轴对称现象
- 格式:doc
- 大小:262.00 KB
- 文档页数:4
生活中有哪些轴对称现象
生活中,我们经常会遇到一些轴对称的现象,这些现象在日常生活中无处不在。
轴对称是指物体在某个轴线上的对称性,即物体的一部分关于这个轴线对称于另一部分。
让我们一起来看看生活中有哪些轴对称的现象吧。
首先,我们可以看到很多自然界中的轴对称现象。
比如,许多植物的叶子都具
有轴对称的特点,叶子的左半部分和右半部分关于中间的中脉对称。
这种轴对称的设计让植物在生长过程中更加稳定和美观。
其次,建筑物中也常常可以看到轴对称的设计。
许多古代建筑和现代建筑都采
用了轴对称的设计理念,比如对称的门窗、楼梯和装饰图案等。
这种设计不仅能够增加建筑物的美感,还能够在视觉上给人一种平衡和稳定的感觉。
除此之外,我们在日常生活中还可以看到许多轴对称的艺术作品。
比如对称的
花瓶、对称的家具、对称的服装等等。
这些设计不仅能够给人以美的享受,还能够在一定程度上提高生活品质。
总的来说,轴对称现象在生活中是无处不在的。
无论是自然界中的植物、建筑
物中的设计,还是艺术作品中的表现,轴对称都是一种美的体现。
让我们在日常生活中多留意这些轴对称的现象,感受到它们给我们带来的美好。
关于《轴对称现象》的说课稿云南省文山县平坝中学顾俊秀一教材分析(说教材)(一)说课内容:九年义务教育七年级下册《数学》第七章第一节P215页——P221页《轴对称现象》。
(二)教材的设计思路:轴对称是现实生活中广泛存在的一种现象,本节内容立足于学生已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,通过观察、折纸、扎眼、印墨迹、简单图案设计、艺术作品欣赏操作性活动,进一步丰富学生对轴对称的直观体验和理解,再引导学生对生活中的现象加以数学上的分析,逐步了解和领略轴对称现象的共同规律。
在教材编排上,从具体到抽象,从感性到理性,从实践到理论,再用实践检验理论,层次分明,循序渐进,从而达到了“现实内容数学化”、“数学内容规律化”、“数学内容现实化”三者的统一,进而在学习中有意识的培养积极的情感、态度,促进观察、分析、归纳、概括等一般能力和审美意识的发展。
(三)教学三维目标:根据大纲的要求和教材的特点,考虑到学生已有的认知结构心理特征,制定如下教学目标:1、知识与技能目标:通过丰富的生活实例认识轴对称图形,能识别简单的轴对称图形及其对称轴。
2、过程与方法目标:在丰富的现实情景中,经历观察生活中的轴对称现象,探索轴对称现象的共同特征等活动。
进一步发展空间观念,培养学生的抽象思维和空间想象能力。
3、情感、态度、价值观目标结合教材和联系实际生活培养学生的学习兴趣和热爱生活的情感。
欣赏现实生活中的轴对称图形,体会它的广泛运用和丰富的文化价值。
培养学生认识、发现、探索美的能力,提高审美意识。
(四)教学重、难点:1、重点:识别轴对称图形。
2、难点:寻找轴对称图形的对称轴。
二教学策略(说教法)根据本节教材内容和编排的特点,为了更有效的突出重点、分散难点,按照学生的认知规律,遵循“教师为主导,学生为主体、训练为主线”的指导思想,以“发现法为主,直观演示法、设疑诱导法”为辅,采用学生参与程度高的学导式讨论教学法。
第七章生活中的轴对称于海峰1.轴对称现象(说课稿)一、对本节教学内容的整体说明北师大版数学七年级下第七章共分6节,本节《轴对称现象》是第一节,它在本章中起着起始新课的作用。
本节通过大量的生动的生活中的实例引领学生进入图形中的对称世界,深刻体会对称在现实生活中的广泛应用和丰富的文化价值。
同时通过本节的学习与探索,使同学们对对称的认识由感性到理性,由浅到深,为后面抽象的对称图形的学习作好铺垫工作。
二、学生起点分析学生的知识技能基础:学生在七年级上就对对称图形有所接触,如:扇形,圆,线段,角等,所以当今天学习了什么样的图形是对称图形时,学生识别起来应该顺理成章,在对对称定义的理解和应用上也应有水到渠成的感觉。
只是在轴对称图形和两个图形成轴对称的概念上可能会产生一些模糊,这是教学中应该突破的地方。
学生生活经验基础:对称现象及对称图形在生活中存在大量实例,因此,对称对于学生来说应该不陌生,理解起来也应不困难。
三、教学任务分析教学目标:1.感知生活中的轴对称现象,探索轴对称的共同特征。
2.通过大量的实例初步认识轴对称,能识别简单的轴对称图形及其对称轴。
3.欣赏生活中的轴对称,体会其文化底蕴及价值,学为所用。
教学重点:1、认识轴对称图形和两个图形成轴对称2、通过活动认识轴对称图形的特征3、会找一幅对称图形的对称轴教学难点:1、认识轴对称图形和两个图形成轴对称,及他们的共同点和不同点2、能找出一幅轴对称图形所有的对称轴3、会制作轴对称图形四、教学设计分析本节课设计了六个教学环节:课前准备、情境引入、合作学习、练习提高、课堂小结、布置作业。
第一环节课前准备活动内容:自学课本内容,制作两个全等三角形,一个正方形和复写纸(提前一天布置)活动目的:通过自学课本内容,培养学生自学能力,首先对课本内容有个整体的感性认识,并自主完成课本练习,是自己明白那些内容还不是很懂,使得能有所针对的展开学习。
并准备道具,是学生通过活动来更好的理解学习内容第二环节情境引入活动内容:通过幻灯演示。
轴对称现象的理解轴对称是指物体或图形相对于某一条中心线对称,即左右对称。
常见的轴对称图形有圆、正方形、矩形等。
轴对称现象在自然界和人类生活中随处可见,具有一定的美学价值和实用性。
本文将从不同角度解析轴对称现象,探讨其原理、应用以及对人类的启示。
一、轴对称现象的原理轴对称现象的形成是由于物体或图形的左右两侧具有相似的形状、大小和位置关系,从而使整个物体或图形在某一条中心线上呈现出对称的效果。
这种对称性不仅存在于二维的平面图形中,也存在于三维的立体物体中。
轴对称现象的原理是对称轴两侧的元素通过镜像变换实现左右一致,从而产生对称效果。
二、轴对称现象在自然界中的体现1. 生物体的轴对称:许多生物体都具有轴对称的特点,比如人类的左右半身、动物的左右对称的身体结构等。
这种轴对称的设计使得生物体在外形上更加和谐美观,也便于运动和生存。
2. 自然景观的轴对称:自然界中的一些景观也呈现出轴对称的特点,比如湖泊、山脉、河流等。
在自然景观中存在着一些对称轴,使得整个景观在视觉上更加平衡和谐。
三、轴对称现象在人类生活中的应用1. 建筑设计:轴对称在建筑设计中被广泛应用,不仅可以增加建筑物的稳定性,还能够提升建筑的美感。
许多古代建筑遵循轴对称的原则,如中国的故宫和古希腊的帕台农神殿等。
2. 艺术创作:轴对称在绘画、雕塑和摄影等艺术创作中也有广泛的应用。
艺术家可以通过对称的构图来创造出平衡和谐的作品,使观赏者产生美的享受。
3. 服装设计:轴对称在服装设计中起到重要的作用,设计师通常会根据人体的轴对称特点来设计衣服的剪裁和图案,使得服装更符合人体结构,穿着更加舒适。
四、轴对称现象对人类的启示轴对称现象的存在不仅仅是一种美学现象,还给人类带来了一些启示。
1. 平衡与和谐:轴对称现象让人们感受到平衡和和谐的美感,这也启示我们在生活中要追求平衡和和谐的状态。
2. 左右对等:轴对称现象告诉我们左右对等的重要性,人体的左右半身对称代表着身体的健康和功能的正常。
轴对称现象及简单的轴对称图形知识梳理1.轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2.轴对称:对于两个平面图形,如果沿一条直线对折后能够完全重合,那么称这两个图形成轴对称,两个图形的对应点叫做对称点。
3.轴对称的性质(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等;(3)对应角相等4.利用轴对称的性质作图5.等腰三角形定义及性质定义:有两条边相等的三角形叫做等腰三角形性质:两边相等,两底角相等,底边上的“三线合一”。
判定:(1)有两条边相等的三角形是等腰三角形(2)有两个角相等的三角形也是等腰三角形6.等边三角形定义及性质定义:三边都相等的三角形是等边三角形,也叫正三角形。
性质:三边相等,三个角相等都是60°,三边上的“三线合一”判定:(1)三边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形(3)有两个角等于60°的三角形是等边三角形(4)有一个角等于60°的等腰三角形是等边三角形7.垂直平分线的概念及性质(1)概念:垂直于一条线段,并且平分这条线段的直线,叫做这条线的垂直平分线,简称中垂线。
(2)性质:线段垂直平分线上的点到线段两个端点的距离相等。
8.角平分线的性质:角平分线上的点到角两边的距离相等。
9.垂直平分线及角平分线的画法例题精讲考点1.轴对称图形与成轴对称例1.下列图形中,轴对称图形是()A.(1),(2) B.(1),(4) C.(2),(3) D.(3),(4)(34)1变式1.下列语句中:①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④轴对称图形的两个对应点一定在对称轴的两侧.正确的有()A.1个 B.2 C.3 D.4变式2.将一正方形纸片按图1中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()变式3.小华在镜中看到身后墙上的钟如下,你认为实际时间最接近8点的是()A B C D考点2.方案设计例2.如图,是由三个阴影小正方形组成的图形,请在三个网格中各补画出一个有阴影的小正方形,使阴影组成的图形为轴对称图形变式1.如图,把图中的某两个小方格图上阴影,使整个图形是以线段所在直线为对称轴的轴对称图形。
古典文化轴对称现象
古典文化中的轴对称现象是指在建筑、雕塑、绘画和装饰艺术
等方面的设计中,通过对称的布局和构图来展现出一种平衡和和谐
的美感。
这种对称性不仅仅是一种形式上的对称,更多的是一种思
想上的对称,反映了古代文化中对于秩序、和谐和完美的追求。
在古希腊和古罗马的建筑中,轴对称被广泛运用。
例如,古希
腊的神庙通常都采用前廊、主神殿和后殿的布局,这种布局不仅在
平面上呈现出对称性,而且在立面和结构上也体现出对称美。
同样,在古罗马的建筑中,如斗兽场、凯旋门等也都体现出轴对称的设计。
在古代雕塑和绘画中,轴对称也是常见的美学原则。
古代雕塑
作品中的人物形象通常采用轴对称的姿态,例如古希腊的雕塑《米
洛的维纳斯》就采用了经典的轴对称构图,展现了完美的比例和和
谐之美。
古代绘画作品中也常常运用轴对称的构图,让画面更加稳
定和具有美感。
除了建筑、雕塑和绘画,轴对称现象在古代装饰艺术中也得到
了广泛运用。
古代文化中的花纹、图案和装饰常常呈现出轴对称的
特点,这不仅体现了古代人们对于美的追求,也反映了他们对于秩
序和和谐的理念。
总的来说,古典文化中的轴对称现象贯穿于建筑、雕塑、绘画
和装饰艺术的方方面面,体现了古代人们对于美的追求和对于秩序、和谐的向往。
这种对称美不仅在形式上体现出来,更重要的是反映
了古代文化中的审美观念和哲学思想。
北师大版七年级数学(下)轴对称现象说课稿(通用7篇)七年级数学下轴对称现象说课稿篇1教学目标:1、经历观察、分析现实生活实例和典型图案的过程,认识轴对称和轴对称图形培养学生探索知识的能力与分析问题、思考问题的习惯。
2、会找出简单对称图形的对称轴。
了解轴对称和轴对称图形的联系与区别。
教学重点难点:本节课的重点是通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴。
找出简单轴对称图形的对称轴与理解轴对称和轴对称图形的联系与区别是难点。
教学方法:教学用具:活动准备:收集各类有关对称的图案和各种现实生活中有关对称的实例,作为教学时互相交流的资料。
教学过程:一、看一看:1、投影或演示各类具有轴对称特点的图案(如课本上所绘的图象或由学生课前收集的各类具有对称特点的图案)2、分析各类图案的特点,让学生经历观察和分析,初步认识轴对称图形。
二、议一议1、试举例说明现实生活中也具有轴对称特征的物体,发展学生想象能力。
2、让学生感到具有轴对称特征的物体,它们都是关于一条直线形成对称。
三、做一做1、把具有轴对称特征的图形沿某一条直线对折,使直线两旁的部分能够互相重合把具有轴对称特征的图形沿某一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
让学生说出以前学习过的轴对称图形,并找出它的对称轴2、弄清楚轴对称与轴对称图形的区别对于两个图形,如果沿一条直线对折后,它们能完全重合,那么这两个图形成轴对称,这条直线就是对称轴。
轴对称是指两个图形之间的形状和位置关系。
而轴对称图形是对一个图形而言的,轴对称图形是一个具有特殊形状的图形。
它们都有没某条直线对折使直线两旁的图形能重合的特征。
小结:今天我们经历观察和分析了现实生活实例和图案,了解了现实生活中存在许多有关对称的事例,认识了轴对称与轴对称图形,并能找出一些简单轴对称图形的对称轴。
教后记:学生对于判断是否轴对称图形较清楚,但是对轴对称图形和两个图形成轴对称这两个概念较难掌握,在举例的过程中学生的积极性被完全调动起来,上课的气氛较好。
轴对称现象的理解
轴对称现象是指一个物体或图形在某个轴线上对称,即将该物体或图
形沿着该轴线进行翻折,会得到一个完全重合的镜像。
这种现象在自
然界和人类文化中都有广泛应用。
在自然界中,许多生物体都具有轴对称性。
例如,人类的身体可以沿
着垂直于地面的中心线进行对称;植物的花朵也常常呈现出轴对称的
形态。
这种自然界中常见的轴对称性不仅美观,而且能够提高生物体
的适应性和生存能力。
例如,人类身体两侧的肌肉、骨骼等器官可以
互相协调工作,提高身体平衡和运动能力;花朵轴对称的形态可以吸
引昆虫等传粉者更有效地传播花粉。
在人类文化中,轴对称现象也有广泛应用。
例如,在设计建筑、家具
等方面,设计师经常使用轴对称来创造出平衡美观、稳定感强的作品;在艺术创作中,许多作品也运用了轴对称来营造出一种神秘、优美、
和谐的氛围。
此外,轴对称现象还在数学、物理等领域中有重要应用。
例如,在几
何学中,轴对称被广泛运用于研究图形的性质和变换;在物理学中,
许多问题也可以通过轴对称来简化计算和分析。
总之,轴对称现象是自然界、人类文化以及科学技术等领域中都有广泛应用的重要现象。
它不仅美观、稳定,还能够提高生物体的适应性和生存能力,简化计算和分析。
因此,我们应该加强对轴对称现象的研究和应用,在各个领域中发挥其重要作用。
《5.1轴对称现象》教案一、教学任务分析1、知识与技能:认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴,了解两个图形关于某条直线成轴对称和轴对称图形的联系与区别.了解轴对称图形的基本性质.2、过程与方法:在经历观察分析现实生活中的实例和典型图案的过程中,体验科学探究的方法.3、情感态度与价值观:欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和它丰富的文化价值,结合教材和生活实际,培养学生的学习兴趣和热爱生活的情感.4、教学重点、难点重点:正确理解轴对称图形以及轴对称的概念难点:能正确区分轴对称图形和轴对称5、教学方法:实践操作法二、激情导课我们生活在图形世界中,许多美丽的事物往往与图形的对称联系在一起,无论是艺术家的创造,还是入场生活中的图案设计,都和对称密不可分.让我们走进轴对称的世界吧,去感受它的奇妙和美丽!三、示案导学用多媒体给学生每人展示一组图形,其中包括建筑物、柳叶、蝴蝶、窗花,茶壶等,观察后回答下列问题:(先出示建筑物、柳叶、蝴蝶、窗花等图片.)(1)你能将刚才老师展示的图片沿某条直线对折,使直线两旁的部分完全重合吗?发现:这些图片中折叠后有一些能重合,有一些不能重合.(2)折叠后你发现有哪些图形是可以完全重合的,这些图形有什么共同的特征?(3)接下来大家拿出准备好的针、纸来动手做一做.四、交流展示将一张纸对折后,从折痕开始,用针尖在纸上扎出半个心型图案,将纸打开后铺平,观察所得到的图案.位于折痕两侧的部分有什么关系?与同伴进行交流.五、精讲拓展要学生用自己的语言来描述什么叫做轴对称图形,是轴对称图形.几何图形中,经常见的轴对称图形有:请同学们找出它们的对称轴吗?了解了轴对称图形及其对称轴的概念后,我们来做一做把准备好的一张质地较软、吸水性能好的纸或报纸拿出来,在纸的一侧上滴上一滴墨水,将纸迅速对折、压平,并用手指压出清晰的折痕,再将纸打开后铺平,观察所得到的图案.位于折痕两侧的墨迹图案彼此之间有什么关系?并考虑这个图案与刚才的针刺半个心型图案有什么区别,与同伴进行交流.经过操作、交流得知:位于折痕两侧的墨迹图案是对称的.它们可以互相重合.组织学生讨论,比较、分析这两幅图案的差异,并引导学生回答,然后教师归纳指出:两个图形关于某条直线成轴对称是说两个图形的位置关系.而轴对称图形是说一个具有特殊形状的图形.六、训练题组1.如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是(),折痕所在的直线叫做().2.圆的对称轴有()条,半圆形的对称轴有()条.3.在对称图形中,对称轴两侧相对的点到对称轴的().4.()三角形有三条对称轴,()三角形有一条对称轴.5.正方形有()条对称轴,长方形有()条对称轴,等腰梯形有()条对称轴.等腰三角形的对称轴是(),线段的对称轴是(),角的对称轴是().八、创新提升1.画下面图形的对称轴.2.一只大钟,它的分针长40厘米.这根分针的尖端转动一周所走的路程是多少厘米?3.求右图阴影部分的面积.(单位:厘米)。
生活中的轴对称现象
生活中的轴对称现象无处不在,从自然界到人造物品,都可以找到轴对称的身影。
轴对称是一种对称形式,即一个物体可以通过某一条轴对折,两边完全重合。
这种对称形式在生活中随处可见,不仅给人们带来美的享受,还在很多方面发挥着重要的作用。
首先,我们可以从自然界中找到轴对称的例子。
比如很多植物的花朵、叶子和
水果都具有轴对称的特点,这种对称形式使得它们看起来更加美丽和和谐。
另外,动物的身体结构也常常呈现轴对称的特征,比如很多昆虫和海洋生物的身体都可以通过一个轴对折,两边完全重合。
这种对称形式不仅使它们更容易生存,还给人们带来了对自然的美的赞叹。
其次,在人造物品中,轴对称现象也是非常常见的。
比如很多建筑物的设计就
采用了轴对称的形式,使得建筑物看起来更加稳重和美观。
另外,在工艺品和艺术品中,轴对称的设计也被广泛运用,比如古代的陶瓷器、织锦以及现代的家具、服装等等,都可以看到轴对称的影子。
这种对称形式不仅使得这些物品更加美观,还能够给人们带来舒适和愉悦的感受。
总的来说,生活中的轴对称现象无处不在,不论是自然界还是人造物品,都可
以找到它的身影。
轴对称不仅给人们带来美的享受,还在很多方面发挥着重要的作用。
因此,我们应该更加关注和欣赏这种对称形式,让它成为我们生活中的一部分。
第13讲轴对称现象与探索轴对称的性质目标导航知识精讲知识点01生活中的轴对称现象(1)轴对称的概念:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也称轴对称;这条直线叫做对称轴.(2)轴对称包含两层含义:①有两个图形,且这两个图形能够完全重合,即形状大小完全相同;②对重合的方式有限制,只能是把它们沿一条直线对折后能够重合.【知识拓展】(2020秋•十堰期末)如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋【即学即练1】(2021•商河县校级模拟)如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是()A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形【即学即练2】(2020•薛城区模拟)如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.【即学即练3】(2020秋•鼓楼区校级月考)已知:如图,CDEF是一个长方形的台球面,有A、B两球分别位于图中所在位置,试问怎样撞击球A,才能使A先碰到台边FC反弹后再击中球B?在图中画出A球的运动线路.知识点02 轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.【知识拓展1】(2021秋•思明区校级期末)如图,已知AB∥CD,AD∥BC,∠ABC=60°,BC=2AB=8,点C关于AD的对称点为E,连接BE交AD于点F,点G为CD的中点,连接EG、BG,则S△BEG=()A.B.C.16D.32【即学即练1】(2021秋•高邮市期末)如图,直线AB、CD相交于点O,P为这两条直线外一点,连接OP.点P关于直线AB、CD的对称点分别是点P1、P2.若OP=4,则点P1、P2之间的距离可能是()A.0B.7C.9D.10【即学即练2】(2021秋•普兰店区期末)如图,长方形ABCD中,点F在边BC上,△AED与△FED关于直线DE对称,若∠BFE=50°,则∠AED=度.【即学即练3】(2021秋•望城区期末)如图,△ABC和△ABE关于直线AB对称,△ABC和△ADC关于直线AC对称,CD与AE交于点F,若∠ABC=32°,∠ACB=18°,则∠CFE的度数为.【知识拓展2】(2021秋•镇海区期末)【定义】如图1,OM平分∠AOB,则称射线OB,OA关于OM对称.【理解题意】(1)如图1,射线OB,OA关于OM对称且∠AOB=45°,则∠AOM=度;【应用实际】(2)如图2,若∠AOB=45°,OP在∠AOB内部,OP,OP1关于OB对称,OP,OP2关于OA对称,求∠P1OP2的度数;(3)如图3,若∠AOB=45°,OP在∠AOB外部,且0°<∠AOP<45°,OP,OP1关于OB对称,OP,OP2关于OA对称,求∠P1OP2的度数;【拓展提升】(4)如图4,若∠AOB=45°,OP,OP1关于∠AOB的OB边对称,∠AOP1=4∠BOP1,求∠AOP(直接写出答案).知识点03 轴对称图形(1)轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.(2)轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.(3)常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等等.【知识拓展1】(2021秋•巴彦县期末)下列图标是节水、绿色食品、回收、节能的标志,其中是轴对称图形的是()A.B.C.D.【即学即练1】(2021秋•微山县期末)下列图形是轴对称图形的是()A.等腰三角形B.直角三角形C.三角形D.四边形【即学即练2】(2021秋•湖州期末)如图,在3×3的正方形网格中,从空白的小正方形中再选择一个涂黑,使得3个涂黑的正方形成轴对称图形,则选择的方法有()A.3种B.4种C.5种D.6种【即学即练3】(2021秋•嘉鱼县期末)在如图所示的正方形网格中,已有两个正方形涂黑,请再将其中的一个空白正方形涂黑,使整个图形是一个轴对称图形(最少三种不同方法).知识点04轴对称-最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.【知识拓展1】(2021秋•澄城县期末)如图,∠AOB=30°,∠AOB内有一定点P,且OP=15,若在OA、OB上分别有动点M、N,则△PMN周长的最小值是()A.5B.15C.20D.30【即学即练1】(2021秋•钢城区期末)如图,高速公路的同一侧有A,B两城镇,它们到高速公路所在直线MN的距离分别为AC=2km,BD=4km,CD=8km.要在高速公路上C,D之间建一个出口P,使A,B两城镇到P的距离之和最小,则这个最短距离为()A.8km B.10 km C.12 km D.10km【即学即练2】(2021秋•澄海区期末)如图,若∠AOB=44°,P为∠AOB内一定点,点M在OA上,点N在OB上,当△PMN的周长取最小值时,∠MPN的度数为()A.82°B.84°C.88°D.92°【即学即练3】(2021秋•思明区校级期末)小茗同学在公园的花圃里发现一只小蚂蚁在搬食物,因为食物比它大,所以它搬得很辛苦.但是它不放弃,一直慢慢往回爬.一会它咬住食物使劲往后拖,一会又咬住食物来回转圈,小茗同学急的想帮它.于是他连续几天都在观察,发现这个花圃的形状,如图,是一个锐角三角形,且∠ACB=50°,边AB上一定点P是小蚂蚁的家,小蚂蚁从家出发,它沿直线寻找食物,线路是从P出发走到AC,再从AC走到BC,最后回到家.假设M、N分别是AC和BC边上的动点,小茗同学想帮小蚂蚁寻找最短的行走路线,所以他求出当小蚂蚁行走路线所构成的△PMN周长最小时,∠MPN的度数为.【即学即练4】(2021秋•海沧区期末)如图,海上救援船要从A处到海岸l上的M处携带救援设备,再回到海上C处对故障船实施救援,使得行驶的总路程AM+CM为最小.已知救援船和故障船到海岸l的最短路径分别为AB和CD,BD=20海里,∠AMB=60°,救援船的平均速度是25节(1节=1海里/小时),则这艘救援船从A处最快到达故障船所在C处的时间为小时.【知识拓展2】(2021秋•南昌县期末)某班级在探究“将军饮马问题”时抽象出数学模型:直线l同旁有两个定点A、B,在直线l上存在点P,使得P A+PB的值最小.解法:如图1,作点A关于直线l的对称点A',连接A′B,则A′B与直线l的交点即为P,且P A+PB的最小值为A′B.请利用上述模型解决下列问题;(1)如图2,△ABC中,∠C=90°,E是AB的中点,P是BC边上的一动点,作出点P,使得P A+PE 的值最小;(2)如图3,∠AOB=30°,M、N分别为OA、OB上一动点,若OP=5,求△PMN的周长的最小值.知识点05翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.【知识拓展1】(2022•渝中区校级开学)如图,有一块直角三角形纸片,∠C=90°,AC=8,BC=6,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD为()A.2B.C.D.4【即学即练1】(2021秋•宿城区期末)将一张长方形纸片按如图所示的方式折叠,EF、FG为折痕.若∠EF A'=30°,则∠GFB=.【知识拓展2】(2021秋•河源期末)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将△ACB沿CD折叠,使点A恰好落在BC边上的点E处.(1)求△BDE的周长;(2)若∠B=37°,求∠CDE的度数.【即学即练1】.(2021秋•斗门区期末)如图1,将长方形ABEF的一角向长方形内部折叠,使角的顶点A 落在点A′处,OC为折痕,则OC平分∠AOA′.(1)若∠AOC=25°,求∠A'OB的度数;(2)若点D在线段BE上,角顶点B沿着折痕OD折叠落在点B′处,且点B′在长方形内.①如果点B′刚好在线段A′O上,如图2所示,求∠COD的度数;②如果点B′不在线段A′O上,且∠A'OB'=40°,求∠AOC+∠BOD的度数.【即学即练2】(2021秋•德城区期末)同学们,我们已经学习了角的平分线的定义,请你用它解决下列问题:(1)如图1,已知∠AOC,若将∠AOC沿着射线OC翻折,射线OA落在OB处,则射线OC一定平分∠AOB.理由如下:因为∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,所以∠BOC=,所以射线是∠AOB的平分线;(2)如图2,将长方形纸片的一角折叠,使顶点A 落在A′处,EF为折痕.①若EA′恰好平分∠FEB,求出∠FEB的度数;②过点E再将长方形的另一角∠B做折叠,使点B落在∠FEB的内部B′处(B′不在射线EA′上),EH为折痕,H为EH与射线BC的交点.请猜想∠A′EF,∠B′EH与∠A′EB′三者的数量关系,并说明理由.能力拓展一.解答题(共9小题)1.(2017春•汉阳区期中)对于特殊四边形,通常从定义、性质、判定、应用等方面进行研究,我们借助于这种研究的过程与方法来研究一种新的四边形﹣﹣﹣﹣﹣筝形.定义:在四边形ABCD中,若AB=AD,BC=CD,我们把这样四边形ABCD称为筝形性质:按下列分类用文字语言填写相应的性质:从对称性看:筝形是一个轴对称图形,它的对称轴是;从边看:筝形有两组邻边分别相等;从角看:;从对角线看:.判定:按要求用文字语言填写相应的判定方法,补全图形,并完成方法2的证明.方法1:从边看:运用筝形的定义;方法2:从对角线看:;如图,四边形ABCD中,.求证:四边形ABCD是筝形应用:如图,探索筝形ABCD的面积公式(直接写出结论).2.(2021秋•渭滨区期末)如图,在四边形ABCD中,∠BAD=∠B=∠C=90°,AD=BC=20,AB=DC =16.将四边形ABCD沿直线AE折叠,使点D落在BC边上的点F处.(1)求BF的长.(2)求EC的长.3.(2021秋•济南期末)在数学实验课上,李静同学剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC纸片沿某条直线折叠,使斜边两个端点A与B重合,折痕为DE.(1)如果AC=5cm,BC=7cm,可得△ACD的周长为;(2)如果∠CAD:∠BAD=1:2,可得∠B的度数为;操作二:如图2,李静拿出另一张Rt△ABC纸片,将直角边AC沿直线CD折叠,使点A与点E重合,若AB=10cm,BC=8cm,请求出BE的长.4.(2020秋•饶平县校级期末)如图,点P是∠AOB外的一点,点Q是点P关于OA的对称点,点R是点P关于OB的对称点,直线QR分别交∠AOB两边OA,OB于点M,N,连接PM,PN,如果∠PMO=33°,∠PNO=70°,求∠QPN的度数.5.(2020秋•含山县期末)如图①,将笔记本活页一角折过去,使角的顶点A落在A′处,BC为折痕(1)图①中,若∠1=30°,求∠A′BD的度数;(2)如果又将活页的另一角斜折过去,使BD边与BA′重合,折痕为BE,如图②所示,∠1=30°,求∠2以及∠CBE的度数;(3)如果在图②中改变∠1的大小,则BA′的位置也随之改变,那么问题(2)中∠CBE的大小是否改变?请说明理由.6.(2021春•章贡区期末)如图,C为线段BD上的一个动点,分别过点B,D作AB⊥BD,ED⊥BD,连接AC,EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问:点C满足什么条件时,AC+CE的值最小?求出这个最小值.(3)根据(2)中的规律和结论,请构图求出代数式的最小值.7.(2021秋•义乌市期中)如图,A、B两个小镇在河流的同侧,它们到河流的距离AC=10千米,BD=30千米,且CD=30千米,现要在河流边修建一自来水厂分别向两镇供水,铺设水管的费用为每千米3万元.(1)请在河流上选择水厂的位置M,使铺设水管的费用最少.(不写作法,保留作图痕迹)(2)最低费用为多少?8.(2020•济宁模拟)准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD 上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,BE=2,求菱形BFDE的面积.9.(2019春•江阴市期中)直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=;如图3,将△ABC 沿直线AB折叠,若点C落在直线MN上,则∠ABO=;(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数.分层提分题组A 基础过关练一.选择题(共14小题)1.(2021秋•公安县期末)下列标志中,可以看作是轴对称图形的是()A .B .C .D .2.(2021秋•海曙区期末)下列四个数学符号中,是轴对称图形的是()A.≌B.≠C.⊥D.≥3.(2020春•漳州期末)如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是()A.点A B.点B C.点C D.点D4.(2019秋•桐梓县期末)在汉字“生活中的日常用品”中,成轴对称的有()A.2个B.3个C.4个D.5个5.(2021秋•五常市期末)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A.60°B.70°C.80°D.90°6.(2021秋•迁安市期末)如图,将长方形纸片沿MP和NP折叠,使线段PB'和PC'重合,则下列结论正确()①∠BPB′=∠C′PC②∠BPM+∠B'PM=90°③∠BPM+∠NPC=90°④∠NPM=90°⑤∠B'PM+∠NPC=90°A.①②③B.③④⑤C.②③④D.①⑤7.(2021秋•鲤城区校级期末)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,则∠EBD的度数()A.80°B.90°C.100°D.110°8.(2021秋•宜兴市期末)将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠EFG=α,则∠B'FC'的度数是()A.α﹣45°B.2α﹣90°C.90°﹣αD.180°﹣2α9.(2021秋•滦州市期末)某市计划在公路l旁修建一个飞机场M,现有如下四种方案,则机场M到A,B两个城市之间的距离之和最短的是()A.B.C.D.10.(2021秋•余杭区期中)下列图形不一定是轴对称图形的是()A.直角三角形B.等腰三角形C.线段D.圆11.(2021春•东坡区校级期末)如图1,▱ABCD的对角线交于点O,▱ABCD的面积为120,AD=20.将△AOD、△COB合并(A与C、D与B重合)形成如图2所示的轴对称图形,则MN+PQ=()A.29B.26C.24D.2512.(2021秋•应城市期末)如图,∠MON=50°,P为∠MON内一点,OM上有点A,ON上有点B,当△P AB的周长取最小值时,∠APB的度数为()A.60°B.70°C.80°D.100°13.(2021秋•博白县期末)如图,将长方形纸片的一角作折叠,使顶点A落在A′处,EF为折痕,若EA′恰好平分∠FEB,则∠FEB的度数为()A.60°B.120°C.130°D.100°14.(2021秋•平舆县期末)如图,牧童在A处放牛,其家在B处,A、B到河岸CD的距离分别为AC、BD,且AC=BD,若A到河岸CD的中点的距离为500m.牧童从A处把牛牵到河边饮水后再回家,牧童回家所走的最短路程为()A.500m B.1000m C.1500m D.2000m二.填空题(共2小题)15.(2021秋•浦东新区期末)如图,长方形ABCD中,长BC=a,宽AB=b,(b<a<2b),四边形ABEH 和四边形ECGF都是正方形.当a、b满足的等量关系是时,图形是一个轴对称图形.16.(2021秋•思明区校级期末)如图,园区入口A到河的距离AE为100米,园区出口B到河的距离BF 为200米,河流经过园区的长度EF为400米,现策划要在河上建一条直径CD为100米的半圆形观赏步道(如图:C在D左侧),游览路线定为A﹣C﹣D﹣B,问步道入口C应建在距离E米处,才能使游览路线最短.三.解答题(共10小题)17.(2019秋•石景山区期末)如图,在4×4的正方形网格中,有5个黑色小正方形.(1)请你移动一个黑色小正方形,使移动后所形成的4×4的正方形网格图形是轴对称图形.如:将8号小正方形移至14号;你的另一种做法是将号小正方形移至号(填写标号即可);(2)请你移动2个小正方形,使移动后所形成的图形是轴对称图形,你的一种做法是将号小正方形移至号、将号小正方形移至号(填写标号即可).18.(2019春•滕州市期末)在下列各图中分别补一个小正方形,使其成为不同的轴对称图形.19.(2015秋•相城区期中)画图:试画出下列正多边形的所有对称轴,并完成表格,正多边形的34567…边数…对称轴的条数根据上表,猜想正n边形有条对称轴.20.(2014秋•兴化市校级月考)请找出下列符号所蕴含的内在规律,然后设计一个恰当的图形..21.(2021秋•温岭市期末)如图,D是Rt△ABC斜边BC上的一点,连接AD,将△ACD沿AD翻折得△AFD.恰有AF⊥BC.(1)若∠C=35°,∠BAF=;(2)试判断△ABD的形状,并说明理由.22.(2021春•龙口市月考)如图,直线a∥b,点A,D在直线b上,射线AB交直线a于点B,CD⊥a于点C,交射线AB于点E,AB=15cm,BE:AE=1:2,P为射线AB上一动点,P从A点出发沿射线AB 方向运动,速度为1cm/s,设点P运动时间为t,M为直线a上一定点,连接PC,PD.(1)当t=m时,PC+PD有最小值,求m的值;(2)当t<m(m为(1)中的取值)时,探究∠PCM、∠PDA与∠CPD的关系,并说明理由;(3)当t>m(m为(1)中的取值)时,直接写出∠PCM、∠PDA与∠CPD的关系.23.(2022•碑林区校级开学)如图,有一直角三角形纸片,两直角边AB=6cm,AC=8cm,现将直角边AB 沿直线BD进行对折,使点A刚好落在斜边BC上,且与A′B重合,求BD的长.24.(2021秋•江源区期末)如图,把直角三角形放置在4×4方格纸上,三角形的顶点都在格点上.在方格纸上用三种不同的方法画出与已知三角形成轴对称的三角形.(要求:画出的三角形的顶点都在格点上,不涂黑)25.(2020秋•德惠市期末)教材呈现:如图是华师版八年级上册数学教材111页的部分内容.如图①,Rt△ABC的斜边AC比直角边AB长2cm,另一直角边BC长为6cm,求AC的长.(1)请根据教材内容,结合图①,写出完整的解题过程.(2)拓展:如图②,在图①的△ABC的边AB上取一点D,连接CD,将△ABC沿CD翻折,使点B的对称点E落在边AC上.①求AE的长.②DE的长为.26.(2021秋•亭湖区校级月考)如图的三角形纸板中,沿过点B的直线折叠这个三角形,使点C落在AB 边的点E处,折痕为BD.(1)若AB=10cm,BC=8cm,AC=6cm,求△AED的周长;(2)若∠C=100°,∠A=70°,求∠BDE的度数.题组B 能力提升练一.选择题(共5小题)1.(2020秋•仪征市期末)如果一个三角形是轴对称图形,那么这个三角形一定是()A.直角三角形B.等腰三角形C.锐角三角形D.等边三角形2.(2021秋•讷河市期末)如图,∠AOB=30°,点P在∠AOB的内部,点C,D分别是点P关于OA、OB 的对称点,连接CD交OA、OB分别于点E,F;若△PEF的周长的为10,则线段OP=()A.8B.9C.10D.113.(2021秋•上杭县期末)如图,将一张长方形纸片ABCD沿对角线BD折叠后,点C落在点E处,连接BE交AD于点F,再将三角形DEF沿DF折叠后,点E落在点G处,若DG刚好平分∠ADB,那么∠BDC的度数为()A.60°B.54°C.40°D.36°4.(2021秋•高邮市期末)如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm,点D、E分别在AC、BC 边上.现将△DCE沿DE翻折,使点C落在点H处.连接AH,则AH长度的最小值为()A.0B.2C.4D.65.(2021秋•西城区校级期中)如图,在5×6的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中△ABC是一个格点三角形,在格纸范围内,与△ABC成轴对称的格点三角形的个数为()个.A.8B.9C.10D.11二.填空题(共7小题)6.(2021秋•广陵区期中)等边三角形是一个轴对称图形,它有条对称轴.7.(2020春•兰考县期末)如果一个三角形是轴对称图形,且有一个角为60°,那么这个三角形是,它有条对称轴.8.(2017秋•邹城市期末)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为.9.(2016秋•玄武区期末)如图,一束光线从点O射出,照在经过A(1,0)、B(0,1)的镜面上的点D,经AB反射后,反射光线又照到竖立在y轴位置的镜面,经y轴再反射的光线恰好通过点A,则点D的坐标为.10.(2021秋•西青区期末)如图,在一个三角形纸片ABC中,∠B=90°,AB=3,点D在边BC上,将△ABD沿直线AD折叠,点B恰好落在AC边上的点E处.若AD=CD,则AC的长是.11.(2022•大渡口区模拟)如图,在△ABC中,点D在BC边上,BD=2CD,且∠ADC=45°,将△ABC 沿AD折叠,点C落在点C'处,连接BC',若BC'=10,则BC的长为.12.(2021秋•双流区期末)如图,在长方形纸片ABCD的边AD上有一个动点E,连接BE,将△ABE沿BE边对折,使点A落在点F处,连接AF,DF.若AB=3,ED=2,∠AFD=90°,则线段BE的长为.三.解答题(共6小题)13.(2016春•桐柏县校级月考)如图,直线a⊥b,请你设计两个不同的轴对称图形,使a、b都是它的对称轴.14.(2021秋•东阳市期末)综合实践课上,小聪用一张长方形纸片ABCD对不同折法下的夹角大小进行了探究,先将纸片的一角对折,使角的顶点A落在A′处,EF为折痕,如图①所示.(1)若∠AEF=30°,①求∠A′EB的度数;②又将它的另一个角也折过去,并使点B落在EA′上的B′处,折痕为EG,如图②所示,求∠FEG的度数;(2)若改变∠AEF的大小,则EA′的位置也随之改变,则∠FEG的大小是否改变?请说明理由.15.(2021秋•朝阳区期末)在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的<l1,l2>伴随图形.例如:点P(2,1)的<x轴,y轴>伴随图形是点P′(﹣2,﹣1).(1)点Q(﹣3,﹣2)的<x轴,y轴>伴随图形点Q′的坐标为;(2)已知A(t,1),B(t﹣3,1),C(t,3),直线m经过点(1,1).①当t=﹣1,且直线m与y轴平行时,点A的<x轴,m>伴随图形点A′的坐标为;②当直线m经过原点时,若△ABC的<x轴,m>伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围.16.(2021•河南模拟)贾芳芳同学在研究矩形面积与矩形的边长x,y之间的关系时,得如表数据:x…123456…y…9 4.53m 1.8 1.5…请依据表格解答下列问题:(1)表格中的数据m=,y与x之间的函数关系式为;(2)依据表格中的数据描绘出函数图象,并写出一条函数图象的性质;(3)若函数图象上有一点P,过点P分别向x,y轴作垂线段,垂足分别为M、N,若点P的横坐标为a,请问当a为何值时四边形PMON周长有最小值?(提示:a2+b2≥2ab)17.(2021秋•富县期中)如图,已知四边形ABCD与四边形EFGH关于直线MN对称,∠D=130°,∠A+∠B=155°,AD=4cm,EF=5cm.(1)求出AB,EH的长度以及∠G的度数;(2)连接AE,DH,AE与DH平行吗?为什么?18.(2021秋•汉阳区期中)如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A,C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB边下方的点E处,记△ADE的周长为L,直接写出L的取值范围.题组C 培优拔尖练一.选择题(共6小题)1.(2021秋•梁溪区校级期末)如图,点A,B在直线MN的同侧,A到MN的距离AC=8,B到MN的距离BD=5,已知CD=4,P是直线MN上的一个动点,记P A+PB的最小值为a,|P A﹣PB|的最大值为b,则a2﹣b2的值为()A.160B.150C.140D.1302.(2021秋•柯桥区期末)如图,三角形纸片ABC,点D是BC边上一点,连结AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点F.若点F是DE的中点,AD=9,EF=2.5,△AEF的面积为9,则点F到BC的距离为()A.1.4B.2.4C.3.6D.4.83.(2021秋•连云港期末)将一张长方形纸片ABCD按如图所示方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′AD′=8°,则∠EAF的度数为()A.40°B.40.5°C.41°D.42°4.(2020秋•九龙坡区校级月考)如图在四边形ABEC中,∠BEC和∠BAC都是直角,且AB=AC.现将△BEC沿BC翻折,点E的对应点为E',BE′与AC边相交于D点,恰好BE′是∠ABC的角平分线,若CE=1,则BD的长为()A.1.5B.C.2D.5.(2018春•江岸区校级月考)△ABC中,∠ABC=97.5°,P、Q两点在AC边上,PB=2,BQ=3,PQ=,若点M、N分别在边AB、BC上,当四边形PQNM的周长最小时,(MP+MN+NQ)2的值为()A.18+8B.24+8C.22+6D.31+6.(2018•乐清市模拟)如图,一张三角形纸片ABC,其中∠BAC=60°,BC=6,点D是BC边上一动点,将BD,CD翻折使得B′,C′分别落在AB,AC边上,(B与B′,C与C′分别对应),点D从点B 运动运动至点C,△B′C′D面积的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小二.填空题(共3小题)7.(2021秋•弋江区期末)利用折纸可以作出角平分线,如图1则OC为∠AOB的平分线.如图2、图3,折叠长方形纸片,OC,OD均是折痕,折叠后,点A落在点A′,点B落在点B′,连接OA′.①如图2,若点B′恰好落在OA′上,且∠AOC=32°,则∠BOD=;②如图3,当点B′在∠COA′的内部时,连接OB′,若∠AOC=44°,∠BOD=61°,求∠A′OB′的度数为.8.(2021秋•硚口区期末)在△ABC中,∠A=α(α<60°),点E、F分别为AC和AB上的动点,BE与CF相交于G点,且BE+EF+CF的值最小.①如图1,若AB=AC,α=40°,则∠ABE=°;②如图2,∠BGC=.(用含α的式子表示)9.(2017•肥城市二模)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1,还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2017次操作后得到的折痕D2016E2016,到BC的距离记为h2017;若h1=1,则h2017的值为.三.解答题(共8小题)10.指出图中各有多少条对称轴.11.(2009秋•五华区校级期中)(1)请找出下图中每个正多边形对称轴的条数,并填入下表.34568…正多边形的边数345…对称轴的条数(2)请写出正多边形的对称轴的条数y随正多边形的边数n(n≥3)变化的关系式.12.(2021•百色模拟)在△ABC中,∠BAC=45°,AD⊥BC于D,将△ABD沿AB所在的直线折叠,使点D落在点E处;将△ACD沿AC所在的直线折叠,使点D落在点F处,分别延长EB、FC使其交于点M.(1)判断四边形AEMF的形状,并给予证明;(2)若BD=2,CD=3,试求四边形AEMF的面积.。
5、1轴对称现象
靖安中心学校杨辉
教学目标:1.经历观察、分析现实生活实例和典型图案的过程,认识轴对称和轴对称图形培养学生探索知识的能力与分析问题、思考问题的习惯。
2.会找出简单对称图形的对称轴。
3.了解轴对称和轴对称图形的联系与区别。
教学重点:本节课的重点是通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴。
找出简单轴对称图
形的对称轴与理解轴对称和轴对称图形的联系与区别是难点。
活动准备:收集各类有关对称的图案和各种现实生活中有关对称的实例,作为教学时互相交流的资料。
教学过程:
一、看一看:
1.如下各类具有轴对称特点的图案(如课本上所绘的图象或由学生课前收集的各类具有对称特点的图案)
1.分析各类图案的特点,让学生经历观察和分析,初步认识轴对称图形。
二、议一议
1.试举例说明现实生活中也具有轴对称特征的物体,发展想象能力。
2.让学生感到具有轴对称特征的物体,它们都是关于一条直线形成对称。
三、做一做
1.把具有轴对称特征的图形沿某一条直线对折,使直线两旁的部分能够互相重合
把具有轴对称特征的图形沿某一条直线对折,直线两旁的部分能够互相重合,那么这个
图形叫做轴对称图形,这条直线叫做对称轴。
让学生说出以前学习过的轴对称图形,并找出它的对称轴
2.弄清楚轴对称与轴对称图形的区别
对于两个图形,如果沿一条直线对折后,它们能完全重合,那么这两个图形成轴对称,这条直线就是对称轴。
轴对称是指两个图形之间的形状和位置关系。
而轴对称图形是对一个图形而言的,轴对称图形是一个具有特殊形状的图形。
它们都有没某条直线对折使直线两旁的图形能重合的特征。
小结:今天我们经历观察和分析了现实生活实例和图案,了解了现实生活中存在许多有关对称的事例,认识了轴对称与轴对称图形,并能找出一些简单轴对称图形的对称轴。
导学案: 5.1 轴对称现象
一、学习目标:1、经历观察、分析现实生活实例和典型图案的过程,认识轴对称和轴
对称图形培养学生探索知识的能力与分析问题、思考问题的习惯。
2、会找出简单对称图形的对称轴,了解轴对称和轴对称图形的联系与区别。
二、学习重点:通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,
会找出简单的轴对称图形的对称轴。
三、学习难点:找出简单轴对称图形的对称轴与理解轴对称和轴对称图形的联系与区别(一)预习准备
(1)预习书115~117页
(2)预习作业:
1.如图所示的几个图案中,是轴对称图形的是()
2.如图所示,下面的5个英文字母中是轴对称图形的有()
A.2个 B.3个 C.4个 D.5个
3.如图所示的图案中,是轴对称图形的有()
A.1个 B.2个 C.3个 D.4个
(二)学习过程:
1、如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做_______图形,这条直线叫做_______。
2、对称轴是一条_______,有些轴对称图形可能有几条,甚至无数条对称轴。
3、把一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么就说这_______图形成轴对称,这条直线就是对称轴,两个图形中的对应点叫做对称点。
4、轴对称图形与轴对称的区别:
区别:轴对称是_______图形的位置关系,而轴对称图形是_______具有特殊形状的图形。
5.你认识世界上各国的国旗吗?如图7-4所示,观察下面的一些国家的国旗,是轴对称图形的有()
A.甲乙丙丁戊 B.甲乙丁戊 C.甲乙丙戊 D.甲乙戊
6.小红将一张正方形的红纸沿对角线对折后,得到等腰直角三角形,然后在这张重叠的纸上剪出一个非常漂亮的图案,她拿出剪出的图案问小冬,打开后的图案的对称轴至少有()
A.0条 B.1条 C.2条 D.无数条
7.如图所示,从轴对称的角度来看,你觉得下面哪一个图形比较独特?简单说明你的理由.
8.观察如图所示的图案,它们都是轴对称图形,它们各有几条对称轴?在图中画出所有的对称轴.
9.如图所示的四个图形中,从几何图形的性质考虑哪一个与其他三个不同?•请指出这个图形,并简述你的理由.
拓展:
1.如图所示,以虚线为对称轴画出图形的另一半.
回顾小结:
1.如果一个图形沿某一条直线折叠后,直线两旁的部分能够,那么这个图形叫做轴对称图形,这条直线叫做。
2.对于两个图形,如果沿一条直线对折后,它们能,那么这两个图形成轴对称,这条直线就是。
3.轴对称是指两个图形之间的和关系。
而轴对称图形是对一个图形而言,
轴对称图形是
一个具有特殊
形状的图形。
它们都有沿某
条直线对折使
直线两旁的图形能
的特征.。