高二数学向量数乘运算及其几何意义2
- 格式:ppt
- 大小:372.50 KB
- 文档页数:23
向量数乘的几何意义稿子一嘿,亲爱的小伙伴们!今天咱们来聊聊向量数乘这个有趣的话题,特别是它的几何意义哟!你想想看,向量数乘就像是给向量穿上了魔法衣,能让它变大或者变小。
比如说,一个向量本来指向某个方向,当我们给它乘以一个正数,它就像被拉伸了一样,变得更长啦,但是方向不变哦。
这就好像是在原来的基础上,给它加了一股力量,让它能走得更远。
要是乘以一个小于 1 的正数,那这个向量就像是被压缩了,变短了一些,但方向还是那个方向,就好像是被限制了一下,不能那么“放肆”地跑远啦。
那要是乘以一个负数呢?这可神奇啦!它不仅长度变了,方向还完全反过来了!就像是本来向前冲的,一下子被拽回来,朝着相反的方向跑。
向量数乘在很多地方都有用哦!比如在物理学中,计算力的大小和方向变化的时候;在几何图形的研究中,帮助我们理解图形的变形和缩放。
向量数乘的几何意义真的超级有趣,能让我们更好地理解和解决很多问题呢!稿子二嗨呀,朋友们!今天咱们一起探索一下向量数乘的几何意义,准备好了吗?你可以把向量想象成一个小箭头,而数乘就是对这个小箭头的“改造”。
假如有个向量,它就像一个勇敢的小士兵朝着一个方向前进。
当我们给它乘以 2 ,这个小士兵瞬间变得更强大,走得更远,但是前进的方向可没有改变哟,还是那么坚定。
要是乘以 0.5 呢,小士兵就好像有点累了,步伐变小了,但依然朝着原来的目标前进。
但要是乘以 1 ,哇哦,这就像是给小士兵来了个 180 度大转弯,原来向前冲,现在向后跑啦。
向量数乘在生活中也有体现呢!比如我们走路的速度和方向,速度的变化就可以看作是向量数乘。
还有工程设计里,调整物体的移动距离和方向,都离不开向量数乘。
向量数乘的几何意义就像是一个神奇的魔法棒,能让向量变得不一样,帮助我们解决好多难题,是不是很有意思呀?。
向量相乘几何意义1. 向量的乘法的几何意义:向量的乘法,即叉乘,就是两个向量的矢量积,也叫向量积、叉乘。
它表示在三维空间中两个向量的交叉影响。
叉乘的计算结果是一个新的向量,它与原来两个向量不共线(垂直),新向量指向与两个向量夹角关系最小的方向,新向量的模大小取决于原来向量的模和夹角。
2. 投影乘法几何意义:向量投影乘法是为了了解两个向量之间的相似性,它是把一个向量投影到另一个向量上,然后求出两个向量的内积,它描述的是两个向量的大小和方向的关系。
三维空间中的向量投影,得出的结果是一个垂直于另一向量的向量,可以表示为一个实值,表示投影后的向量的模长。
3. 向量的点乘几何意义:向量的点乘就是两个向量的点积,也叫内积。
它表示对两个向量之间的角度。
如果两个向量夹角为90°,说明他们是正交,点乘结果为0。
另外,点乘结果大于0,说明他们夹角小于90°;点乘结果小于0,则说明他们夹角大于90°。
4. 向量的乘法的应用:(1)在几何中,向量的乘法可以用来求出三角形的重心。
(2)在物理学中,向量的乘法可以用来求出力矩,从而了解力和位移之间的关系。
(3)在几何中,向量投影乘法可以用来求出过某点的投影线和一条向量的投影。
(4)在几何中,可以用点乘乘法求出两个向量之间的夹角,求出相交后三角形的重心,也可以用来求出向量的长度。
(5)在数学中,向量的乘法可以用来求解线性方程组的解。
(6)在统计学中,可以通过向量的乘法和投影乘法来求出最小二乘回归。
(7)在仿真中,可以通过向量的乘法来求出任意天体运行的轨迹。
向量乘法的几何意义
向量乘法的几何意义是用于描述向量之间的乘积的几何特征。
向量乘法有两种不同的乘积,分别是点积和叉积。
点积表示的是两个向量之间的夹角以及它们的长度的乘积,而叉积则表示的是两个向量之间所围成平行四边形的面积。
这些几何特征可以帮助我们更好地理解向量的性质和行为。
对于点积,它可以用来计算两个向量之间的夹角。
当两个向量的点积为正数时,它们之间的夹角是锐角;当点积为负数时,它们之间的夹角是钝角;当点积为零时,它们之间的夹角是直角。
此外,点积还可以用于计算向量在某个方向上的投影。
具体而言,如果向量A在向量B上的投影为C,那么向量C的长度等于向量A与向
量B之间的夹角的余弦值与向量A的长度的乘积。
对于叉积,它可以用于计算两个向量之间所围成平行四边形的面积。
具体而言,如果向量A和向量B的叉积为C,那么向量C的长度等于向量A和向量B所围成
的平行四边形的面积。
此外,叉积还可以用于计算向量之间的垂直关系。
具体而言,如果向量A和向量B的叉积为C,那么向量C与向量A和向量B都垂直。
在实际应用中,向量乘法具有广泛的应用。
例如,在物理学中,点积和叉积可以用于计算力和力矩;在计算机图形学中,点积和叉积可以用于计算三维图形的法向量和表面积;在机器学习中,点积可以用于计算两个向量之间的相似度。
因此,了解向量乘法的几何意义对于理解这些应用非常重要。
向量的运算与几何意义解析向量是数学中重要的概念,它可以用来表示方向和大小。
在实际应用中,我们经常需要对向量进行运算,并通过运算来解析向量的几何意义。
本文将探讨向量的四则运算(加法、减法、数量乘法和点乘)以及各种运算在几何上的意义。
1. 向量的加法(Vector Addition)向量的加法是指将两个向量相加得到一个新的向量。
具体而言,给定两个向量A和A,它们的加法可以表示为:A = A + A。
在几何上,这个运算可以理解为将向量A放在向量A的尾部,从而得到一个新的向量A,如下图所示:图1:向量的加法示意图通过向量的加法,我们可以将多个向量连接起来,从而形成更长的向量。
2. 向量的减法(Vector Subtraction)向量的减法是指将一个向量从另一个向量中减去,得到一个新的向量。
具体而言,给定两个向量A和A,它们的减法可以表示为:A = A - A。
在几何上,这个运算可以理解为从向量A的尾部指向向量A 的尾部,从而得到一个新的向量A,如下图所示:图2:向量的减法示意图通过向量的减法,我们可以计算出两点之间的距离,或者确定一个向量相对于另一个向量的位置关系。
3. 向量的数量乘法(Scalar Multiplication)向量的数量乘法是指将一个向量乘以一个标量,得到一个新的向量。
具体而言,给定一个向量A和一个标量A,它们的数量乘法可以表示为:A = AA。
在几何上,这个运算可以理解为将向量A的大小进行缩放或扩大A倍,从而得到一个新的向量A,如下图所示:图3:向量的数量乘法示意图通过向量的数量乘法,我们可以改变向量的大小,同时保持其方向不变。
4. 向量的点乘(Dot Product)向量的点乘是指将两个向量进行运算得到一个标量。
具体而言,给定两个向量A和A,它们的点乘可以表示为:A = A·A。
计算方法是将两个向量对应位置的元素相乘,然后将相乘的结果相加。
在几何上,点乘的结果是两个向量之间的夹角的余弦值乘以向量的模长乘积,如下图所示:图4:向量的点乘示意图通过向量的点乘,我们可以计算出两个向量之间的夹角,以及一个向量在另一个向量方向上的投影长度。
2.2.3向量数乘运算及其几何意义学习目标1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题.知识点一 向量数乘的定义实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下: (1)|λa |=|λ||a |.(2)λa (a ≠0)的方向⎩⎪⎨⎪⎧当λ>0时,与a 方向相同;当λ<0时,与a 方向相反.特别地,当λ=0或a =0时,0a =0或λ0=0. 知识点二 向量数乘的运算律 1.λ(μa )=(λμ)a . 2.(λ+μ)a =λa +μa . 3.λ(a +b )=λa +λb . 知识点三 向量共线定理 1.向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 2.向量的线性运算向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b . 思考 共线向量定理中为什么规定a ≠0?答案 若将条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa .1.若向量b 与a 共线,则存在唯一的实数λ使b =λa .( × ) 提示 当b =0,a =0时,实数λ不唯一. 2.若b =λa ,则a 与b 共线.( √ ) 提示 由向量共线定理可知其正确. 3.若λa =0,则a =0.( × ) 提示 若λa =0,则a =0或λ=0.题型一 向量的线性运算例1 (1)3(6a +b )-9⎝⎛⎭⎫a +13b =________. 考点 向量的线性运算及应用 题点 向量的线性运算答案 9a解析 3(6a +b )-9⎝⎛⎭⎫a +13b =18a +3b -9a -3b =9a . (2)若3(x +a )+2(x -2a )-4(x -a +b )=0,则x =______. 考点 向量的线性运算及应用 题点 向量的线性运算 答案 4b -3a解析 由已知得3x +3a +2x -4a -4x +4a -4b =0, 所以x +3a -4b =0,所以x =4b -3a . 反思感悟 向量线性运算的基本方法(1)类比法:向量的数乘运算类似于代数多项式的运算,例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”、“公因式”是指向量,实数看作是向量的系数.(2)方程法:向量也可以通过列方程来解,把所求向量当作未知数,利用解方程的方法求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算. 跟踪训练1 计算:(a +b )-3(a -b )-8a . 考点 向量的线性运算及应用 题点 向量的线性运算解 (a +b )-3(a -b )-8a =(a -3a )+(b +3b )-8a =-2a +4b -8a =-10a +4b .题型二 向量共线的判定及应用命题角度1 判定向量共线或三点共线 例2 已知非零向量e 1,e 2不共线.(1)若a =12e 1-13e 2,b =3e 1-2e 2,判断向量a ,b 是否共线.考点 向量共线定理及其应用 题点 利用向量共线定理判定向量共线 解 ∵b =6a ,∴a 与b 共线.(2)若AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A ,B ,D 三点共线.考点 向量共线定理及其应用 题点 利用向量共线定理判定三点共线证明 ∵AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →, ∴AB →,BD →共线,且有公共点B , ∴A ,B ,D 三点共线.反思感悟 (1)向量共线的判断(证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线.(2)利用向量共线定理证明三点共线,一般先任取两点构造向量,从而将问题转化为证明两向量共线,需注意的是,在证明三点共线时,不但要利用b =λa (a ≠0),还要说明向量a ,b 有公共点.跟踪训练2 已知非零向量e 1,e 2不共线,如果AB →=e 1+2e 2,BC →=-5e 1+6e 2,CD →=7e 1-2e 2,则共线的三个点是________. 考点 向量共线定理及其应用 题点 利用向量共线定理判定三点共线 答案 A ,B ,D解析 ∵AB →=e 1+2e 2,BD →=BC →+CD → =-5e 1+6e 2+7e 1-2e 2=2(e 1+2e 2)=2AB →, ∴AB →,BD →共线,且有公共点B , ∴A ,B ,D 三点共线.命题角度2 利用向量共线求参数值例3 已知非零向量e 1,e 2不共线,欲使k e 1+e 2和e 1+k e 2共线,试确定k 的值. 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 解 ∵k e 1+e 2与e 1+k e 2共线, ∴存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎪⎨⎪⎧k -λ=0,λk -1=0,∴k =±1.反思感悟 利用向量共线定理,即b 与a (a ≠0)共线⇔b =λa ,既可以证明点共线或线共线问题,也可以根据共线求参数的值.跟踪训练3 设两个不共线的向量e 1,e 2,若a =2e 1-3e 2,b =2e 1+3e 2,c =2e 1-9e 2,问是否存在实数λ,μ,使d =λa +μb 与c 共线? 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 解 d =λ(2e 1-3e 2)+μ(2e 1+3e 2) =(2λ+2μ)e 1+(3μ-3λ)e 2,要使d 与c 共线,则存在实数k ,使得d =k c , 即(2λ+2μ)e 1+(-3λ+3μ)e 2=2k e 1-9k e 2. 因为e 1与e 2不共线,所以⎩⎪⎨⎪⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ.故存在实数λ和μ,使得d 与c 共线,此时λ=-2μ. 题型三 用已知向量表示其他向量例4 在△ABC 中,若点D 满足BD →=2DC →,则AD →等于( ) A.13AC →+23AB → B.53AB →-23AC →C.23AC →-13AB → D.23AC →+13AB → 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 示意图如图所示,由题意可得AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →.跟踪训练4 如图所示,四边形OADB 是以向量OA →=a ,OB →=b 为邻边的平行四边形.又BM =13BC ,CN =13CD ,试用a ,b 表示OM →,ON →,MN →.考点 向量共线定理及其应用 题点 用已知向量表示未知向量解 因为BM →=13BC →=16BA →=16(OA →-OB →)=16(a -b ),所以OM →=OB →+BM →=b +16a -16b =16a +56b .因为CN →=13CD →=16OD →,所以ON →=OC →+CN →=12OD →+16OD →=23OD →=23(OA →+OB →)=23(a +b ). MN →=ON →-OM →=23(a +b )-16a -56b =12a -16b .向量的综合应用典例 如图,设O 是△ABC 内一点,且满足OA →+2OB →+3OC →=0,则△ABC 与△AOC 的面积之比为________.答案 3解析 如图所示,分别取BC ,AC 边的中点D ,E ,则OB →+OC →=2OD →,① OA →+OC →=2OE →,② 由①×2+②可得OA →+2OB →+3OC →=2(2OD →+OE →). 又因为OA →+2OB →+3OC →=0, 所以2OD →+OE →=0,即OE →=-2OD →, 所以OD →,OE →共线,且|OE →|=2|OD →|.所以S △AOC =2S △COE =2×23S △CDE =2×23×14S △ABC =13S △ABC ,所以S △ABC S △AOC=3.[素养评析] 本题主要考查向量共线条件的应用,解题时需充分利用好几何图形,借助几何直观使问题得解,这正体现了数学中直观想象的核心素养.1.下列各式计算正确的有( ) (1)(-7)6a =-42a ; (2)7(a +b )-8b =7a +15b ; (3)a -2b +a +2b =2a ; (4)4(2a +b )=8a +4b .A .1个B .2个C .3个D .4个 考点 向量的线性运算及应用 题点 向量的线性运算 答案 C解析 (1)(3)(4)正确,(2)错,7(a +b )-8b =7a +7b -8b =7a -b . 2.在△ABC 中,M 是BC 的中点,则AB →+AC →等于( ) A.12AM → B.AM → C .2AM → D.MA → 考点 向量的线性运算及应用 题点 向量的线性运算 答案 C解析 如图,作出平行四边形ABEC ,因为M 是BC 的中点,所以M 也是AE 的中点,由题意知,AB →+AC →=AE →=2AM →,故选C.3.设e 1,e 2是两个不共线的向量,若向量m =-e 1+k e 2 (k ∈R )与向量n =e 2-2e 1共线,则( ) A .k =0 B .k =1 C .k =2D .k =12考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 D解析 当k =12时,m =-e 1+12e 2,n =-2e 1+e 2.∴n =2m ,此时m ,n 共线.4.已知P ,A ,B ,C 是平面内四点,且P A →+PB →+PC →=AC →,则下列向量一定共线的是( ) A.PC →与PB → B.P A →与PB → C.P A →与PC →D.PC →与AB → 考点 向量共线定理及其应用 题点 利用向量共线定理判定向量共线 答案 B解析 因为P A →+PB →+PC →=AC →, 所以P A →+PB →+PC →+CA →=0, 即-2P A →=PB →,所以P A →与PB →共线.5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.考点 向量共线定理及其应用 题点 用已知向量表示未知向量 解 OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.1.实数与向量可以进行数乘运算,但不能进行加减运算,例如λ+a ,λ-a 是没有意义的. 2.λa 的几何意义就是把向量a 沿着a 的方向或反方向扩大或缩小为原来的|λ|倍.向量a|a |表示与向量a 同向的单位向量.3.向量共线定理是证明三点共线的重要工具,即三点共线问题通常转化为向量共线问题.一、选择题1.下列说法中正确的是( ) A .λa 与a 的方向不是相同就是相反 B .若a ,b 共线,则b =λa C .若|b |=2|a |,则b =±2a D .若b =±2a ,则|b |=2|a | 考点 向量数乘的定义及运算 题点 向量数乘的定义及几何意义 答案 D解析 显然当b =±2a 时,必有|b |=2|a |. 2.3(2a -4b )等于( ) A .5a +7b B .5a -7b C .6a +12bD .6a -12b考点 向量的线性运算及应用 题点 向量的线性运算 答案 D解析 利用向量数乘的运算律,可得3(2a -4b )=6a -12b ,故选D.3.已知a ,b 是不共线的向量,AB →=λa +2b ,AC →=a +(λ-1)b ,且A ,B ,C 三点共线,则实数λ的值为( ) A .-1 B .2 C .-2或1D .-1或2考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 D解析 因为A ,B ,C 三点共线, 所以存在实数k 使AB →=kAC →. 因为AB →=λa +2b ,AC →=a +(λ-1)b , 所以λa +2b =k [a +(λ-1)b ].因为a 与b 不共线,所以⎩⎪⎨⎪⎧λ=k ,2=k (λ-1),解得λ=2或λ=-1.4.如图,△ABC 中,AB →=a ,AC →=b ,DC →=3BD →,AE →=2EC →,则DE →等于( )A .-13a +34bB.512a -34b C.34a +13b D .-34a +512b考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 DE →=DC →+CE →=34BC →+⎝⎛⎭⎫-13AC → =34(AC →-AB →)-13AC →=-34AB →+512AC →=-34a +512b ,故选D.5.如图,AB 是⊙O 的直径,点C ,D 是半圆弧AB 上的两个三等分点,AB →=a ,AC →=b ,则AD →等于( )A .a -12bB.12a -b C .a +12bD.12a +b 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 连接CD ,OD ,如图所示.∵点C ,D 是半圆弧AB 上的两个三等分点, ∴AC =CD ,∠CAD =∠DAB =12×60°=30°. ∵OA =OD ,∴∠ADO =∠DAO =30°. 由此可得∠CAD =∠ADO =30°,∴AC ∥DO . 由AC =CD ,得∠CDA =∠CAD =30°, ∴∠CDA =∠DAO ,∴CD ∥AO , ∴四边形ACDO 为平行四边形, ∴AD →=AO →+AC →=12AB →+AC →=12a +b .6.已知m ,n 是实数,a ,b 是向量,则下列说法中正确的是( ) ①m (a -b )=m a -m b ;②(m -n )a =m a -n a ; ③若m a =m b ,则a =b ;④若m a =n a ,则m =n . A .②④ B .①② C .①③ D .③④ 考点 向量数乘的定义及运算 题点 向量数乘的运算及运算律 答案 B解析 ①和②属于数乘对向量与实数的分配律,正确;③中,若m =0,则不能推出a =b ,错误;④中,若a =0,则m ,n 没有关系,错误.7.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD交于点F .若AC →=a ,BD →=b ,则AF →等于( ) A.14a +12b B.13a +23b C.12a +14b D.23a +13b 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 ∵△DEF ∽△BEA , ∴DF AB =DE EB =13,∴DF =13AB , ∴AF →=AD →+DF →=AD →+13AB →.∵AC →=AB →+AD →=a ,BD →=AD →-AB →=b , 联立得AB →=12(a -b ),AD →=12(a +b ),∴AF →=12(a +b )+16(a -b )=23a +13b .二、填空题8.(a +9b -2c )+(b +2c )=________. 考点 向量的线性运算及应用 题点 向量的线性运算 答案 a +10b9.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又∵向量λa +b 与a +2b 平行,则存在唯一的实数μ, 使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.10.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________.(用a ,b表示)考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 14b -14a解析 如图,MN →=MB →+BA →+AN →=-12b -a +34AC →=-12b -a +34(a +b )=14b -14a .11.若非零向量a 与b 不共线,k a +2b 与3a +k b 共线,则实数k 的值为________. 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 ±6解析 ∵k a +2b 与3a +k b 共线, ∴存在实数λ,使得k a +2b =λ(3a +k b ), ∴(k -3λ)a +(2-λk )b =0, ∴(k -3λ)a =(λk -2)b .∵a 与b 不共线,∴⎩⎪⎨⎪⎧k -3λ=0,λk -2=0,∴k =±6.12.如图,在△ABC 中,延长CB 到D ,使BD =BC ,当点E 在线段AD 上移动时,若AE →=λAB→+μAC →,则t =λ-μ的最大值是________.考点 向量共线定理及其应用题点 向量共线定理在平面几何中的应用 答案 3解析 设AE →=kAD →,0≤k ≤1,则AE →=k (AC →+2CB →)=k [AC →+2(AB →-AC →)]=2kAB →-kAC →, ∵AE →=λAB →+μAC →,且AB →与AC →不共线,∴⎩⎪⎨⎪⎧λ=2k ,μ=-k ,∴t =λ-μ=3k .又0≤k ≤1,∴当k =1时,t 取最大值3. 故t =λ-μ的最大值为3. 三、解答题 13.计算:(1)6(3a -2b )+9(-2a +b );(2)12⎣⎡⎦⎤(3a +2b )-23a -b -76⎣⎡⎦⎤12a +37⎝⎛⎭⎫b +76a ; (3)6(a -b +c )-4(a -2b +c )-2(-2a +c ). 考点 向量的线性运算及应用 题点 向量的线性运算解 (1)原式=18a -12b -18a +9b =-3b . (2)原式=12⎝⎛⎭⎫3a -23a +2b -b -76⎝⎛⎭⎫12a +12a +37b=12⎝⎛⎭⎫73a +b -76⎝⎛⎭⎫a +37b =76a +12b -76a -12b =0. (3)原式=6a -6b +6c -4a +8b -4c +4a -2c =(6a -4a +4a )+(8b -6b )+(6c -4c -2c ) =6a +2b .14.在平行四边形ABCD 中,M ,N 分别是DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →和AD →.考点 向量的线性运算及应用 题点 用已知向量表示未知向量 解 如图,设AB →=a ,AD →=b . ∵M ,N 分别是DC ,BC 的中点,∴BN →=12b ,DM →=12a .∵在△ADM 和△ABN 中, ⎩⎪⎨⎪⎧AD →+DM →=AM →,AB →+BN →=AN →,即⎩⎨⎧ b +12a =c , ①a +12b =d . ②①×2-②,得b =23(2c -d ), ②×2-①,得a =23(2d -c ). ∴AB →=43d -23c ,AD →=43c -23d .15.已知在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,求证:四边形ABCD为梯形.考点 向量共线定理及其应用题点 向量共线定理在平面几何中的应用证明 如图所示.→=AB→+BC→+CD→∵AD=(a+2b)+(-4a-b)+(-5a-3b)=-8a-2b=2(-4a-b),→=2BC→.∴AD→与BC→共线,且|AD→|=2|BC→|.∴AD又∵这两个向量所在的直线不重合,∴AD∥BC,且AD=2BC.∴四边形ABCD是以AD,BC为两条底边的梯形.。
向量的点乘和叉乘以及几何意义一、向量的点乘1.定义:向量的点乘,又称为数量积或内积,是两个向量之间的一种乘法运算。
对于两个n维向量a和b,它们的点乘定义为a·b = ,a,b,cosθ,其中,a,和,b,分别表示向量a和b的模的大小,θ表示a和b之间的夹角。
2.计算方法:(1)向量坐标表示计算方法:如果a=(a₁,a₂,...,aₙ)和b=(b₁,b₂,...,bₙ)是两个n维向量,它们的点乘可以用下面的公式来计算:a·b=a₁b₁+a₂b₂+...+aₙbₙ。
(2)向量模和夹角计算方法:如果,a,和,b,分别是向量a和b的模的大小,θ是向量a和b之间的夹角,则向量的点乘可以用下面的公式来计算:a·b = ,a,b,cosθ。
3.几何意义:(1)判断两个向量是否相互垂直:如果两个向量的点乘结果为0,即a·b=0,那么这两个向量相互垂直。
(2)计算向量在一些方向上的投影:如果向量a的模为,a,θ是a与b之间的夹角,那么向量a在向量b的方向上的投影长度为,a,cosθ。
(3)计算两个向量之间的夹角:如果向量a和b的点乘为a·b = ,a,b,cosθ,那么两个向量之间的夹角θ可以通过反余弦函数计算:θ = arccos(a·b / ,a,b,)。
二、向量的叉乘1.定义:向量的叉乘,又称为向量积或外积,是两个三维向量之间的一种乘法运算。
对于两个三维向量a和b,它们的叉乘定义为a×b = ,a,b,sinθn,其中,a,和,b,分别表示向量a和b的模的大小,θ表示a和b之间的夹角,n表示与a和b所在平面垂直的单位向量。
2.计算方法:向量的叉乘的计算可以利用行列式的方法进行计算:a×b=,ijk,,a₁a₂a₃,,b₁b₂b₃,其中,ijk,表示三个单位向量i、j、k所组成的行列式,a₁、a₂、a₃和b₁、b₂、b₃分别表示向量a和b的坐标。
向量的数乘及几何意义数乘是指将一个向量与一个标量相乘。
数乘运算可以用来改变向量的大小和方向,并且在几何上具有重要的意义。
首先,考虑一个向量v,并将其数乘一个正数k。
当k>1时,数乘会使得向量v的大小增大,但方向不变。
当k=1时,数乘不会改变向量v的大小和方向。
当0<k<1时,数乘会使向量v的大小减小,同时方向保持不变。
当k=0时,结果是一个零向量,其大小为零。
当k<0时,向量v被反向,并且大小也被取绝对值后增大。
因此,数乘可以使向量扩大、缩小、翻转。
在几何中,数乘具有以下几何意义:1.缩放:数乘可以用来缩放一个向量。
当数乘的绝对值大于1时,向量的大小会增大,而当绝对值小于1时,向量的大小会减小,但方向保持不变。
这意味着数乘可以用来缩放一个对象。
2.平行:当数乘为正数时,数乘后的向量与原向量的方向是相同的,它们是平行的。
当数乘为负数时,数乘后的向量与原向量的方向是相反的,它们也是平行的。
这意味着数乘可以用来判断两个向量是否平行。
3.方向:当数乘为负数时,数乘会将向量反转,即改变向量的方向。
这意味着数乘可以用来改变向量的方向。
4.零向量:当数乘为零时,结果是一个零向量,其大小为零。
这意味着数乘可以用来判断向量是否为零向量。
5.反向:当数乘为负数时,数乘会将向量反转,并且大小也会取绝对值后增大。
这意味着数乘可以用来使向量翻转。
6.平面的法向量:考虑一个向量v,它在x轴和y轴上的分量分别为vₓ和vᵧ。
如果将一个向量与一个数乘后的向量相加,结果为零向量,则这个数乘后的向量是由vₓ和vᵧ的相反数构成的。
这表明数乘后的向量是平面上法向量的一种表示方法。
总而言之,数乘在几何中具有重要的意义,它可以用来缩放、改变方向、判断平行性和零向量,以及使向量翻转。
这些几何意义使数乘成为向量运算中的一个重要操作。