《一元一次方程》第二课时参考教案
- 格式:doc
- 大小:55.50 KB
- 文档页数:6
《一元一次方程小结复习(第二课时)》教案我们主要复习列方程解实际问题。
列方程解实际问题的过程一般例1 某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼.制作1块大月饼要用0.05kg 面粉,1块小月饼要用0.02kg 面粉.现共有面粉4500kg ,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?分析一:等量关系:小月饼的块数=2×大月饼的块数.解:设用x kg 面粉生产大月饼,则用(4500-x )kg 面粉生产小月饼.45002.0.020.05x x-= x =2500.4500-x =2000.检验: x =2500是原方程的解且符合实际意义.答:用2500kg 面粉生产大月饼,用2000kg 面粉生产小月饼,能生产最多的盒装月饼.分析二:可列方程为 450020.020.05x x -=⨯ 分析三:解:设生产y 块大月饼,则生产2y 块小月饼. 0.05y+0.02×2y=4500.y=50000. 0.05y=2500. 0.02×2y=2000.答:用2500kg 面粉生产大月饼,用2000kg 面粉生产小月饼,能生产最多的盒装月饼.例2 为了备战学校体育节的乒乓球比赛活动,某班计划买5副乒乓球拍和若干盒乒乓球(多于5盒),该班体育委员发现在学校附近有甲、乙两家商店都在出售相同品牌的乒乓球拍和乒乓球,乒乓球拍每副售价100元,乒乓球每盒售价25元,经过体育委员的洽谈,甲商店给出每买一副乒乓球拍送一盒乒乓球的优惠;乙商店给出乒乓球拍和乒乓球全部九折的优惠.(1)若这个班计划购买6盒乒乓球,则在甲商店付款_____元,在乙商店付款_____元;(2)这个班购买多少盒乒乓球时,在甲、乙两商店付款相同?并求出此时需付款多少元?(3)若这个班购买乒乓球的数量暂时未定,选择哪家商店购买更合算?同学们能给出建议吗?分析:商店优惠方式甲商店:一副乒乓球拍送一盒乒乓球;乙商店:乒乓球拍和乒乓球全部九折.(1)在甲商店付款=5副乒乓球拍的价钱+(6-5)盒乒乓球的价钱=5×100+25=525(元),在乙商店付款=(5副乒乓球拍的价钱+6盒乒乓球的价钱)×0.9 =(5×100+6×25)×0.9=585 (元).(2)解:设购买x 盒乒乓球时,在甲、乙两商店付款相同.5×100+25(x-5)=(5×100+25x)×0.9 .x=30.(检验:x=30是原方程的解,且符合实际情况.)综合训练一、选择题(在每小题给出的四个选项中,只有一项是符合要求的) 1.将方程5x+2=x -5通过移项得5x -x=-5-2的根据是( ) A.加法交换律 B.分配律 C.等式的性质1D.等式的性质22.当x 取不同的值时,整式ax -b (其中a ,b 是常数)的值也不同,具体情况如表所示:则关于x 的方程ax=b -4的解为( ) A.x=-2 B.x=-1C.x=0D.x=13.在等式2×□-6=□中的“□”内填上一个数字,可使等式成立.则“□”内数字为( )A.4B.5C.6D.74.给出下列各说法:①3x+5是方程;②2x+5y=9是一元一次方程;③如果a=b ,那么ac=bc ;④x=-1是方程3x+22-1=2x -14−2x+15的解.正确的有( )A.②④B.①④C.②③D.③5.小文同学晚上写数学作业,在解方程“-5x+1=2x -a ”时,将“-5x ”中的负号抄漏了,解得x=2,则方程正确的解为( )A.x=87 B.x=78C.x=-67D.x=-766.下面解一元一次方程3(x+1)=x 的步骤中,3(x+1)=x 3x+3=x3x -x=-32x=-3x=-32没有依据“等式的性质”变形的是( )A.第①步和第②步B.第①步和第③步C.第②步和第③步D.第③步和第④步7.下列方程变形正确的是( ) A.由y0.3-1=1.2-0.3y 0.2,得10y 3-10=12-30y2B.方程3m=2m+3,移项,得3m -2m=3C.方程-75y=79,系数化为1,得y=-7579D.方程3-m -2=-5(m -1),去括号,得3-m -2=-5m -18.用200张彩纸制作圆柱,每张彩纸可制作圆柱侧面20个或底面60个,一个圆柱侧面与两个底面组成一个圆柱.为使制作的圆柱侧面和底面正好配套,设用x 张彩纸制作圆柱侧面,则可列方程为( )A.60x=20(200-x )B.20x2=60(200-x ) C.60x=20(200-x )2D.20x=60(200-x )29.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a ,b ,c 对应密文a+1,2b+4,3c+9.例如明文1,2,3对应密文2,8,18.如果接收方收到密文7,18,15,那么解密得到的明文为( )A.4,5,6B.6,7,2C.7,2,6D.2,6,710.一项工程,甲公司单独完成需要40天,乙公司单独完成需要60天.现在两公司合作,中途甲公司另有任务离开10天,完成这项工程需要的天数为( )A.25B.30C.24D.45二、填空题(将结果填在题中横线上)11.已知方程(m -3)x |m|-2+4=0是关于x 的一元一次方程,则m= . 12.已知关于x 的方程(m -1)x -3m=x 的解是x=4,则m 的值为 . 13.当x=4时,代数式5(x+2a )-3与ax+5的值相等,则a= . 14.如果方程2-x+13=x+76的解也是关于x 的方程2-a -x 3=0的解,那么a 的值是 .15.某超市规定,购买不超过50元的商品时,按全额收费;购买超过50元的商品时,超过部分按六折收费.某顾客在一次消费中,支付212元,那么在此次消费中该顾客购买了价值为 元的商品.三、解答题(解答应写出文字说明、证明过程或演算步骤) 16.解下列方程: (1)2(1-2x )=5x+8; (2)2x+13=1-x -14.17.某工厂生产一批太空漫步器(如图),每套设备包含3根立柱和4个脚踏板.工厂现有40名工人,每人每天平均生产36根立柱或48个脚踏板,应如何分配工人才能使每天生产的立柱和脚踏板恰好配套?18.小明解关于x 的方程2x -13=x+a2-3,由于粗心大意,在去分母时,方程右边的-312没有乘6,由此求得的解为x=2,试求a 的值,并求出原方程的解.19.下表是某次篮球联赛部分球队的积分表:(1)直接写出胜一场的积分和负一场的积分;(2)进行16场比赛后,某队说他们的总积分为45分,你认为可能吗?为什么?综合训练1.C2.D3.C4.D5.C6.B7.B8.D9.B 解析:由题意,得a+1=7,2b+4=18,3c+9=15,解得a=6,b=7,c=2. 10.B 11.-3 12.8 13.-2 14.7 解析:2-x+13=x+76, 去分母,得12-2(x+1)=x+7. 去括号,得12-2x -2=x+7. 移项、合并同类项,得-3x=-3. 系数化为1,得x=1. 将x=1代入2-a -x3=0,得2-a -13=0. 去分母,得6-(a -1)=0. 去括号,得6-a+1=0.解得a=7.15.320 解析:设购买了价值为x 元的商品,根据题意得,50+60%(x -50)=212,解得x=320.16.解:(1)2(1-2x )=5x+8. 去括号,得2-4x=5x+8. 移项,得-4x -5x=8-2. 合并同类项,得-9x=6. 系数化为1,得x=-23. (2)2x+13=1-x -14. 去分母,得4(2x+1)=12-3(x -1). 去括号,得8x+4=12-3x+3. 移项,得8x+3x=12+3-4. 合并同类项,得11x=11. 系数化为1,得x=1.17.解:设安排x 名工人生产立柱, 则有(40-x )名工人生产脚踏板,由题意,得4×36x=3×48(40-x ),解得x=20,40-x=20.答:安排20名工人生产立柱,20名工人生产脚踏板恰好配套. 18.解:去分母时方程右边的-3漏乘了6, 此时变形为2(2x -1)=3(x+a )-3. 将x=2代入,得2(2×2-1)=3(2+a )-3. 解得a=1. 则原方程应为2x -13=x+12-3. 去分母,得2(2x -1)=3(x+1)-18. 去括号,得4x -2=3x+3-18. 解得x=-13.19.解:(1)设胜一场积x 分,则由A 球队积分知负一场积36-10x6分,根据B 球队的积分,得9x+7×36-10x6=34,=1,解得x=3,此时36-10x6所以胜一场积3分,负一场积1分.(2)不可能.理由如下:设胜y场,则负(16-y)场,.3y+16-y=45,解得y=292因为y为非负整数,所以y=29不符合题意.所以总积分不可能为45分.214。
第三章一元一次方程3.4 实际问题与一元一次方程第2课时一、教学目标【知识与技能】1.理解商品销售中所涉及的进价、售价、利润和利润率等概念;2.能利用一元一次方程解决商品销售中的实际问题。
【过程与方法】经历运用一元一次方程解决商品销售中的盈亏问题,体会数学建模思想.【情感态度与价值观】使学生在从事探索性活动的学习过程中,形成良好的学习方式和学习态度;二、课型新授课三、课时第2课时,共4课时。
四、教学重难点【教学重点】掌握商品销售中成本(进价)、售价(卖价)、标价(原价)、利润、利润率、折扣等量之间的数量关系,知道销售中的盈亏取决于售价与成本之差.【教学难点】能够通过自主分析,建立一元一次方程模型解决同类型问题,并掌握解此类问题的一般思路.五、课前准备教师:课件、三角尺、打折标签等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课小明的妈妈在商场用180元购买一件衣服,据了解这件衣服的进价是120元,你知道这件衣服的利润和利润率各是多少吗?带着这个问题,本节课我们将学习运用一元一次方程解决销售中的盈亏问题.(出示课件2)(二)探索新知1.师生互动,探究销售中的盈余问题教师问1:生活中,我们经常可以在各种销售场合看见一些商品优惠信息,你知道它们的意思吗?(出示课件4)学生回答:5折就是按原价的50%销售.教师问2:完成下列各题:(出示课件5)1. 商品原价200元,九折出售,售价是__________元.2. 商品进价是150元,售价是180元,则利润是___________元,利润率是_____.3. 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是_________元.4. 某种品牌的彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为_________元.5. 某商品按定价的八折出售,售价是12.8元,则原定售价是________元.学生讨论后回答:(1)180;(2)30,20%;(3)0.9a;(4)1.25a;(5)16教师问3:以上问题中有哪些量?(出示课件6)学生回答:成本价(进价);标价(原价);销售价;利润;盈利;亏损;利润率.教师问4:这些量有何关系?学生回答:销售问题中的常用数量关系:(出示课件7)(1)售价、进价、利润的关系:商品利润= 商品售价-商品进价;(2)进价、利润、利润率的关系:利润率=商品利润商品进价×100%;(3)标价、折扣数、商品售价的关系:商品售价=标价×折扣数10;(4)商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率).教师问5:销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在该种情况下,售价与进价的大小.(1)盈利:售价进价(填“>”、“<”或“=”),此时,利润0(填“>”、“<”或“=”);(2)亏损:售价进价(填“>”、“<”或“=”),此时,利润0(填“>”、“<”或“=”);(3)不盈不亏:售价进价(填“>”、“<”或“=”),此时,利润0(填“>”、“<”或“=”).学生讨论后回答:(1)>,>;(2)<,<;(3)=,=.例1:一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25% ,另一件亏损25% ,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?(出示课件8)你估计盈亏情况是怎样的?A. 盈利B. 亏损C. 不盈不亏教师问6:销售的盈亏取决于什么?(出示课件9)师生共同讨论后解答如下:取决于总售价与总成本(两件衣服的成本之和)的关系.总售价(120元) >总成本盈利总售价(120元) <总成本亏损总售价(120元) =总成本不盈不亏教师问7:现在两件衣服的售价为已知条件,要知道卖这两件衣服是盈利还是亏损,还需要知道什么?(出示课件10)学生回答:两件衣服的成本(即进价).教师问8:如果设盈利的那件衣服的进价为x 元,根据进价、利润率、售价之间的关系,你能列出方程求解吗?同理,如果设另一件衣服的进价为y 元呢?师生共同解答如下:(出示课件11)解:(1) 设盈利25%的衣服进价是x 元,依题意得x+0.25 x=60.解得x=48.(2) 设亏损25%的衣服进价是y元,依题意得y-0.25y=60.解得y=80.两件衣服总成本:x+y=48+80=128 (元).因为120-128=-8(元)所以卖这两件衣服共亏损了8元.例2:某商品的零售价是900元,为适应竞争,商店按零售价打9折(即原价的90%),并再让利40元销售,仍可获利10%,求该商品的进价.(出示课件13)师生共同解答如下:解:设该商品的进价为每件x 元,依题意,得900×0.9-40=10% x +x,解得x=700.答:该商品的进价为700元.(三)课堂练习(出示课件15-19)1. 一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元2. 一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏3. 某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,而按原定价的九折出售,将赚20元,则这种商品的原价是()A.500元B.400元C.300元D.200元4. 某种商品的进价是400元,标价是600元,打折销售时的利润率为5%,那么此商品是打_____折出售.5. 某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?6. 现对某商品降价20%促销,为了使销售总金额不变,销售量要比原销售量增加百分之几?参考答案:1.C 解析:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).2.A3.C4.七5. 解:设商店最多可以打x折出售此商品,根据题意,得1500×x10=1000(1+5%)解得x = 7.答:商店最多可以打7折出售此商品.6. 解:设销售量要增加x.则由题意可知(1-20%)(1+x)=1.解得x = 0.25.答:销售量要比原销售量增加25%.(四)课堂小结今天我们学了哪些内容:销售问题中的两个基本关系式:(1)利润=售价-进价;(2)利润率=利润商品进价×100%.(1)式中等式左边的“利润”若为正,就是盈利;若为负,就是亏损.(2)式还可以变形为利润率×进价=售价-进价.(五)课前预习预习下节课(3.4)103页到104页的相关内容。
第2课时 解一元一次方程(二)教学目标1.准确并熟练的解一元一次方程;2.熟练地掌握一元一次方程的解法;3.使学生进一步理解在解方程时所体现出的化归思想方法;教学重点和难点1、进一步复习巩固解一元一次方程的解法步骤,2、灵活的运用解方程的方法。
教学手段引导——活动——讨论教学方法启发式教学教学过程下面方程的解法对吗?若不对,请改正 。
解方程:3141136x x --=-解:去分母()132-x 去括号 14126--=-x x移 项 1214x 6-+=+x合 并 210=x系数化为1 51=x 让学生通过观察发现其中的错误并进行改正,进一步熟悉解方程的步骤,为下面的环节做好铺垫。
解方程1、解方程的步骤:去分母——去括号——移项——合并同类项——系数化为一2、即学即练(1)2(x+3)-5(1-x)=3(x -1)(2)37524123--=+y y (加强解方程准确率的训练,通过练习,同桌交流总结出有关每一步的注意事项。
)3、归纳解一元一次方程的注意事项:(1)分母是小数时,根据分数的基本性质,把分母转化为整数;(2)去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;(3)去括号时,不要漏乘括号内的项,不要弄错符号;(4)移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;(5)系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;(6)不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法。
勇往直前1132231的差是与时,代数式、当+-=x x x=+-x x x 是互为相反数,则与、若代数式223122互为倒数的值与时,代数式、当3313x x x ++= (设计意图:灵活应用方程思想解决代数问题)(设计意图:培养学生发现问题解决问题的能力)感悟与收获1. 解一元一次方程的一般步骤及简单应用作业布置1.教材中习题3.3中选取。
科目
一元一次方程(第2课时)课型新授课
能让学生弄清方程、方程的解、解方程的含义,会检
多媒体、教材教学方法
教学流程
1.5 倍。
问长方形的长、宽各是多少?③某校女生占全体学生数的52%,比男生多80人,这个
1700+150x=2450
(3
学生数为
环节
上面各方程都只含有一
个未知数,未知数的次数
都是1,这样的方程叫做
一元一次方程。
、说明方程的概念。
、练习:根据下列条件列出方程:x的2倍与3的差是5;
用小黑板出示本节
课的教学目标。
标。
首
次
别叫做等
式
的左边和
右边。
4、练习出方程,并指出是不是一元一次方
:
(1)环形跑道一周长400米,
沿跑道跑多少周,可以跑3000m?
学生练习,教师巡
视、辅导。
练习答案:
(1)设跑x周。
复习
例题
方程的解。
人教版七年级上册数学3.2解一元一次方程(第2课时)教案一、内容一元一次方程的移项解法,用方程模型解决实际问题.2、内容解析本章的核心内容是“解方程”和“列方程”。
方程的解法是初中数学的核心内容,移项是解方程的基本步骤之一,是一种同解变形。
移项法则的依据是等式的性质1,运用移项法则则可以把含有未知数的项变号后都移到等号的一边,把不含未知数的项变号后都移到等号的另一边。
从而使方程向x=a的形式进行转化。
移项法则在后续学习其他方程、不等式、函数时经常使用。
“列方程”在所有方程类问题中占有重要的地位,贯穿于全章始终。
从实际背景中建立一元一次方程模型,结合这些模型讨论方程的解法,这样可以自然地反映所讨论的内容是从实际需要中产生。
解方程就是将复杂的方程向x=a的形式转化,其中化归思想起了的指导作用。
化归的思想在以后二元一次方程组、一元一次不等式、分式方程、一元二次方程的解法中都有所体现。
3、教学目标(1)理解移项法则,会解形如ax+b=cx+d的方程,体会等式变形中的化归思想. (2)能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值.4、教学难点:确定实际问题中的相等关系,建立形如ax+b=cx+d的方程,利用移项和合并同类项解一元一次方程。
5、教学过程设计1.复习解方程X + 5 = 7 2x – 3 = 62.创设情境问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。
这个班有多少学生?(1)这道题的相等关系是什么?(表示同一个量的两个式子相等)(2)如果设这个班有X名学生,本题中这批书的总数有几种表示方法?它们之间有什么关系?解:设这个班有X名学生,则这批书有______ 本或__________本,得(3)3X + 20 = 4X – 25 (表示同一个量的两个式子相等)思考:上面方程的两边都含有X 的项和常数项,怎样才能使它向X=a (常数)的形式转化呢?3X – 4X = - 25 - 20移项:把等式一边的某项变号后移到另一边,叫做移项思考:解方程中“移项”起了什么作用(通过移项,含有未知数的项和常数项分别列于方程的两边,使方程更接近于x=a 的形式)3.例3 解下列方程(学生尝试)(1)3X + 7=32 - 2X(2)X – 3 = X +1通过学生尝试练习,对照课本,学生之间互相检查、纠错,达到巩固移项的目的,且树立学生学好数学的信心。
5.3 解一元一次方程第二课时4.2.1教学目标1掌握一元一次方程中“去括号”和“去分母”的方法并能解这种类型的方程2掌握一元一次方程解法的一般步骤4.2.2学时重点会用“去括号”和“去分母”的方法解一元一次方程;掌握一元一次方程解法的一般步骤4.2.3学时难点教学难点:用去括号和去分母的方法解一元一次方程4.2.4教学活动活动1【导入】情景导入上节课我们学习了解一元一次方程,几天我们继续学习解一元一次方程,利用去括号和去分母的方法。
活动2【讲授】分析学案确定题目这节课的教学目标和教学重点和重点,大家请看前面大屏幕,请同学们一起阅读。
同学们在课下进行了自学,并完成了学案。
学案的完成情况如下。
做得比较好的学师有那些,做得比较好的学友有哪些。
做得比较好的组有哪些请看统计表,4组,1组3组,其他组要向他们学习。
从做题来看,我们看到任务1中的1题2题,比较好,任务二中的1、2两道题,以及任务三中的1,2(1)和最后一道简单应用做得比较好,这些题,作对的人数比较多,超过了4分之三,问题比较多的题有:我们看到任务1中的3题4题,比较好,任务二中的3、4两道题,以及任务三中解方程的后两道题;这些题,作对的人数少,不过三分之二,甚至不过三分之一,因此我们把这几道题作为展示和点评的重点。
设计意图:通过学案的分析,使学生解一元一次方程的问题得以暴漏,那些题是学生出现问题比较多,能够使教学具有针对性,提高课堂效率。
活动3【活动】学师点评教师点拨现在请各组对着六道题出现的问题进行交流,时间十五分钟,具体要求:各组的学友向对应的学师讲这六道题出现的问题,学师要逐一进行适时指导。
(教师走到学生中间进行指导)好,停止交流,请各组的师1对本组的友1课前展示题目进行点评,要求:点评从题的特点,解决方法,学友展示的优缺点等进行展示。
(25分钟)有请一组的师1,讲解(2)3(x-1)+2=2(x+3)+7,教师:很好,这道题应注意,去括号不变号有请二组的师1,讲解(3)5(x+1)-2(x-3)= -3教师:很好,这道题应注意,去括号要变号有请三组的师1,讲解(3) = 1+教师:很好,这道题应注意,去分母不要漏乘1有请四组的师1,讲解(4)1- =有请教师:很好,这道题应注意,去分母不要漏乘1,去括号要变号五组的师1,讲解(2)-=教师:很好,这道题应注意,去分母后去括号别出现错误。
教学目标知识与技能1、理解一元一次方程及解的概念,会检验一个数是不是某个方程的解;2、会根据数量关系或简单问题情境列一元一次方程。
过程与方法1、经历判断一元一次方程的过程,进一步理解一元一次方程的含义,2、培养学生[此文转于斐斐课件园]的观察能力和归纳总结能力,发展学生的抽象思维能力.情感与态度1、通过已知的方程推导出未知量,形成概念,感受数学的实际价值,从中发现事物发展变化的规律,并培养学生[此文转于斐斐课件园]的科学态度。
2、通过对概念的探究应用,让学生体验成功的喜悦,树立学好数学的自信心教学重点、难点教学重点:一元一次方程的概念及其会检验一个数是不是某个方程的解.教学难点:会根据数量关系或简单问题情境列一元一次方程.(一)创设情境,导入新知今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?【设计意图】通过生活问题引出课题,让学生思考,调动学生积极性,激发学习数学的兴趣. (二)自主探索,构建模型活动一:笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?【师生活动】活动一让学生带着问题去研究,找出等量关系,列出一元一次方程,组织学生进行小组交流,教师适当点拨引导。
【设计意图】通过实际问题的解决,激发学生学习兴趣,为下面问题的解决提供必要的思路。
活动二:用方程表示出下列变量间的关系,这些方程有什么共同点?(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700h,预计每月再使用150h,经过多少月这台计算机的使用时间达到规定检修时间2450h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?【师生活动】教师提出问题,学生先独立思考分析,然后组内交流,最后派代表阐述本组见解.发现个别问题及时解决,给予积极的评价。
【设计意图】通过对三个问题的解答思考,小组内合作交流,找到一元一次方程形式上的共同点,归纳总结出概念,培养了学生的合作交流意识和总结归纳问题的能力.活动三:探究方程的解出示一组数10、11、12,从这组数里面找到创设情境中,能使所列方程4x+2(35-x)=94左右两边相等的未知数的值,引出一元一次方程的解的概念.【设计意图】通过观察分析,得出一元一次方程的解的概念.(三)知识应用一、牛刀小试1、下列方程哪些是一元一次方程?①3x+2y=1;②m-3=6;③5x=0④1+3x⑤y2=4+y⑥4+2=6。
一元一次方程第二课时教学设计多媒体、教材教学方法教学流程5、一元一次方程2x -3=5的解是( )(6)3x+y=3x-52、x=2是下列哪个方程的老师针对学生回答适(1) x与18的和等于54 (2)27与x的差等于x的4倍2、讲授新课1、出示学习目标。
2、情境导入一、行程问题(相遇问题):甲、乙两人从相距为180千米的A、B两地同时出发,甲骑自行车,乙开拖拉机,沿同一条路线相向匀速行驶.已知甲的速度为15千米/时,乙的速度为45千米/时.如果甲先行1时后乙才出发,问甲再行多少时间与乙相遇?二、工程问题甲每天生产某种零件80个,甲生产3天后,乙也加入生产同一种零件,再经过5天,两人共生产这种零件940个,问乙每天生产这种零件多少个?1、学生先独立思考:仔细读题后设出未知数,找出等量关系,列出方程。
2、小组内交流探讨。
3、教师适时讲解并给出正确结果。
设甲再行x小时与乙相遇,则甲先行1小时的路程为 15 千米,甲再行x小时的路程为 15x 千米,乙行驶x小时的路程为45x千米。
这里有什么等量关系?甲先行1小时的路程+甲再行x小时的路程+乙行x小时的路=相距的路程根据题意可列出方程15×1+15x+45x=1801、让学生清楚地知道本节课的学习目标。
2、让学生知道数学并不遥远,数学就在我们身边,数学可以解决身边很多问题,培养学生对数学的热爱。
3、进一步训练学生用一元一次方程解决问题的能力。
4、跟踪训练两1、A.B两地间相距360km,甲车从A地出发开往B地,每小时行72km,甲车出发半小时后,乙车从B地出发开往A地,每小时行48km,乙车出发后行驶多少小时后,两车相遇?学生练习,教师巡视、辅导。
练习答案:(1)设乙出发后行驶x小时后两车相遇及时检查本节课的学习目标是否达成。