第三讲流体力学
- 格式:ppt
- 大小:336.00 KB
- 文档页数:11
第三章流体动力学基础本章是流体动力学的基础。
主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。
此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。
第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。
图3-1为流线谱中显示的流线形状。
(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。
流线是欧拉法分析流动的重要概念。
图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。
图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。
b.流线不能是折线,而是一条光滑的曲线。
因为流体是连续介质,各运动要素是空间的连续函数。
c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。
因为对不可压缩流体,元流的流速与其过水断面面积成反比。
(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。
所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。
图3-5中烟火的轨迹为迹线。
(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。
第三讲 流体静力学一、 静止流体中的应力特性静止流体中,流体质点之间没有相对运动,切应力必然为0,又由于流体分子之间的引力很小,流体质点之间几乎不能承受拉力。
因此,在静止流体中,只能存在指向作用面的法向应力。
即n p =-p n (3-1)式中的p n 就是工程流体力学中的流体静压力。
上式也可以写成张量形式P ==000000p p p -⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦=p 00000011⎡⎤⎢⎥1⎢⎥⎢⎥⎣⎦= p I (3-2) 式中I 为单位张量。
静止流体中任意一点处的应力无论来自何方均相等,即任意一点处的静压力与作用方向无关。
二、 欧拉平衡方程惯性坐标系中,任何流体处于静止状态的必要条件是:作用在物体上的合外力为0,即0∑=F (4-3)在静止流场中任取一个流体团作为研究对象,作用在其上的质量力可表示为d ρττ⎰⎰⎰f (a ) 表面力可表示为d d AAp A p A -=-⎰⎰⎰⎰n n (b )根据第一个平衡条件(3-3)可得d d =0Aρτp A τ-⎰⎰⎰⎰⎰f n (c ) 根据高斯定理可知,若物理量p 在封闭空间τ中连续且存在连续的一阶导数,则有d =d Ap A p ττ∇⎰⎰⎰⎰⎰n (d )将(d)式代入(c)式则可得d 0ρp ττ-∇=⎰⎰⎰()f 由于流体团是任意选取的,所以要使上式成立,则被积函数在该体积内任意点上的数值必须为0,于是有=0ρp -∇f或1=p ρ∇f (3-4)这就是欧拉平衡微分方程式,其在直角坐标系中可写为111x yzp f ρx pf ρy p f ρz ⎧∂=⎪∂⎪⎪∂=⎨∂⎪⎪∂=⎪∂⎩(3-5) 同时,合力矩为0是自动满足的。
三、 静压流场的质量力条件(自学)对于所有的静止流体,(3-4)式均成立,现对其两端同时取旋度可得1111==+=p p p p ρρρρ⎛⎫⎛⎫⎛⎫∇⨯∇⨯∇∇⨯∇∇⨯∇∇⨯∇ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()f上式中应用了标量函数梯度的旋度为0这一结论,现证明之p ∇⨯∇()=p p p xy z ⎛⎫∂∂∂∇⨯++ ⎪∂∂∂⎝⎭i j k=x y z p p p xy z∂∂∂∂∂∂∂∂∂∂∂∂ij k =p p p p p p y z z y x z z x x y y x ⎛⎫⎛⎫∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫---+-⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭i j k =0(矢量) 将上式与(3-4)式进行点乘则有()1=p p ρρ⎡⎤⎛⎫∇∇⨯∇⨯∇⎢⎥ ⎪⎝⎭⎣⎦f f 上式右端为矢量的混合积,由混合积的定义可知由于三个矢量中有两个同名,所以其值为0,可得()=0∇⨯f f (3-6)由此可以得出结论:流体静止的必要条件是质量力必须满足()=0∇⨯ff 。
Chapter 3 流体运动的基本方程组本章任务:建立控制流动的基本方程组,确定边界条件。
§3.1系统和控制体系统(sys )指给定流体质点组成的流体团,相当于质点或刚体力学中的研究对象——物体;系统在流动过程中可以不断改变自己的位置和形状,但维持其连续性,始终由固定的那些流体质点组成。
系统与外界可以有力的相互作用,可以有动量和能量交换,但是没有物质交换。
控制体(CV )指流动空间内的一个给定空间区域(子空间),其边界面称为控制面(CS )。
控制体一旦选定,其大小、形状和位置都是确定的,有流体不断出入。
物质体元即流体微团。
物质面元可以看成由连续分布的流体质点(看成是没有体积的几何点)构成的面元,物质面元在流动过程中可以变形,但始终由这些流体质点组成。
物质线元可以看成连续分布的流体质点(看成是没有体积的几何点)构成的线元,或者说是连续分布的流体质点的连线线元,物质线元在流动过程中可以变形,但始终由这些流体质点组成。
时间线就是物质线。
(三者如同面团、薄饼和面条) §3.2雷诺输运定理设(),f r t 代表流动的某物理量场(可以是密度场、温度场、动量密度分量场、能量密度场等),t 时刻某流体团(即系统)占据空间τ,取该空间为控制体。
t 时刻该流体团的总f 为()(),I t f r t d ττ=⎰。
(3-1)此I 也是t 时刻控制体内的总f 。
设t t δ+时刻(0t δ→)该系统运动到如图所示位置,占据空间τ',此时系统的总f 为()(),I t t f r t t d τδδτ'+=+⎰。
(3-2)该系统总f 的随体导数()()()0lim t I t t I t DI t Dt tδδδ→+-=。
(3-3)将空间II τ分为与空间I τ重合的部分2τ和其余部分1τ,空间I τ去除2τ后剩余部分记为3τ,于是13ττττ'=+-,(3-4)进而()()()()13I t t I t t I t t I t t τττδδδδ+=+++-+,(3-5)可得()()()()()130lim t I t t I t t I t t I t DI t Dt tττττδδδδδ→+++-+-=()()()()31000lim lim lim t t t I t t I t t I t t I t t t tττττδδδδδδδδδ→→→+++-=+-, (3-6)其中第一项()()()0limt I t t I t I t t t ττδδδ→+-∂=∂。