《轴对称现象》
- 格式:ppt
- 大小:2.61 MB
- 文档页数:6
《轴对称现象》典型例题例1 指出下列图形中的轴对称图形,并指出轴对称图形的对称轴.(1)正方形;(2)长方形;(3)圆;(4)平行四边形.例2 指出下边哪组图形是轴对称的,并指出对称轴.(1)任意两个半径相等的圆;(2)正方形的一条对角线把一个正方形分成的两个三角形;(3)长方形的一条对角线把长方形分成的两个三角形;(4)两个全等的三角形.例3找出下面的轴对称图形,并说出它们各有几条对称轴.例4 下列图形中,不是轴对称图形的是()(A)有两个角相等的三角形(B)有一个内角是︒45的直角三角形(C)有一个内角是︒120的三角形30,另一个内角为︒(D)有一个角是︒30的直角三角形例5请分别画出下图中3个图形的对称轴.例6 如图,(1)正三角形,(2)正四边形,(3)正五边形,(4)正六边形,(5)正八边形,(6)正九边形都是轴对称图形,数一数它们的对称轴的条数.观察后分析:正多边形对称轴的条数与边数"有什么关系?根据你的分析结果回答,正十边形,正十六边形,正二十九边形分别有几条对称轴?正五十边形呢?正一百边形呢?例7 如图,已知ABC ∆是等腰三角形,AC AB 、都是腰,DE 是AB 的垂直平分线,12=+CE BE 厘米,8=BC 厘米,求ABC ∆的周长.例8 AC AB ABC =,:中在已知∆_____,100)3(____,30)2(_____,,70)1(00为则它的另外两内角分别若一角为为则它的另外两内角分别若一个角为则若=∠=∠=∠C B A 例9 如下图,△ABC 中,AB =AC ,D 是BC 的中点,点E 在AD 上,用轴对称的性质证明:BE =CE .例10 如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,∠B =30°,求∠1和∠ADC 的度数.例11 如图,ABC ∆中,AC AB =,D 是AC 上一点,且BC DB AD ==,求A ∠的度数.例12 如图,在ABC ∆中,AB C ,90︒=∠的垂直平分线交AC 于D ,垂足为E ,若2,30=︒=∠DE A ,求DBC ∠的度数和CD 的长.例13 如图,已知:D ,E 是ABC ∆的BC 边上的两点,并且EC DE BD ==AE AD ==. 求BAC ∠的度数.例14 已知:如图,D 、E 分别为等边ABC ∆的边BC 、AC 上的点,且CE BD =,BE 、AD 相交于点F . 求证:︒=∠60AFE .例15 如下图,牧童在A 处放牛,其家在B 处,A 、B 到河岸的距离分别为AC 、BD ,且AC =BD ,若A 到河岸CD 的中点的距离为500m .(1)牧童从A 处把牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?在图中作出该处,并说明理由;(2)最短路程是多少?例16 如图,在ABC ∆中,AD AC AB ,=平分BAC ∠,点P 在DA 的延长线上,你能利用轴对称的性质证明PB PC =吗?例17 分析下列图形中,哪些是轴对称图形?如果是轴对称图形,作出对称轴.(1)线段;(2)角;(3)任意三角形;(4)等腰三角形。
鲁教版数学七年级上册2.1《轴对称现象》说课稿一. 教材分析鲁教版数学七年级上册2.1《轴对称现象》是学生在学习了平面几何初步知识的基础上,进一步研究轴对称图形的性质和判定。
这一节内容通过丰富的现实情境和几何图形,引导学生探索轴对称现象,培养学生的几何直观能力和空间想象能力。
教材中安排了丰富的活动,让学生在动手操作中感受轴对称,从而更好地理解和掌握轴对称的性质。
二. 学情分析学生在进入七年级之前,已经在小学阶段接触过一些简单的几何图形和性质,对几何学习有了一定的基础。
但是,他们对轴对称现象的理解可能还停留在直观层面,缺乏对轴对称性质的系统认识。
因此,在教学过程中,我需要关注学生的认知基础,通过合理的教学设计,帮助学生建立和完善轴对称的知识体系。
三. 说教学目标1.知识与技能:让学生理解和掌握轴对称的定义和性质,能够判断一个图形是否为轴对称图形。
2.过程与方法:通过观察、操作、交流等活动,培养学生的几何直观能力和空间想象能力。
3.情感态度与价值观:让学生体验数学与生活的联系,培养学生的数学兴趣和探究欲望。
四. 说教学重难点1.重点:轴对称的定义和性质。
2.难点:对轴对称性质的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动、合作探究的教学方法,引导学生主动参与课堂,提高学生的学习积极性。
2.教学手段:利用多媒体课件、几何模型等教学辅助工具,增强课堂教学的趣味性和直观性。
六. 说教学过程1.导入:通过展示一些生活中的轴对称现象,如剪纸、建筑等,引发学生对轴对称的兴趣,从而导入新课。
2.新课讲解:讲解轴对称的定义和性质,通过几何模型和多媒体课件,让学生直观地感受轴对称。
3.例题解析:分析一些典型的轴对称图形,让学生学会判断一个图形是否为轴对称图形。
4.课堂练习:安排一些练习题,让学生巩固所学知识,提高解题能力。
5.总结提升:对本节课的内容进行总结,引导学生发现轴对称与生活的联系。
七. 说板书设计板书设计要简洁明了,能够突出轴对称的主要性质。
轴对称现象(说案)各位老师,大家好!今天,我说课的内容是:北师大版七年级数学下册第七章第一节“轴对称现象”,下面,我就教材、学生、理念、教学过程等进行说明。
一、说教材1、教材的地位和作用“轴对称现象”是第七章“生活中的轴对称”的第一节的第一课时,是初中数学教学中的一则重要内容,它与我们的现实生活有着紧密的联系,同时与图形的三种基本运动方式(平移、翻折、旋转)中的“翻折”有着不可分割的联系,实际生活中也随处可见轴对称及轴对称的应用。
通过对这一节课的学习,可以让学生对轴对称的知识有一个初步的认识,并为后继学习对称变换、中心对称和中心对称图形及平行四边形的相关知识等做好充分准备。
教材通过丰富的现实情境,引导学生关注生活,并自觉加以数学理性上的分析,感受数学的魅力,体会轴对称在生活中的广泛应用和丰富的人文价值,培养积极的情感、态度、价值观,促进观察、分析、归纳、概括等一般能力和审美意识的发展,为后面研究轴对称的性质和其它数学知识打下基础,在初中数学中占有很重要的位置。
2、学生情况分析:根据七年级学生的特点,我对他们作如下心理预测:(1)对生活中的丰富的现实情境具有强烈的好奇心;(2)缺乏学习的方法和语言概括能力;(3)对基础知识重视不够,因而对概念分析不清,把握不透。
在教学中充分利用学生的心理:(1)调动学生的主观能动性,主动参与,与他人合作、交流培养学生的心理(2),避免学生心理(3)的出现。
3、教学目标的确定根据本节内容在教材中的地位和作用,依据新课程标准,以及七年级学生的认知结构和心理特征,本课时的教学应力求达到以下目标:知识与技能:通过观察、分析现实生活实例和典型图形的过程,认识轴对称和轴对称图形,会找出简单的对称图形的对称轴,了解轴对称和轴对称图形的联系和区别。
过程与方法:通过折纸、剪纸等活动,培养学生探索知识的能力与思考问题的习惯。
情感态度价值观:通过欣赏现实生活中的轴对称图形,体验轴对称在现实生活中的广泛应用,体会数学来源于生活。
A1《轴对称现象》学情分析方案一、背景介绍《轴对称现象》是中学数学中一个重要的概念,它涉及到平面图形中的对称性问题。
学生通常在初中阶段就接触到平面图形的对称性,但在进一步学习轴对称现象时,往往会出现较大的学习困难。
本学情分析方案旨在通过对学生学情的深入分析,找出学生存在的问题和困难,并提出相应的解决方案。
二、学情分析通过对学生学习轴对称现象的情况进行调查和观察,可以发现学生普遍存在以下问题和困难:1.缺乏对轴对称现象的认知:学生对轴对称现象的概念理解不深刻,无法准确描述轴对称现象的特征和性质。
2.无法准确确定轴对称现象:学生在给定平面图形时,难以准确确定它是否具有轴对称现象,无法找到正确的轴对称线。
3.缺乏确定轴对称线的方法:学生对如何确定轴对称线的方法掌握不够,常常是凭感觉或错误地选择轴对称线。
4.难以进行对称图形的构造:学生在构造轴对称图形时,缺乏有效的方法和技巧,构造出的图形往往不准确或不完整。
5.对轴对称图形的性质理解不深刻:学生对轴对称图形的性质,如对称点的特点和数量关系等方面理解不够深入,难以准确判断图形的对称性。
三、解决方案针对以上学生存在的问题和困难,可以采取以下解决方案:1.针对轴对称现象的认知问题,教师可以通过讲解和示范的方式,引导学生明确轴对称现象的概念和特征,帮助学生准确理解轴对称现象。
2.针对准确定义轴对称现象的问题,教师可以设计一些具体、有趣的图形,引导学生观察、分析,并提问学生是否具有轴对称现象,帮助学生培养准确判断的能力。
3.针对确定轴对称线的方法问题,教师可以引导学生重点观察图形的对称性质,如图形的对称点的位置关系、对称线经过的点等,培养学生准确选择轴对称线的能力。
4.针对对称图形的构造问题,教师可以引导学生探索轴对称图形的构造方法,如通过折叠纸张或使用对称性质构造等,帮助学生掌握一些有效的构造技巧。
5.针对轴对称图形的性质理解问题,教师可以设计一些相关的练习和问题,引导学生深入思考,帮助学生加深对轴对称图形性质的理解和把握。