手性环氧氯丙烷的制备及其药物应用
- 格式:pdf
- 大小:735.73 KB
- 文档页数:8
2024年手性环氧氯丙烷市场前景分析前言随着全球化的进程和科技的不断发展,手性化学作为一门新兴的领域,对于新材料的研究和开发起到了至关重要的作用。
手性化合物在药物、农药、香料等领域具有广泛的应用前景。
其中,手性环氧氯丙烷作为一种手性的有机化合物,具有潜在的市场前景。
本文将从市场需求、竞争格局和发展趋势等方面对手性环氧氯丙烷市场前景进行分析。
市场需求手性环氧氯丙烷由于其独特的手性结构,具有很高的活性和选择性,使其在多个领域具有广泛的应用需求。
1. 新药研发:手性环氧氯丙烷是一种重要的合成中间体,可用于合成各种手性药物。
随着人口老龄化的加剧和药物研发的不断推进,对手性药物的需求将不断增加,从而带动手性环氧氯丙烷市场的发展。
2. 农药和杀虫剂:手性环氧氯丙烷作为杀虫剂的重要成分之一,具有高效、低毒和环境友好的特点。
随着粮食产量和农作物保护需求的增加,对杀虫剂的需求也将随之增长,从而带动手性环氧氯丙烷市场的扩大。
3. 香料和味精:手性环氧氯丙烷作为香料和口味增强剂的成分之一,具有独特的香气和味道,受到消费者的喜爱。
随着人们对食品质量和口感的要求不断提高,对香料和味精的需求也将不断增加,为手性环氧氯丙烷市场提供了机会。
竞争格局目前,手性环氧氯丙烷市场存在一定的竞争格局。
主要竞争企业包括国内外的化学制药公司、农化公司和香料公司等。
这些企业在技术研发、生产能力和市场渠道等方面具有一定的优势。
然而,由于手性环氧氯丙烷市场的发展趋势良好,吸引了越来越多的企业进入市场,竞争将不断加剧。
发展趋势1.技术创新:手性环氧氯丙烷的应用领域广泛,对其质量和稳定性要求高。
未来,随着技术的不断创新,手性环氧氯丙烷的合成方法和生产工艺将会不断改进,以提高产品品质和降低生产成本。
2.环保趋势:全球环境保护意识不断增强,对环境友好型产品的需求也在逐渐上升。
手性环氧氯丙烷作为一种环境友好型有机化合物,具有良好的应用前景。
3.市场扩大:随着全球经济的发展和人民生活水平的提高,对药物、农药、香料等产品的需求将不断增加,为手性环氧氯丙烷市场的扩大提供了机遇。
1 引言手性制药是医药行业的前沿领域,2001年诺贝尔化学奖就授予分子手性催化的主要贡献者。
自然界里有很多手性化合物,这些手性化合物具有两个对映异构体。
对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。
当一个手性化合物进入生命体时,它的两个对映异构体通常会表现出不同的生物活性。
对于手性药物,一个异构体可能是有效的,而另一个异构体可能是无效甚至是有害的。
手性制药就是利用化合物的这种原理,开发出药效高、副作用小的药物。
在临床治疗方面,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性。
因而具有十分广阔的市场前景和巨大的经济价值。
目前世界上使用的药物总数约为1900 种手性药物占50%以上,在临床常用的200种药物中,手性药物多达114种。
全球2001年以单一光学异构体形式出售的市场额达到1 472亿美元,相比于2000年的1 330亿美元增长了10%以上。
预计手性药物到2010年销售额将达到2 000亿美元。
2、手性药物的制取方法一般可通过从天然产物中提取、外消旋体拆分法获取手性药物,近年来,随着合成法的发展和先进分析技术的出现,越来越多的手性化合物可通过化学合成法得到不对称合成己成为获取手性物质的重要手段,与此同时,随着生物技术的不断进步以及生物技术与有机化学的交叉融合也使得生物合成成为手性药物生产取得突破的关键技术。
2.1 从天然产物中提取在某些生物体中含有具备生理活性的天然产物,可用适当的方法提取而得到手性化合物,某些手性药物是从动植物中提取的氨基酸、萜类化合物和生物碱。
如: 具有极强抗癌活性的紫彬醇最初是从紫彬树树皮中发现和提取的。
2.2 外消旋体拆分法通过拆分外消旋体在手性药物的获取方法中是最常用的方法。
目前为止报道的拆分方法有机械拆分法、化学拆分法、微生物拆分法和晶种结晶法等。
环氧氯丙烷合成与用途研究环氧氯丙烷是一种重要的有机化工原料,也是一种非常重要的有机合成中间体。
它是由氯丙烷与过氧化氢在碱性条件下发生环氧化反应而制得的一种有机化合物。
环氧氯丙烷可以作为有机合成反应中的重要原料,被广泛用于制备环氧树脂、涂料、塑料、医药、农药等化工产品。
首先,环氧氯丙烷作为一种重要的有机合成中间体,可以用于制备环氧树脂。
环氧树脂是一种重要的高分子材料,因其高性能和广泛的用途而受到人们的广泛关注。
环氧氯丙烷可以与双酚类、双胺类、羧酸类等化合物发生环氧化开环反应得到环氧树脂,环氧树脂可以应用于航天航空、电子电器、建筑材料、涂料和胶粘剂等多个领域。
其次,环氧氯丙烷还可以用于制备环氧丙烷树脂,这种树脂是一种重要的有机溶剂,具有挥发性小、溶解力强、干燥速度快等优良性能,可以广泛用于制备油漆、涂料、油墨等产品。
而在医药行业中,环氧丙烷树脂也可以用作一种植入材料的包埋材料,如人工关节、人工心脏等植入材料的表面涂层,以提高其性能和稳定性,减少排异反应。
此外,环氧氯丙烷还可以用于合成二环枢合物(dioxetanes),这是一类化合物,可以发生自发光反应,被广泛用于生物医学研究、荧光探针等领域。
近年来,由于生物医学领域的发展,二环枢合物越来越受到人们的关注,因此环氧氯丙烷的合成与用途也逐渐受到了重视。
此外,环氧氯丙烷还可以应用于制备氯代烷基聚醚(CPAE)和氯代脂肪醇聚氧醚(CAE)。
这两种聚合物被广泛用于医药、化妆品、农药等领域,如用于制备表面活性剂、乳化剂、助溶剂等产品。
除了以上几个主要的应用领域外,环氧氯丙烷还可以用于制备氯代丙炔、氯代乙酸、氯代丙酮等多种有机化合物。
这些有机化合物在医药、化工、农药等领域都有广泛的用途,在化工生产中也起着非常重要的作用。
总的来说,环氧氯丙烷是一种重要的有机合成中间体,其合成与用途的研究对于发展化工产业具有非常重要的意义。
随着社会经济的不断发展和人民生活水平的不断提高,化工产品的需求也在不断增加,因此对于环氧氯丙烷的合成和应用研究必将得到更多的关注和重视,从而推动化工产业的发展。
手性环氧氯丙烷气相色谱分析方法探究肖霏;黄仁才;张样盛;吕萍【摘要】对手性环氧氯丙烷的气相色谱分析方法进行了实验探究,结果表明:手性柱可用于气相色谱法测定样品手性含量;此手性柱对分离手性环氧氯丙烷及其异构体的效果不是特别好,异构峰与环氧主峰相隔较近;目前较好的测试条件是稀释至1%浓度进行测定;尝试过的其他测试条件对异构峰的分离都没有明显改善,最根本的还是要提高手性柱本身的分离度;分析结果需要手动处理,过程繁琐,较难操作,且容易带入人为误差.【期刊名称】《环境科学导刊》【年(卷),期】2018(037)001【总页数】4页(P82-85)【关键词】环氧氯丙烷;手性含量;气相色谱分析;环境监测【作者】肖霏;黄仁才;张样盛;吕萍【作者单位】永川区环境监测站,重庆402160;重庆市斯普瑞科技有限责任公司,重庆401120;永川区环境监测站,重庆402160;永川区环境监测站,重庆402160【正文语种】中文【中图分类】X83手性环氧氯丙烷作为医药和化工等领域的重要中间体,在生产中得以广泛应用[1]。
受客户委托,为准确测定样品手性含量,实验室对手性环氧氯丙烷的气相色谱分析方法[2]进行了实验探究,并结合客户提供的方法进行了进一步优化。
1 实验原理样品通过手性色谱柱[3],其对映异构体间呈现出物理特征的差异,从而达到光学异构体拆分的目的。
不同组分在固定相中滞留的时间不同,依次从固定相中流出,顺序离开色谱柱进入检测器,产生的离子流信号经放大后,在记录器上描绘出各组分的色谱峰。
2 仪器及试剂色谱仪:福立9790plus;色谱柱:gamma-225,( 30 m×0.25 mm×0.25 μm )手性柱;检测器:FID检测器;甲醇溶液;手性环氧氯丙烷待测样品(以下简称样品);消旋环氧氯丙烷标品(以下简称消旋标品)。
3 实验探究过程及数据分析3.1 手性柱安装按常规色谱柱安装方法安装手性柱,接通气源,设定方法,仪器自动计算调节气流量大小。
手性药物的制备与应用研究引言:随着现代医学的不断发展,人们对于药物的需求也日益增长。
其中,手性药物作为一类重要的药物在医疗领域中发挥着不可替代的作用。
然而,手性药物具有左旋和右旋两种立体异构体,其制备与应用研究一直是化学界的研究热点之一。
一、手性药物的定义与特点:手性药物是指其分子存在对映异构体,常称为左旋体和右旋体,具有空间手性的特点。
由于手性分子的光学活性,手性药物能够更加准确地干预人体的生理过程,提高治疗效果。
二、手性药物制备方法的进展:1. 拆分法制备:拆分法是手性药物制备中最常用的方法之一。
通过对映异构体的拆分,可以得到纯度较高的左旋体或右旋体。
例如,可利用手性拆分剂、酶或其他手性分子来拆分手性药物,实现对映异构体的分离。
2. 不对称合成法:不对称合成法是另一种常用的手性药物制备方法。
该方法通过以手性试剂与手性药物或非手性物质进行反应,使得产物也具有手性特征。
不对称合成法由于其高效性和灵活性在手性药物制备中得到广泛应用。
3. 手性催化剂法:手性催化剂法是目前最受关注的手性药物制备方法之一。
该方法通过合理选择和设计手性催化剂,使得化学反应选择性更高,产物手性纯度更高。
手性催化剂法在手性药物制备领域具有广阔的应用前景。
三、手性药物的应用研究:1. 优化药效:由于手性药物具有左旋和右旋两种立体异构体,通过研究不同立体异构体对人体的作用机制,可以优化药效。
例如,对于抗癌药物,研究显示左旋体和右旋体可能对体内癌细胞产生不同的作用,因此研究手性药物的应用,能够提高药效并减少副作用。
2. 降低药物不良反应:药物的不良反应是使用中常见的问题之一。
手性药物的应用研究可以通过选择性地利用某一手性异构体来减轻不良反应。
例如,研究显示,某些手性药物的左旋体和右旋体具有不同的药代动力学特征,通过使用特定的手性异构体,可以减轻患者的药物不良反应。
3. 提高新药研究效率:手性药物的应用研究可以帮助科学家更好地理解药物的作用机制,加速新药的研究和开发。
环氧氯丙烷制备方法介绍环氧氯丙烷各种合成新工艺研究环氧氯丙烷(ECH)别名表氯醇,化学名称为1-氯-2,3-环氧丙烷,是一种易挥发、不稳定的无色油状液体,有与氯仿、醚相似的刺激性气味,有毒性和麻醉性,微溶于水,易溶于酒精、乙醚、苯等有机溶剂,可与多种有机液体形成共沸物。
环氧氯丙烷是一种重要的有机化工原料和精细化工产品,用途十分广泛。
以它为原料制得的环氧树脂具有粘结性强,耐化学介质腐蚀、收缩率低、化学稳定性好、抗冲击强度高以及介电性能优异等特点,在涂料、胶粘剂、增强材料、浇铸材料和电子层压制品等行业具有广泛的应用。
进入21世纪后环氧树脂的应用领域不断扩大,产量迅猛提高,我国目前是全球环氧树脂最大生产基地,对环氧氯丙烷的需求将愈来愈大。
1目前环氧氯丙烷主要生产工艺环氧氯丙烷的生产始于上世纪30年代。
1945年,壳牌化学公司开始丙烯高温氯化法(或称烯丙基氯化物法、氯丙烯法)的工业化生产。
1955年,陶氏化学公司成为世界上第2家用丙烯高温氯化法生产ECH 的生产商。
1985年,日本昭和电工公司开始采用醋酸丙烯酯法(或称烯丙醇法)生产ECH,同年实现该法的工业化。
目前,工业上环氧氯丙烷的生产方法主要有丙烯高温氯化法和醋酸丙烯酯法2种。
1.1丙烯高温氯化法丙烯高温氯化法是工业上生产环氧氯丙烷的经典方法,由美国Shell公司于1948年首次开发成功并应用于工业化生产。
目前,世界上90%以上的环氧氯丙烷采用该方法生产,主要原料是丙烯、氯气和石灰。
其工艺过程主要包括:丙烯高温氯化制氯丙烯;氯丙烯次氯酸化合成二氯丙醇(DCH);二氯丙醇皂化合成环氧氯丙烷3个反应单元。
丙烯高温氯化法已达到生产装置大型化、生产工艺连续化和操作自动化。
其特点是生产过程灵活,工艺成熟,操作稳定。
除了生产环氧氯丙烷外,还可生产甘油、氯丙烯等重要的有机合成中间体,副产D—D 混剂(1, 3一二氯丙烯和1, 2一,二氯丙烷) 也是合成农药的重要中间体。
第一阶段:丙烯高温氯化制氯丙烯氯丙烯的物理化学性质1.氯丙烯中文名称有3-氯-1-丙烯、3-氯丙烯、烯丙基氯;英文名称有3-chloro-1- propene、3-chloropropene、chloride、。
化学式:CH2=CHCH2Cl;分子质量:76.50;性状:常温下为无色液体,有辛辣味,易挥发。
性活泼,能发生加合反应及聚合反应,水解成丙烯醇,易燃。
沸点:44.6℃;熔点:-136.4℃;相对密度:液态 0.9382g/c (20/4℃)蒸气压:49.05KPa(25)℃;溶解度:水中:20℃时 0.36g/100ml闪点:-31.67℃自然温度:390℃爆炸极限:下限2.9%,上限11.2%;油水分配系数:辛醇/水分配系数的对数值:-0.24;遇热或明火有着火危险,遇明火可爆炸,危险程度中等,能与HNO3、H2SO4、哌嗪、乙二胺、氯磺酸,NaOH发生激烈反应。
2.原料规格:新鲜丙烯:丙烯 98%,丙烷2% ;循环丙烯100%(mol%)新鲜丙烯:循环丙烯=1:3 液氯:氯气99.5%,产品:氯丙烯 99.5%主要副产物:D-D混剂:2-氯丙烯>95%,2,3-二氯丙烯>95%,产量约为氯丙烯的15% 盐酸31.5wt%,实际生产中每生产一吨氯丙烯可生产620kg氯化氢,经酸洗制成盐酸丙烯单程转化率25% 氯丙烯选择性80% 氯丙烯收率:80%-88%3.反应机理丙烯高温氯化制取氯丙烯的工艺原理为丙烯和氯在高温(470~510℃)下反应,Cl原子主要取代丙烯β位的H原子,而几乎不发生双键上的加成反应,其反应式主要副反应:氯化反应方程式及粗氯化物(反应产物中除C3=,HCl,N2外)组成X i(mol)CH2=CHCH3+Cl2-CH2=CHCH2Cl+HCl 79.9% CH2=CHCH3+Cl2—CH3CCl=CH2 +HCl 4.1%CH2=CHCH3+HCl—CH3CHCl–CH3 0.6%CH3CH2CH3+Cl2—CH3CHCl–CH3 +HCl 2.0%CH2=CHCH3+Cl2—CH3CHClCH2Cl 7.6%CH2=CHCH3+2Cl2—CH2ClCH=CHCl+2HCl 5.8%进料Cl2和C3=全部反应掉(α=100%)4.影响因素:1)高温氯化反应过程控制条件的选择由高温氯化反应的基本原理可以看出,丙烯高温氯化反应生成物较复杂,副反应较多,对高温氯化反应过程进行优化控制,选择最佳反应条件,抑制副反应的发生,是提高收率和延长反应周期的关键。
C3手性合成子的合成及应用彭焕庆;王立新;杜振军;蔡泽贵;王文【摘要】简要介绍了两种重要的C3手性合成子--环氧氯丙烷(ECH)和缩水甘油(GLD)的合成方法;综述了ECH在药物合成以及GLD在部分有机合成中的应用.参考文献34篇.【期刊名称】《合成化学》【年(卷),期】2006(014)006【总页数】6页(P546-551)【关键词】C3合成子;环氧氯丙烷;缩水甘油;合成;综述【作者】彭焕庆;王立新;杜振军;蔡泽贵;王文【作者单位】中国科学院,成都有机化学研究所,四川,成都,610041;中国科学院,研究生院,北京,100039;中国科学院,成都有机化学研究所,四川,成都,610041;中国科学院,成都有机化学研究所,四川,成都,610041;中国科学院,成都有机化学研究所,四川,成都,610041;中国科学院,成都有机化学研究所,四川,成都,610041【正文语种】中文【中图分类】O621.3近年来,C3手性合成子在医药、农药、香料、液晶,高分子材料等领域得到了广泛的应用,其合成研究也越来越受到人们的重视。
常见的C3手性合成子为C3环氧化合物及其前体卤代丙醇等。
本文着重介绍了环氧氯丙烷(ECH, Chart 1)在药物合成中的应用和缩水甘油(GLD, Chart 1)在有机合成中的部分应用。
ECH GLD CPDChart 11 ECH的不对称合成ECH的工业生产方法主要为丙烯高温氯化法和醋酸丙烯酯法,其工业年产量约92万吨。
手性的ECH是1978年由Baldwin等[1]首次以D-甘露醇为原料合成的,收率仅为27%[(R)-ECH和(S-)ECH的e.e.值都大于99%)。
随后又有其它的制备手性ECH的方法陆续报道[2~6]。
但是这些合成及拆分方法的收率都不高。
直到1995年,Jacobsen等[7]将用于不对称环氧化的Cr-Salen催化剂用于ECH的拆分,得到48%的收率(97% e.e.)。