弹性力学第六章温度应力问题的基本解法
- 格式:ppt
- 大小:10.33 MB
- 文档页数:7
弹性力学知识点总结弹性力学是固体力学的重要分支,主要研究弹性体在外界因素作用下产生的应力、应变和位移。
以下是对弹性力学主要知识点的总结。
一、基本假设1、连续性假设:假定物体是连续的,不存在空隙。
2、均匀性假设:物体内各点的物理性质相同。
3、各向同性假设:物体在各个方向上的物理性质相同。
4、完全弹性假设:当外力去除后,物体能完全恢复到原来的形状和尺寸,不存在残余变形。
5、小变形假设:变形量相对于物体的原始尺寸非常小,可以忽略高阶微量。
二、应力分析1、应力的定义:应力是单位面积上的内力。
2、应力分量:在直角坐标系下,有 9 个应力分量,分别为正应力(σx、σy、σz)和剪应力(τxy、τyx、τxz、τzx、τyz、τzy)。
3、平衡微分方程:根据物体的平衡条件,可以得到应力分量之间的关系。
三、应变分析1、应变的定义:应变是物体在受力后的变形程度。
2、应变分量:包括线应变(εx、εy、εz)和剪应变(γxy、γyx、γxz、γzx、γyz、γzy)。
3、几何方程:描述了应变分量与位移分量之间的关系。
四、位移与变形的关系位移是指物体内各点位置的变化。
通过位移可以导出应变,从而建立起位移与变形之间的联系。
五、物理方程物理方程也称为本构方程,它描述了应力与应变之间的关系。
对于各向同性的线弹性材料,物理方程可以表示为应力与应变之间的线性关系。
六、平面问题1、平面应力问题:薄板在平行于板面且沿板厚均匀分布的外力作用下,板面上无外力作用,此时应力分量只有σx、σy、τxy。
2、平面应变问题:长柱体在与长度方向垂直的平面内受到外力作用,且沿长度方向的位移为零,此时应变分量只有εx、εy、γxy。
七、极坐标下的弹性力学问题在一些具有轴对称的问题中,采用极坐标更为方便。
极坐标下的应力、应变和位移分量与直角坐标有所不同,需要相应的转换公式。
八、能量原理1、应变能:物体在变形过程中储存的能量。
2、虚功原理:外力在虚位移上所做的虚功等于内力在虚应变上所做的虚功。
传热与热应力问题引言传热与热应力问题是热力学和材料科学领域的重要研究方向之一。
热传导是指物质内部由高温区向低温区传递热量的过程,而热应力则是由于温度梯度引起的物体内部的应力分布。
在工程实践中,传热与热应力问题对于材料的选择、结构设计和工艺优化具有重要影响。
本文将从传热和热应力的基本概念、传热机制、热应力的产生机理以及相关解决方法等方面进行详细介绍。
传热机制传热机制主要包括热传导、对流传热和辐射传热。
热传导是指热量通过物质内部的分子传递。
对流传热是指热量通过流体的对流传递,其中包括自然对流和强制对流两种形式。
辐射传热是指热量通过电磁辐射的方式传递,不需要介质的存在。
热传导是最常见的传热方式,其传热速率可以通过傅里叶热传导定律描述。
傅里叶热传导定律表明,热流密度与温度梯度成正比,与物质的导热系数成反比。
对于均匀材料,热传导可以通过导热系数、温度梯度和传热面积来计算。
对流传热是在流体介质中传递热量的过程,其传热速率可以通过牛顿冷却定律描述。
牛顿冷却定律表明,传热速率与温差和传热面积成正比,与流体的传热系数成正比。
对于自然对流,流体的传热系数可以通过格拉瑟数来计算;对于强制对流,流体的传热系数可以通过雷诺数和普朗特数来计算。
辐射传热是通过电磁辐射的方式传递热量的过程,其传热速率可以通过斯特藩-玻尔兹曼定律描述。
斯特藩-玻尔兹曼定律表明,辐射传热速率与物体的表面温度的四次方成正比,与物体的表面发射率成正比。
辐射传热在高温条件下起主导作用,是太阳能利用、高温热处理等领域的重要研究内容。
热应力的产生机理热应力是由于温度梯度引起的物体内部的应力分布。
当物体的温度发生变化时,由于不同部分的热膨胀系数不同,就会产生内部的应力。
热应力的产生机理可以通过热弹性力学和热塑性力学来描述。
热弹性力学是研究材料在温度变化下的弹性行为的学科。
根据胡克定律,弹性体的应力与应变成正比,比例系数为弹性模量。
当材料受到温度变化的影响时,其体积或尺寸也会发生变化,从而引起应力的产生。
弹性力学弹性体的应力与应变关系弹性力学是一门研究固体材料在外力作用下的变形和应力分布规律的学科。
其中,弹性体是一类能够在外力作用下发生形变,但恢复力可以将其恢复到原始状态的物质。
弹性体的应力与应变关系是弹性力学中的基本概念和重要理论。
一、什么是应力与应变在力学中,应力是物体受来自外界作用的力引起的单位面积内的力的大小。
它是描述物体受力情况的物理量。
应力可分为正应力和剪应力两种,正应力作用于物体的表面上的垂直方向,而剪应力则作用于物体的表面上的切向方向。
应变是描述材料形变程度的物理量,是物体在受力下发生变形时单位长度的变化。
应变也可分为正应变和剪应变两种,正应变是物体长度在受力作用下产生的相对变化量,而剪应变则是物体形状的变化量与原始尺寸之比。
二、背景知识弹性体的应力与应变关系可以通过背景知识来理解。
弹性体的主要特性是能够在外力的作用下发生形变,但当外力消失时,它能够恢复到原来的形状和尺寸。
这是因为弹性体的分子或原子之间存在着弹性力,当外力作用结束时,弹性力将趋于平衡,使得物体恢复到原来的状态。
三、胡克定律胡克定律是描述弹性体应力与应变关系的基本定律。
根据胡克定律,当外力作用于弹性体时,弹性体内部的应力与应变成正比。
具体数学描述如下:σ = Eε其中,σ代表应力,单位为帕斯卡(Pa),E代表弹性模量,单位为帕斯卡(Pa),ε代表应变,为无单位。
胡克定律适用于弹性体在线性弹性范围内,即应力与应变成正比,并且比例系数恒定。
此时的应力-应变关系为线性关系,称为胡克定律。
超出线性弹性范围后,材料会发生塑性变形。
四、弹性模量弹性模量是表征弹性体抵抗形变的能力大小的物理量。
它是胡克定律中比例系数的倒数,可以用来度量弹性体的刚度。
常见的弹性模量有:1. 杨氏模量(Young's Modulus):用E表示,描述的是物体在拉伸或压缩时的应变与应力之间的关系。
2. 剪切模量(Shear Modulus):用G表示,描述的是物体在受剪时的应变与应力之间的关系。
第六章 温度应力的平面问题当弹性体的温度有所改变时,它的每一部分一般都将由于温度的升高或降低而产生膨胀或收缩。
但是由于弹性体所受到的约束,以及各个部分之间的相互约束,这种膨胀或收缩并不能自由地发生,于是就产生了应力——变温应力,或称为温度应力。
该应力是由于变温引起的,一定的变温才相应于一定的应力。
为了决定弹性体内的温度应力,须1)确定弹性体内的变温,按照热传导理论,根据弹性体的热学性质、内部热源、初始条件与边界条件,计算弹性体内各点的瞬时温度,即决定温度场,而前后两个温度场之差就是弹性体的变温;2)按照“热弹性力学”,根据弹性体的变温求出体内各点的温度应力,即决定应力场。
6.1关于温度场与热传导的一些概念热传导:热量从物体的一部分传递到另一部分,或从一个物体传入与之接触的另一个物体。
在热传导理论中,与弹性力学中一样,不考虑物质的微粒构造,而将物体当作连续介质。
一般,热传导过程中,物体内的各点的温度随着各点的位置不同和时间的经过而变化,因而温度T是位置坐标和时间t的函数TxT= (6.1)),,,(t zy在任一瞬时,所有各点的温度值的总体,称为温度场。
一个温度场,如果它的温度随时间而变,称为非定常温度场;相反地,如果不随时间变化,称为定常温度场。
在定常温度场中,温度只是位置坐标的函数,即zyTT (6.2)T=tx,),∂,(=∂如果温度场的温度随着三个位置坐标而变,就称为空间温度场或三维温度场;如果温度只随平面内的两个位置坐标而变,就称为平面温度场,数学表述是tTyxT=zT (6.3),),,(=∂∂而平面定常温度场的数学表述为0,0),,(=∂=∂∂=t T z T y x T T (6.3)在任一瞬时,连接场内温度相同的各点,就得到这一瞬时的一个等温面,如图6-1所示,虚线表示温度相差为T Δ的一些等温面。
x图6-1 等温面显然,沿着等温面,温度不变;沿着其他方向,温度都有变化,沿着等温面的法线方向,温度的变化率最大。
理论力学中的弹性力学与材料应力分析与设计案例分析弹性力学是力学中的一个重要分支,涉及弹性体的变形和应力响应。
在工程设计和材料分析中,正确理解和应用弹性力学理论非常关键。
本文将首先介绍弹性力学的基本原理和公式,并随后分析一个实际案例来展示如何使用弹性力学理论进行材料应力分析和设计。
一、弹性力学基本原理弹性力学研究的对象是处于弹性变形范围内的固体材料。
主要涉及的参数有应力、应变、模量等。
1. 应力(Stress)应力是指单位面积上的力,常用符号为σ。
根据弹性理论,应力与应变之间存在线性关系。
应力可以分为各向同性应力和各向异性应力。
2. 应变(Strain)应变是指物体的形变程度,常用符号为ε。
在弹性变形情况下,应变与应力之间存在线性关系。
3. 模量(Modulus)模量是描述与应力应变相关性的物理量。
常见的模量有弹性模量、剪切模量和泊松比。
弹性模量表示物体在受压缩或拉伸时的应力和应变关系,通常用符号E表示。
二、材料应力分析案例假设我们的案例是设计一个弹簧,需要分析材料的应力分布并进行设计验证。
1. 材料力学性质分析首先,我们需要获取材料的力学性质参数。
假设使用的材料是钢,具有已知的弹性模量E和屈服应力σy。
2. 弹簧设计与力学分析根据设计要求和材料的力学性质,我们可以计算出合适的弹簧长度、直径和线径。
接下来,我们进行力学分析,包括弹簧的应力和位移。
应力分析:根据弹性力学理论,弹簧的应力可以通过应变和材料的模量来计算。
假设弹簧在工作状态下产生的应变为ε,那么应力可以用以下公式计算:σ = E · ε。
位移分析:弹簧在受力时会发生弹性变形,根据胡克定律,弹簧的位移与力和弹簧刚度相关。
位移可以通过以下公式计算:δ = F / k,其中F为受力,k为弹簧刚度。
3. 弹簧设计验证通过以上的力学分析,我们可以得到弹簧的应力和位移。
我们需要验证这些结果是否满足设计要求和材料的承载能力。
比如,我们可以将应力与材料的屈服应力进行比较,确保不会出现超出材料极限造成破裂的情况。
热应力温度改变时,物体由于外在约束以及内部各部分之间的相互约束,使其不能完全自由胀缩而产生的应力。
又称变温应力。
基本概念求解热应力,既要确定温度场,又要确定位移、应变和应力场。
与时间无关的温度场称定常温度场,它引起定常热应力;随时间变化的温度场叫非定常温度场,它引起非定常热应力。
热应力的求解步骤:①由热传导方程和边界条件(求非定常温度场还须初始条件)求出温度分布;②再由热弹性力学方程求出位移和应力。
全面定义定义1所谓热应力是指半成品干燥和烧成热加工中由于温差作用而产生的一种应力.热应力源包括升降温过程中砖坯内外及砖坯与环境温差卜来源文章摘要:本文定义了彩釉砖板面细小裂纹的随机性,建立它的力学模型.在此基础上阐述了它的形成机理和工艺控制。
定义2(()热应力:凡由于在搪玻璃材料中存在温度差而产生的应力称为热应力.(2)制胎成型应力:在铁胎制造过程中,由于卷板、冲压、组焊等操作所造成的应力来源文章摘要:<正> 质量优良的搪玻璃设备,其瓷层表面不仅要具有玻化程度适当,光滑平整致密,色泽均匀一致以及无棕孔、泡影,外来固体夹杂物,尤其不能有裂纹等缺陷。
但是,事实上,在搪玻璃设备的烧成过程中,常常会出现各种缺陷,其中瓷层裂纹是该厂搪玻璃产品中危害最大的一种缺陷。
一段时间以来,在我厂100ol反应罐盖的生产过程中,b型小咀r部位和小咀内壁瓷层常出现裂纹,并且裂纹一旦产生,就不能消除,最后只有打瓷返工,造成了大量的人力、物力浪费,并且,严重挫伤了工人的生产积极性。
定义32热应力的分类和特性:2·1$应力分类玻璃中由于存在温度差而产生的应力统称为热应力.浮法玻璃在退火过程中不可避免地会出现温度梯度.根据温度梯度的方向,玻璃板厚度方向的温度差所形成的热应力称作端面应力或厚度应力来源文章摘要:浮法玻璃退火的目的是消除或减小玻璃中的热应力。
本文从热应力的基本概念出发,分析讨论了热应力的起因、分类和特性,为正确制订浮法玻璃退火规范提供了理论依据。