流体力学第二章上课讲义
- 格式:ppt
- 大小:3.91 MB
- 文档页数:77
第二章 流体运动学只研究流体运动, 不涉及力、质量等与动力学有关的物理量。
§2.1 流体运动的描述 两种研究方法:(1)拉格朗日(Lagrange)法: 以流场中质点或质点系为研究对象, 从而进一步研究整个流体。
理论力学中使用的质点系力学方法,难测量,不适用于实用理论研究。
(2)欧拉(Euler)法: 将流过空间的流体物理参数赋予各空间点(构成流场),以空间各点为研究对象,研究其物理参数随时间t ,位置(x ,y ,z )的变化规律。
易实验研究,流体力学的主要研究方法。
两种研究方法得到的结论形式不同,但结论的物理相同。
可通过一定公式转换。
1. 拉格朗日法有关结论质点: r=r (t ) dt d rV = dtd dt d V r a ==22x=x (t ) dt dxu = 22dtx d a x =y=y (t ) dtdyv = 22dt y d a y =p=p (t ) T=T (t ) .. .. .. .. .. .. .. .. 质点系:x=x (t,a,b,c ) p=p (t,a,b,c ) T=T (t,a,b,c ) .. .. .. .. .. .. .. ..(a, b, c)是质点系各质点在t =t 0时刻的坐标。
(a, b, c)不同值表不同质点2. 欧拉法物理量应是时间t 和空间点坐标x, y,z 的函数u =u(x, y, z, t) p =p(x, y, z, t) T =T(x, y, z, t) 3. 流体质点的随体导数!!流体质点的随体导数:流体质点物理参数对于时间的变化率。
简称为质点导数。
例:质点速度的随体导数(加速度)dt d V 质点分速度的随体导数dtdu质点压力的随体导数dtdp质点温度的随体导数dt dT.. .. .. .. .. .. 质点导数是拉格朗日法范畴的概念。
流体质点随体导数式---随体导数的欧拉表达式dt d V =z wy v x u t t∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V V V V V V Vdt du =z u w y u v x u u t u u tu∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂Vdt dT =z T w y T v x T u t T T tT∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V普遍形式: dt dF =z F w y F v x F u t F F tF∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂VF t )(∇⋅+∂∂=V证其一: dt d V =V V V∇⋅+∂∂t 由 dt d V=tt ∆-→∆V V 'lim 0因 V=V (x ,y , z,t )V ’=V (x+Δx ,y+Δy ,z+Δz,t+Δt )所以 V ’=V++∆∂∂x x V +∆∂∂y y V z z∆∂∂V t t ∆∂∂+V 代入上式得dt d V==∆∆∂∂+∂∂∆+∂∂∆+∂∂∆→∆tt z z y x xt tV V y V V lim 0V V V z V y V x V t V ∇⋅+∂∂=∂∂+∂∂+∂∂+∂∂=tw v u 可见, 在欧拉法中质点速度的随体导数(即加速度)由两部分组成。
流体力学II(Viscous Fluid and Gas Dynamics)讲义第一章、粘性不可压缩流体运动基本方程组(学时数:6)1-1.绪论流体力学是力学的一个重要分支,主要研究流体介质(液体、气体、等离子体)的特性、状态,在各种力的作用下发生的对流、扩散、旋涡、波动现象和质量、动量、能量传输,以及同化学、生物等其他运动形式之间的相互作用。
它既是一门经典学科,又是一门现代学科,对自然科学和工程技术具有先导作用。
历史上,力学包括流体力学,曾经经历基于直观实践经验的古代力学、基于严密数学理论的经典力学、基于物理洞察能力的近代力学三个阶段。
在人类早期的生产活动过程中,力学即与数学、天文学一起发展。
17世纪,Newton基于前人的天文观测和力学实验,发明了微积分,并总结出机械运动三大定律和万有引力定律,发表了著名的《自然哲学的数学原理》一书。
由于原理是普适自然与工程领域的规律,从而使力学成为自然科学的先导。
从17世纪开始,人们逐步建立了流体力学的基本理论体系,从Pascal定律、Newton粘性定律、Pitot 管测速,到Euler方程和Bernoulli方程,标志着流体动力学正式成为力学的一个分支学科。
18世纪,人们着重发展无粘流体的位势理论。
到了19世纪,为了解决工程实际问题,开始注重粘性的影响,Navier-Stokes方程的建立为流体力学的进一步发展奠定了完整的理论基础,但该方程解的存在性与光滑性的证明至今仍是一大难题。
20世纪初,Prandtl凭借出色的物理洞察能力,提出边界层理论,从而开创了流体力学的近代发展阶段,使力学成为人类实现“飞天”梦想的重要理论先导。
60年代以来,由于超级计算机、先进测试技术的发展和应用,力学进一步凸显宏微观结合和学科交叉的特征,进入现代力学发展新阶段。
刚刚过去的2011年,人类遭遇了一系列极端事件:日本海底地震导致海啸和福岛核电站泄露事故;澳大利亚飓风;我国干旱洪水灾害等异常气候问题。
第二章流体静力学作用在流体上的力有面积力与质量力。
静止流体中,面积力只有压应力——压强。
流体静力学主要研究流体在静止状态下的力学规律:它以压强为中心,主要阐述流体静压强的特性,静压强的分布规律,欧拉平衡微分方程,等压面概念,作用在平面上或曲面上静水总压力的计算方法,以及应用流体静力学原理来解决潜体与浮体的稳定性问题等。
第一节作用于流体上的力一、分类1.按物理性质的不同分类:重力、摩擦力、惯性力、弹性力、表面张力等。
2.按作用方式分:质量力和面积力。
二、质量力1.质量力(mass force):是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
对于均质流体(各点密度相同的流体),质量力与流体体积成正比,其质量力又称为体积力。
单位牛顿(N)。
2.单位质量力:单位质量流体所受到的质量力。
(2-1) 单位质量力的单位:m/s2 ,与加速度单位一致。
最常见的质量力有:重力、惯性力。
问题1:比较重力场(质量力只有重力)中,水和水银所受的单位质量力f水和f水银的大小?A. f水<f水银;B. f水=f水银;C. f水>f水银;D、不一定。
问题2:试问自由落体和加速度a向x方向运动状态下的液体所受的单位质量力大小(fX. fY. fZ)分别为多少?自由落体:X=Y=0,Z=0。
加速运动:X=-a,Y=0,Z=-g。
三、面积力1.面积力(surface force):又称表面力,是毗邻流体或其它物体作用在隔离体表面上的直接施加的接触力。
它的大小与作用面面积成正比。
表面力按作用方向可分为:压力:垂直于作用面。
切力:平行于作用面。
2.应力:单位面积上的表面力,单位:或图2-1压强(2-2)切应力(2-3) 考考你1.静止的流体受到哪几种力的作用?重力与压应力,无法承受剪切力。
2.理想流体受到哪几种力的作用?重力与压应力,因为无粘性,故无剪切力。
第二节流体静压强特性一、静止流体中任一点应力的特性1.静止流体表面应力只能是压应力或压强,且静水压强方向与作用面的内法线方向重合。