx、τyz、τzy)。
3、平衡微分方程:根据物体的平衡条件,可以得到应力分量之间的关系。
三、应变分析1、应变的定义:应变是物体在受力后的变形程度。
2、应变分量:包括线应变(εx、εy、εz)和剪应变(γxy、γyx、γxz、γzx、γyz、γzy)。
3、几何方程:描述了应变分量与位移分量之间的关系。
四、位移与变形的关系位移是指物体内各点位置的变化。
通过位移可以导出应变,从而建立起位移与变形之间的联系。
五、物理方程物理方程也称为本构方程,它描述了应力与应变之间的关系。
对于各向同性的线弹性材料,物理方程可以表示为应力与应变之间的线性关系。
六、平面问题1、平面应力问题:薄板在平行于板面且沿板厚均匀分布的外力作用下,板面上无外力作用,此时应力分量只有σx、σy、τxy。
2、平面应变问题:长柱体在与长度方向垂直的平面内受到外力作用,且沿长度方向的位移为零,此时应变分量只有εx、εy、γxy。
七、极坐标下的弹性力学问题在一些具有轴对称的问题中,采用极坐标更为方便。
极坐标下的应力、应变和位移分量与直角坐标有所不同,需要相应的转换公式。
八、能量原理1、应变能:物体在变形过程中储存的能量。
2、虚功原理:外力在虚位移上所做的虚功等于内力在虚应变上所做的虚功。
传热与热应力问题引言传热与热应力问题是热力学和材料科学领域的重要研究方向之一。
热传导是指物质内部由高温区向低温区传递热量的过程,而热应力则是由于温度梯度引起的物体内部的应力分布。
在工程实践中,传热与热应力问题对于材料的选择、结构设计和工艺优化具有重要影响。
本文将从传热和热应力的基本概念、传热机制、热应力的产生机理以及相关解决方法等方面进行详细介绍。
传热机制传热机制主要包括热传导、对流传热和辐射传热。
热传导是指热量通过物质内部的分子传递。
对流传热是指热量通过流体的对流传递,其中包括自然对流和强制对流两种形式。
辐射传热是指热量通过电磁辐射的方式传递,不需要介质的存在。
热传导是最常见的传热方式,其传热速率可以通过傅里叶热传导定律描述。
傅里叶热传导定律表明,热流密度与温度梯度成正比,与物质的导热系数成反比。
对于均匀材料,热传导可以通过导热系数、温度梯度和传热面积来计算。
对流传热是在流体介质中传递热量的过程,其传热速率可以通过牛顿冷却定律描述。
牛顿冷却定律表明,传热速率与温差和传热面积成正比,与流体的传热系数成正比。
对于自然对流,流体的传热系数可以通过格拉瑟数来计算;对于强制对流,流体的传热系数可以通过雷诺数和普朗特数来计算。
辐射传热是通过电磁辐射的方式传递热量的过程,其传热速率可以通过斯特藩-玻尔兹曼定律描述。
斯特藩-玻尔兹曼定律表明,辐射传热速率与物体的表面温度的四次方成正比,与物体的表面发射率成正比。
辐射传热在高温条件下起主导作用,是太阳能利用、高温热处理等领域的重要研究内容。
热应力的产生机理热应力是由于温度梯度引起的物体内部的应力分布。
当物体的温度发生变化时,由于不同部分的热膨胀系数不同,就会产生内部的应力。
热应力的产生机理可以通过热弹性力学和热塑性力学来描述。
热弹性力学是研究材料在温度变化下的弹性行为的学科。
根据胡克定律,弹性体的应力与应变成正比,比例系数为弹性模量。
当材料受到温度变化的影响时,其体积或尺寸也会发生变化,从而引起应力的产生。
第六章 温度应力的平面问题当弹性体的温度有所改变时,它的每一部分一般都将由于温度的升高或降低而产生膨胀或收缩。
但是由于弹性体所受到的约束,以及各个部分之间的相互约束,这种膨胀或收缩并不能自由地发生,于是就产生了应力——变温应力,或称为温度应力。
该应力是由于变温引起的,一定的变温才相应于一定的应力。
为了决定弹性体内的温度应力,须1)确定弹性体内的变温,按照热传导理论,根据弹性体的热学性质、内部热源、初始条件与边界条件,计算弹性体内各点的瞬时温度,即决定温度场,而前后两个温度场之差就是弹性体的变温;2)按照“热弹性力学”,根据弹性体的变温求出体内各点的温度应力,即决定应力场。
6.1关于温度场与热传导的一些概念热传导:热量从物体的一部分传递到另一部分,或从一个物体传入与之接触的另一个物体。
在热传导理论中,与弹性力学中一样,不考虑物质的微粒构造,而将物体当作连续介质。
一般,热传导过程中,物体内的各点的温度随着各点的位置不同和时间的经过而变化,因而温度T是位置坐标和时间t的函数TxT= (6.1)),,,(t zy在任一瞬时,所有各点的温度值的总体,称为温度场。
一个温度场,如果它的温度随时间而变,称为非定常温度场;相反地,如果不随时间变化,称为定常温度场。
在定常温度场中,温度只是位置坐标的函数,即zyTT (6.2)T=tx,),∂,(=∂如果温度场的温度随着三个位置坐标而变,就称为空间温度场或三维温度场;如果温度只随平面内的两个位置坐标而变,就称为平面温度场,数学表述是tTyxT=zT (6.3),),,(=∂∂而平面定常温度场的数学表述为0,0),,(=∂=∂∂=t T z T y x T T (6.3)在任一瞬时,连接场内温度相同的各点,就得到这一瞬时的一个等温面,如图6-1所示,虚线表示温度相差为T Δ的一些等温面。
x图6-1 等温面显然,沿着等温面,温度不变;沿着其他方向,温度都有变化,沿着等温面的法线方向,温度的变化率最大。
理论力学中的弹性力学与材料应力分析与设计案例分析弹性力学是力学中的一个重要分支,涉及弹性体的变形和应力响应。
在工程设计和材料分析中,正确理解和应用弹性力学理论非常关键。
本文将首先介绍弹性力学的基本原理和公式,并随后分析一个实际案例来展示如何使用弹性力学理论进行材料应力分析和设计。
一、弹性力学基本原理弹性力学研究的对象是处于弹性变形范围内的固体材料。
主要涉及的参数有应力、应变、模量等。
1. 应力(Stress)应力是指单位面积上的力,常用符号为σ。
根据弹性理论,应力与应变之间存在线性关系。
应力可以分为各向同性应力和各向异性应力。
2. 应变(Strain)应变是指物体的形变程度,常用符号为ε。
在弹性变形情况下,应变与应力之间存在线性关系。
3. 模量(Modulus)模量是描述与应力应变相关性的物理量。
常见的模量有弹性模量、剪切模量和泊松比。
弹性模量表示物体在受压缩或拉伸时的应力和应变关系,通常用符号E表示。
二、材料应力分析案例假设我们的案例是设计一个弹簧,需要分析材料的应力分布并进行设计验证。
1. 材料力学性质分析首先,我们需要获取材料的力学性质参数。
假设使用的材料是钢,具有已知的弹性模量E和屈服应力σy。
2. 弹簧设计与力学分析根据设计要求和材料的力学性质,我们可以计算出合适的弹簧长度、直径和线径。
接下来,我们进行力学分析,包括弹簧的应力和位移。
应力分析:根据弹性力学理论,弹簧的应力可以通过应变和材料的模量来计算。
假设弹簧在工作状态下产生的应变为ε,那么应力可以用以下公式计算:σ = E · ε。
位移分析:弹簧在受力时会发生弹性变形,根据胡克定律,弹簧的位移与力和弹簧刚度相关。
位移可以通过以下公式计算:δ = F / k,其中F为受力,k为弹簧刚度。
3. 弹簧设计验证通过以上的力学分析,我们可以得到弹簧的应力和位移。
我们需要验证这些结果是否满足设计要求和材料的承载能力。
比如,我们可以将应力与材料的屈服应力进行比较,确保不会出现超出材料极限造成破裂的情况。