向量数乘运算及其几何意义
- 格式:doc
- 大小:271.88 KB
- 文档页数:5
2.2.3 向量数乘运算及其几何意义学习目标 1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题.知识点一 向量数乘的定义实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下: (1)|λa |=|λ||a |.(2)λa (a ≠0)的方向⎩⎪⎨⎪⎧当λ>0时,与a 方向相同;当λ<0时,与a 方向相反.特别地,当λ=0或a =0时,0a =0或λ0=0. 知识点二 向量数乘的运算律 1.λ(μa )=(λμ)a . 2.(λ+μ)a =λa +μa . 3.λ(a +b )=λa +λb . 知识点三 向量共线定理 1.向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 2.向量的线性运算向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b . 思考 共线向量定理中为什么规定a ≠0?答案 若将条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa .1.若向量b 与a 共线,则存在唯一的实数λ使b =λa .( × ) 提示 当b =0,a =0时,实数λ不唯一. 2.若b =λa ,则a 与b 共线.( √ ) 提示 由向量共线定理可知其正确.3.若λa =0,则a =0.( × ) 提示 若λa =0,则a =0或λ=0.题型一 向量的线性运算例1 (1)3(6a +b )-9⎝⎛⎭⎫a +13b =________. 考点 向量的线性运算及应用 题点 向量的线性运算 答案 9a解析 3(6a +b )-9⎝⎛⎭⎫a +13b =18a +3b -9a -3b =9a . (2)若3(x +a )+2(x -2a )-4(x -a +b )=0,则x =______. 考点 向量的线性运算及应用 题点 向量的线性运算 答案 4b -3a解析 由已知得3x +3a +2x -4a -4x +4a -4b =0, 所以x +3a -4b =0,所以x =4b -3a . 反思感悟 向量线性运算的基本方法(1)类比法:向量的数乘运算类似于代数多项式的运算,例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”、“公因式”是指向量,实数看作是向量的系数.(2)方程法:向量也可以通过列方程来解,把所求向量当作未知数,利用解方程的方法求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算. 跟踪训练1 计算:(a +b )-3(a -b )-8a . 考点 向量的线性运算及应用 题点 向量的线性运算解 (a +b )-3(a -b )-8a =(a -3a )+(b +3b )-8a =-2a +4b -8a =-10a +4b .题型二 向量共线的判定及应用命题角度1 判定向量共线或三点共线 例2 已知非零向量e 1,e 2不共线.(1)若a =12e 1-13e 2,b =3e 1-2e 2,判断向量a ,b 是否共线.考点 向量共线定理及其应用 题点 利用向量共线定理判定向量共线 解 ∵b =6a ,∴a 与b 共线.(2)若AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A ,B ,D 三点共线. 考点 向量共线定理及其应用 题点 利用向量共线定理判定三点共线证明 ∵AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →, ∴AB →,BD →共线,且有公共点B , ∴A ,B ,D 三点共线.反思感悟 (1)向量共线的判断(证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线.(2)利用向量共线定理证明三点共线,一般先任取两点构造向量,从而将问题转化为证明两向量共线,需注意的是,在证明三点共线时,不但要利用b =λa (a ≠0),还要说明向量a ,b 有公共点.跟踪训练2 已知非零向量e 1,e 2不共线,如果AB →=e 1+2e 2,BC →=-5e 1+6e 2,CD →=7e 1-2e 2,则共线的三个点是________. 考点 向量共线定理及其应用 题点 利用向量共线定理判定三点共线 答案 A ,B ,D解析 ∵AB →=e 1+2e 2,BD →=BC →+CD → =-5e 1+6e 2+7e 1-2e 2=2(e 1+2e 2)=2AB →, ∴AB →,BD →共线,且有公共点B , ∴A ,B ,D 三点共线.命题角度2 利用向量共线求参数值例3 已知非零向量e 1,e 2不共线,欲使k e 1+e 2和e 1+k e 2共线,试确定k 的值. 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 解 ∵k e 1+e 2与e 1+k e 2共线, ∴存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎪⎨⎪⎧k -λ=0,λk -1=0,∴k =±1.反思感悟 利用向量共线定理,即b 与a (a ≠0)共线⇔b =λa ,既可以证明点共线或线共线问题,也可以根据共线求参数的值.跟踪训练3 设两个不共线的向量e 1,e 2,若a =2e 1-3e 2,b =2e 1+3e 2,c =2e 1-9e 2,问是否存在实数λ,μ,使d =λa +μb 与c 共线? 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 解 d =λ(2e 1-3e 2)+μ(2e 1+3e 2) =(2λ+2μ)e 1+(3μ-3λ)e 2,要使d 与c 共线,则存在实数k ,使得d =k c , 即(2λ+2μ)e 1+(-3λ+3μ)e 2=2k e 1-9k e 2. 因为e 1与e 2不共线,所以⎩⎪⎨⎪⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ.故存在实数λ和μ,使得d 与c 共线,此时λ=-2μ. 题型三 用已知向量表示其他向量例4 在△ABC 中,若点D 满足BD →=2DC →,则AD →等于( ) A.13AC →+23AB → B.53AB →-23AC →C.23AC →-13AB → D.23AC →+13AB → 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 示意图如图所示,由题意可得AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →.跟踪训练4 如图所示,四边形OADB 是以向量OA →=a ,OB →=b 为邻边的平行四边形.又BM=13BC ,CN =13CD ,试用a ,b 表示OM →,ON →,MN →.考点 向量共线定理及其应用 题点 用已知向量表示未知向量解 因为BM →=13BC →=16BA →=16(OA →-OB →)=16(a -b ),所以OM →=OB →+BM →=b +16a -16b =16a +56b .因为CN →=13CD →=16OD →,所以ON →=OC →+CN →=12OD →+16OD →=23OD →=23(OA →+OB →)=23(a +b ). MN →=ON →-OM →=23(a +b )-16a -56b =12a -16b .向量的综合应用典例 如图,设O 是△ABC 内一点,且满足OA →+2OB →+3OC →=0,则△ABC 与△AOC 的面积之比为________.答案 3解析 如图所示,分别取BC ,AC 边的中点D ,E ,则OB →+OC →=2OD →,① OA →+OC →=2OE →,② 由①×2+②可得OA →+2OB →+3OC →=2(2OD →+OE →).又因为OA →+2OB →+3OC →=0, 所以2OD →+OE →=0,即OE →=-2OD →, 所以OD →,OE →共线,且|OE →|=2|OD →|.所以S △AOC =2S △COE =2×23S △CDE =2×23×14S △ABC =13S △ABC ,所以S △ABC S △AOC=3.[素养评析] 本题主要考查向量共线条件的应用,解题时需充分利用好几何图形,借助几何直观使问题得解,这正体现了数学中直观想象的核心素养.1.下列各式计算正确的有( ) (1)(-7)6a =-42a ; (2)7(a +b )-8b =7a +15b ; (3)a -2b +a +2b =2a ; (4)4(2a +b )=8a +4b .A .1个B .2个C .3个D .4个 考点 向量的线性运算及应用 题点 向量的线性运算 答案 C解析 (1)(3)(4)正确,(2)错,7(a +b )-8b =7a +7b -8b =7a -b . 2.在△ABC 中,M 是BC 的中点,则AB →+AC →等于( ) A.12AM → B.AM → C .2AM → D.MA → 考点 向量的线性运算及应用 题点 向量的线性运算 答案 C解析 如图,作出平行四边形ABEC ,因为M 是BC 的中点,所以M 也是AE 的中点,由题意知,AB →+AC →=AE →=2AM →,故选C.3.设e 1,e 2是两个不共线的向量,若向量m =-e 1+k e 2 (k ∈R )与向量n =e 2-2e 1共线,则( ) A .k =0B .k =1C .k =2D .k =12考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 D解析 当k =12时,m =-e 1+12e 2,n =-2e 1+e 2.∴n =2m ,此时m ,n 共线.4.已知P ,A ,B ,C 是平面内四点,且P A →+PB →+PC →=AC →,则下列向量一定共线的是( ) A.PC →与PB → B.P A →与PB → C.P A →与PC →D.PC →与AB →考点 向量共线定理及其应用 题点 利用向量共线定理判定向量共线 答案 B解析 因为P A →+PB →+PC →=AC →, 所以P A →+PB →+PC →+CA →=0, 即-2P A →=PB →,所以P A →与PB →共线.5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.考点 向量共线定理及其应用 题点 用已知向量表示未知向量 解 OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.1.实数与向量可以进行数乘运算,但不能进行加减运算,例如λ+a ,λ-a 是没有意义的. 2.λa 的几何意义就是把向量a 沿着a 的方向或反方向扩大或缩小为原来的|λ|倍.向量a|a |表示与向量a 同向的单位向量.3.向量共线定理是证明三点共线的重要工具,即三点共线问题通常转化为向量共线问题.一、选择题1.下列说法中正确的是( ) A .λa 与a 的方向不是相同就是相反 B .若a ,b 共线,则b =λa C .若|b |=2|a |,则b =±2a D .若b =±2a ,则|b |=2|a | 考点 向量数乘的定义及运算 题点 向量数乘的定义及几何意义 答案 D解析 显然当b =±2a 时,必有|b |=2|a |. 2.3(2a -4b )等于( ) A .5a +7b B .5a -7b C .6a +12bD .6a -12b考点 向量的线性运算及应用 题点 向量的线性运算 答案 D解析 利用向量数乘的运算律,可得3(2a -4b )=6a -12b ,故选D.3.已知a ,b 是不共线的向量,AB →=λa +2b ,AC →=a +(λ-1)b ,且A ,B ,C 三点共线,则实数λ的值为( ) A .-1 B .2 C .-2或1D .-1或2考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 D解析 因为A ,B ,C 三点共线, 所以存在实数k 使AB →=kAC →. 因为AB →=λa +2b ,AC →=a +(λ-1)b , 所以λa +2b =k [a +(λ-1)b ].因为a 与b 不共线,所以⎩⎪⎨⎪⎧λ=k ,2=k (λ-1),解得λ=2或λ=-1.4.如图,△ABC 中,AB →=a ,AC →=b ,DC →=3BD →,AE →=2EC →,则DE →等于( )A .-13a +34bB.512a -34bC.34a +13b D .-34a +512b考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 DE →=DC →+CE →=34BC →+⎝⎛⎭⎫-13AC → =34(AC →-AB →)-13AC →=-34AB →+512AC →=-34a +512b ,故选D.5.如图,AB 是⊙O 的直径,点C ,D 是半圆弧AB 上的两个三等分点,AB →=a ,AC →=b ,则AD →等于( )A .a -12bB.12a -b C .a +12bD.12a +b 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 连接CD ,OD ,如图所示.∵点C ,D 是半圆弧AB 上的两个三等分点, ∴AC =CD ,∠CAD =∠DAB=12×60°=30°. ∵OA =OD ,∴∠ADO =∠DAO =30°. 由此可得∠CAD =∠ADO =30°,∴AC ∥DO . 由AC =CD ,得∠CDA =∠CAD =30°, ∴∠CDA =∠DAO ,∴CD ∥AO , ∴四边形ACDO 为平行四边形, ∴AD →=AO →+AC →=12AB →+AC →=12a +b .6.已知m ,n 是实数,a ,b 是向量,则下列说法中正确的是( ) ①m (a -b )=m a -m b ;②(m -n )a =m a -n a ; ③若m a =m b ,则a =b ;④若m a =n a ,则m =n . A .②④ B .①② C .①③ D .③④ 考点 向量数乘的定义及运算 题点 向量数乘的运算及运算律 答案 B解析 ①和②属于数乘对向量与实数的分配律,正确;③中,若m =0,则不能推出a =b ,错误;④中,若a =0,则m ,n 没有关系,错误.7.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →等于( ) A.14a +12b B.13a +23b C.12a +14b D.23a +13b 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 ∵△DEF ∽△BEA , ∴DF AB =DE EB =13,∴DF =13AB , ∴AF →=AD →+DF →=AD →+13AB →.∵AC →=AB →+AD →=a ,BD →=AD →-AB →=b , 联立得AB →=12(a -b ),AD →=12(a +b ),∴AF →=12(a +b )+16(a -b )=23a +13b .二、填空题8.(a +9b -2c )+(b +2c )=________.考点 向量的线性运算及应用题点 向量的线性运算答案 a +10b9.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________.考点 向量共线定理及其应用题点 利用向量共线定理求参数答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又∵向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12. 10.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________.(用a ,b表示)考点 向量共线定理及其应用题点 用已知向量表示未知向量答案 14b -14a 解析 如图,MN →=MB →+BA →+AN →=-12b -a +34AC → =-12b -a +34(a +b )=14b -14a . 11.若非零向量a 与b 不共线,k a +2b 与3a +k b 共线,则实数k 的值为________. 考点 向量共线定理及其应用题点 利用向量共线定理求参数答案 ±6解析 ∵k a +2b 与3a +k b 共线,∴存在实数λ,使得k a +2b =λ(3a +k b ),∴(k -3λ)a +(2-λk )b =0,∴(k -3λ)a =(λk -2)b .∵a 与b 不共线,∴⎩⎪⎨⎪⎧k -3λ=0,λk -2=0,∴k =±6. 12.如图,在△ABC 中,延长CB 到D ,使BD =BC ,当点E 在线段AD 上移动时,若AE →=λAB→+μAC →,则t =λ-μ的最大值是________.考点 向量共线定理及其应用题点 向量共线定理在平面几何中的应用答案 3解析 设AE →=kAD →,0≤k ≤1,则AE →=k (AC →+2CB →)=k [AC →+2(AB →-AC →)]=2kAB →-kAC →,∵AE →=λAB →+μAC →,且AB →与AC →不共线,∴⎩⎪⎨⎪⎧λ=2k ,μ=-k ,∴t =λ-μ=3k . 又0≤k ≤1,∴当k =1时,t 取最大值3.故t =λ-μ的最大值为3.三、解答题13.计算:(1)6(3a -2b )+9(-2a +b );(2)12⎣⎡⎦⎤(3a +2b )-23a -b -76⎣⎡⎦⎤12a +37⎝⎛⎭⎫b +76a ; (3)6(a -b +c )-4(a -2b +c )-2(-2a +c ).考点 向量的线性运算及应用题点 向量的线性运算解 (1)原式=18a -12b -18a +9b =-3b .(2)原式=12⎝⎛⎭⎫3a -23a +2b -b -76⎝⎛⎭⎫12a +12a +37b =12⎝⎛⎭⎫73a +b -76⎝⎛⎭⎫a +37b =76a +12b -76a -12b =0. (3)原式=6a -6b +6c -4a +8b -4c +4a -2c=(6a -4a +4a )+(8b -6b )+(6c -4c -2c )=6a +2b .14.在平行四边形ABCD 中,M ,N 分别是DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →和AD →.考点 向量的线性运算及应用题点 用已知向量表示未知向量解 如图,设AB →=a ,AD →=b .∵M ,N 分别是DC ,BC 的中点,∴BN →=12b ,DM →=12a . ∵在△ADM 和△ABN 中,⎩⎪⎨⎪⎧AD →+DM →=AM →,AB →+BN →=AN →, 即⎩⎨⎧ b +12a =c ,①a +12b =d . ②①×2-②,得b =23(2c -d ), ②×2-①,得a =23(2d -c ). ∴AB →=43d -23c ,AD →=43c -23d .15.已知在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,求证:四边形ABCD为梯形.考点 向量共线定理及其应用题点 向量共线定理在平面几何中的应用证明 如图所示.∵AD →=AB →+BC →+CD →=(a +2b )+(-4a -b )+(-5a -3b )=-8a -2b =2(-4a -b ),∴AD →=2BC →.∴AD →与BC →共线,且|AD →|=2|BC →|.又∵这两个向量所在的直线不重合,∴AD ∥BC ,且AD =2BC .∴四边形ABCD 是以AD ,BC 为两条底边的梯形.。
2.2.3向量数乘的运算及其几何意义教材分析向量具有丰富的实际背景和几何背景,向量既有大小,又有方向.但是引进向量,而不研究它的运算,则向量只是起到一个路标的作用;向量只有引进运算后才显得威力无穷.本章从第二节开始学习向量的加法、减法运算及其几何意义;本节接着学习向量的数乘运算及其几何意义.向量数乘运算以及加法、减法统称为向量的三大线性运算,向量的数乘运算其实是加法运算的推广及简化.教学时从加法入手,引入数乘运算,充分体现了数学知识之间的内在联系.实数与向量的乘积仍然是一个向量,既有大小,又有方向.特别是方向与已知向量是共线向量,进而引出共线向量定理.这样平面内任意一条直线l 就可以用点A 和某个向量aλ表示了.共线向量定理是本章节的重要的内容,应用相当广泛,且容易出错,尤其是定理的前提条件:向量a是非零向量.共线向量的应用主要用于证明点共线或线平行等,且与后学的知识有着密切的联系.课时分配本节内容用1课时的时间完成,主要讲解向量数乘定义、几何意义及其运算律;向量共线定理.教学目标重点:掌握向量数乘的定义、运算律,理解向量共线定理. 难点:向量共线定理的探究及其应用.知识点:向量数乘定义、几何意义及其运算律;向量共线定理.能力点:理解两个向量共线的等价条件,能够运用两向量共线条件判断两向量是否平行,进而判定点共线或直线平行.教育点:通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法(从特殊到一般、分类讨论、转化化归、观察、猜想、归纳、类比、总结等);培养创新能力和积极进取精神;通过具体问题,体会数学在实际生活中的重要作用.自主探究点:向量数乘的运算律及向量共线定理.训练(应用)点:运用两向量共线条件判断两向量是否平行,进而判定点共线或直线平行.考试点:运用向量定义、运算律进行有关计算,运用共线定理解决向量共线、三点共线、直线平行等问题.易错易混点:共线定理中的条件限制.教具准备 尺规、多媒体等 课堂模式 学案导学 一、引入新课:1.复习向量的加法、减法,采用提问的形式. 问题1:向量加法的运算法则? 问题2:向量减法的几何意义?学生回答完毕后,教师通过多媒体上的图像让学生更直观感受.向量的加法:三角形法则(首尾相连)和平行四边形法则(共起点).向量的减法:=,= 则 -=。
2023向量数乘运算及其几何意义contents •向量数乘运算的基本概念•向量数乘运算的几何意义•向量数乘运算在物理中的应用•向量数乘运算在数学中的拓展应用•向量数乘运算的实践应用案例目录01向量数乘运算的基本概念向量的定义零向量零向量记作0,是一个长度为0的向量,其所有分量都是0。
向量的模向量v的模记作|v|,定义为v的分量值的平方和的平方根。
向量的分量一个n维向量v可以表示为一个有序数组v = [v1, v2, ..., vn],其中每个vi称为向量v的分量。
010203•向量数乘的定义:对于一个标量a和一个向量v,a数乘v的结果是一个向量,其每个分量是v的分量乘以a。
即,如果v = [v1, v2, ..., vn],则av = [av1, av2, ..., avn]。
向量数乘的定义1向量数乘的运算性质23a(v + w) = av + aw,其中a是标量,v和w是向量。
标量与向量的数乘满足分配律a(bw) = (ab)vw,其中a和b是标量,v和w是向量。
向量数乘满足结合律av = (ab)v,其中a和b是标量,v是向量。
向量数乘满足交换律02向量数乘运算的几何意义向量的方向向量的方向与数乘的顺序有关向量数乘运算的结果与数乘的顺序有关,不同的顺序可能得到不同的结果。
例如,对于两个向量a和b,如果先对a进行数乘,再对结果进行加法运算,得到的结果与先进行加法运算,再对结果进行数乘是不同的。
数乘可以改变向量的方向如果一个向量与一个正数相乘,那么它的方向将与原向量相同;如果与一个负数相乘,那么它的方向将与原向量相反。
例如,对于两个向量a和b,如果a与正数k相乘,那么a的方向将与k的方向相同;如果a与负数k相乘,那么a的方向将与k的方向相反。
如果一个向量与一个正数相乘,那么它的长度将变为原向量的k倍;如果与一个负数相乘,那么它的长度将变为原向量的k分之一。
例如,对于两个向量a和b,如果a与正数k相乘,那么a的长度将变为原向量的k倍;如果a与负数k相乘,那么a的长度将变为原向量的k分之一。
向量的数乘及几何意义数乘是指将一个向量与一个标量相乘。
数乘运算可以用来改变向量的大小和方向,并且在几何上具有重要的意义。
首先,考虑一个向量v,并将其数乘一个正数k。
当k>1时,数乘会使得向量v的大小增大,但方向不变。
当k=1时,数乘不会改变向量v的大小和方向。
当0<k<1时,数乘会使向量v的大小减小,同时方向保持不变。
当k=0时,结果是一个零向量,其大小为零。
当k<0时,向量v被反向,并且大小也被取绝对值后增大。
因此,数乘可以使向量扩大、缩小、翻转。
在几何中,数乘具有以下几何意义:1.缩放:数乘可以用来缩放一个向量。
当数乘的绝对值大于1时,向量的大小会增大,而当绝对值小于1时,向量的大小会减小,但方向保持不变。
这意味着数乘可以用来缩放一个对象。
2.平行:当数乘为正数时,数乘后的向量与原向量的方向是相同的,它们是平行的。
当数乘为负数时,数乘后的向量与原向量的方向是相反的,它们也是平行的。
这意味着数乘可以用来判断两个向量是否平行。
3.方向:当数乘为负数时,数乘会将向量反转,即改变向量的方向。
这意味着数乘可以用来改变向量的方向。
4.零向量:当数乘为零时,结果是一个零向量,其大小为零。
这意味着数乘可以用来判断向量是否为零向量。
5.反向:当数乘为负数时,数乘会将向量反转,并且大小也会取绝对值后增大。
这意味着数乘可以用来使向量翻转。
6.平面的法向量:考虑一个向量v,它在x轴和y轴上的分量分别为vₓ和vᵧ。
如果将一个向量与一个数乘后的向量相加,结果为零向量,则这个数乘后的向量是由vₓ和vᵧ的相反数构成的。
这表明数乘后的向量是平面上法向量的一种表示方法。
总而言之,数乘在几何中具有重要的意义,它可以用来缩放、改变方向、判断平行性和零向量,以及使向量翻转。
这些几何意义使数乘成为向量运算中的一个重要操作。
向量的数乘及几何意义首先,数乘可以用于描述向量的数量特征。
对于一个向量A = (a1,a2, ...,an),它的数乘kA = (ka1, ka2, ..., kan),其中k是一个数。
数乘可以改变向量的大小,当k > 1时,向量的大小会增大;当k < 1时,向量的大小会缩小;当k = 0时,向量会变为零向量。
这个特性使得数乘可以用于描述向量的缩放效果。
其次,数乘还可以用于推导向量的几何性质。
假设有两个向量A和B,在数学中可以证明以下几何性质:1.数乘的交换律:k(A+B)=kA+kB。
这个性质说明了数乘对向量的线性运算。
即两个向量之和的数乘等于分别对每个向量进行数乘后再相加。
2.数乘的结合律:(k1k2)A=k1(k2A)。
这个性质说明了数乘的运算是可结合的。
即连续进行两次数乘的结果与将两个数乘因子相乘再对向量进行数乘的结果相同。
3. 数乘的单位向量:kį = (ka1, ka2, ..., kan)。
这个性质说明了单位向量与数乘之间的关系。
即单位向量的每个分量等于将数与向量的各个分量相乘后得到的向量。
利用数乘的几何性质,可以帮助我们推导出一些向量的几何意义。
以下是数乘的一些几何意义:1.向量的平移:当数乘k>0时,等式kA可以表示向量A的平移。
向量A的平移kA代表了将向量A移动到离原点O的距离为,k,倍的位置。
2.向量的伸缩:当数乘k>1时,等式kA可以表示向量A的伸缩。
向量A的伸缩kA代表了将向量A的大小按比例增大k倍。
3.向量的反向:当数乘k<0时,等式kA可以表示向量A的反向。
向量A的反向kA代表了将向量A方向反转180°,同时改变其大小。
4.零向量:当数乘k=0时,等式kA可以表示零向量。
零向量是一个特殊的向量,它的大小为0,方向为任意。
虽然向量的数乘在数学中有很多定义和性质,但它们的几何意义可以被统一地描述为向量的平移、伸缩、反向和零向量。
向量的数乘不仅在理论数学中有重要的地位,也在实际应用中起到了至关重要的作用。
向量数乘运算及其几何意义
1. 嘿,你知道向量数乘运算吗?就像给向量穿上了超级装备!比如,一辆车本来向前开,速度乘以 2 后,那速度变得超快!这多神奇啊!
2. 向量数乘运算可有意思啦!它就像给向量施了魔法一样,能让向量变大或变小。
想想看,一个力乘以 3,那效果得多厉害呀!
3. 哇塞,向量数乘运算啊,这可是个厉害的家伙!就如同给向量注入了能量,让它发生奇妙的变化。
好比一只鸟的飞行速度乘以 0.5,它的状态就完全不同了呢!
4. 嘿呀,向量数乘运算不简单呢!简直就是改变向量命运的钥匙!像水流的速度乘以 4,那冲击力可就大多了!
5. 你瞧,向量数乘运算多重要啊!它就像给向量开了外挂,能产生意想不到的效果。
比如说一个人的跑步速度乘以 1.5,那跑起来得多带劲!
6. 哎呀,向量数乘运算可太神奇了!就好像给向量赋予了新的生命!比如把灯光的亮度乘以 0.8,整个氛围都不一样了呢!
7. 哇哦,向量数乘运算可有趣了!这不就是让向量七十二变嘛!像风的力度乘以 2,那刮起来得多猛啊!
8. 嘿,想想向量数乘运算,那真的是太酷啦!如同给向量打造了独特的风格!就好比把音乐的音量乘以 1.2,那感觉完全不一样了呀!
9. 哇,向量数乘运算简直了!就像给向量安装了加速器!比如把运动员的爆发力乘以 1.3,那表现得多惊人!
10. 哎呀呀,向量数乘运算,这可是个宝贝啊!它的几何意义就像是给向量打开了新世界的大门!比如说把一个图形的边长乘以 0.5,那形状都变了呢!
我的观点结论:向量数乘运算及其几何意义真的是非常有趣且重要的知识,能让我们看到向量的奇妙变化和作用。
锦山蒙中学案(高一年级组)
班 级 姓 名
学 科
时 间
课 题 向量数乘运算及其几何意义
学 习 目 标
1.掌握实数与向量积的定义,理解实数与向量积的几何意义;
2.掌握实数与向量的积的运算律;
3.理解两个向量共线的充要条件,能够运用共线条件判定两向量是否平行.
过 程
双色笔纠错
一、复习引入:
1.向量的加法:求两个向量和的运算,叫做向量的加法 向量加法遵从 法则和 法则
2.向量的减法:a 加上b 相反向量,叫做a
与b 的差,即:
a
- b =
二、讲解新课:
1.示例:已知非零向量a ,作出a +a +a 和(-a )+(-a )+(-a
)
OC =OA AB BC ++ =a +a +a =3a
PN =PQ QM MN ++ =(-a )+(-a )+(-a )=-3a
(1)3a 与a 方向相同且|3a |=3|a
|;
(2)-3a 与a 方向相反且|-3a |=3|a
|
作图:
2.实数与向量的积:实数λ与a 的积是一个向量,记作:λa
(1)|λa
|=
(2)λ>0时λa 与a
方向 ;
λ<0时λa 与a
方向 ;
λ=0时λa
=
3.运算定律
结合律:λ(μa
)=
①第一分配律:(λ+μ)a
=
②第二分配律:λ(a +b
)=
=±)(b a 21
μμλ
4.向量共线的充要条件:
若有向量a (a ≠0)、b ,实数λ,使b =λa ,则a
与b 为共线向量。
若a 与b 共线(a ≠0 )且 |b |:|a
|=μ,则 当
a
与
b
同向时
b
= ;
当 a
与 b 反 向 时 b = 从而得:
向量共线定理 向量b 与向量a (a
≠0)共线的充要条件是:有且只有一个实数λ,使
三、范例学习:
例 1. 如图,已知任意两个与非零向量a
,b ,试作
OA =a +b ,OB =a +2b ,OC =a +3b ,
你能判断A,B,C 三点之间的位置关系吗?为什么? (教材例6) 例2.在
ABCD 中,对角线交于点M, 设AB =a ,AD =b ,试
用a , b
表示MA ,MB ,MC ,MD .(例7)
达标检测
3.如图,已知AB AD 3=、BC DE 3=,试判断AC 与AE 是否共线?
1、判断下列各小题中的向量a 与b 是否共线
12121212
(1)2,2(2),22(3),2 a e b e
a e e
b e e a e e b e e =-==-=-+=-=+ C E
A
B
D
课后作业: 1.在
ABCD 中,设对角线AC =a ,BD =b 试用a , b
表示
AB ,BC
2.在△ABC 中,AB =a , BC =b
,AD 为边BC 的中线,G 为
△ABC 的重心,求向量AG。
知 识 构 建。