第13章 手性制药工艺
- 格式:ppt
- 大小:782.50 KB
- 文档页数:41
1、手性药物制造的关键技术研究(1) 手性药物的化学不对称合成与拆分研究药物要与受体结合形成复合物,在立体结构上必须互相适应。
并且手性药物的不同立体异构体在药代和毒理等方面可能存在差异。
美国FDA在其开发新药的政策中就要求对手性药物进行不同立体异构体药理毒理研究。
手性药物作为一类特殊的化学药物,其制备工艺的研究首先需要遵循化学药物制备工艺研究的指导原则,还要考虑其特殊性,既研究与制备过程中需要随时关注手性中心的变化,并控制其光学纯度。
手性中心的引入方式有直接从起始原料或试剂中引入、不对称合成、消旋体的拆分。
除此之外,随着手性拆分技术的进步,可以采用制备型的手性色谱技术直接分离对映异构体,得到所需的目标化合物。
不对称合成法引入手性中心:采用立体选择性或专属性的反应(包括酶催化反应)在分子中引入所需构型的手性中心。
首先应尽可能查阅相关的文献资料,充分了解所用不对称合成反应的反应机理、反应条件、立体选择性等,以选取合适的已有反应,或发展新的不对称反应;其次,在工艺研究中对该步不对称反应的工艺操作参数进行筛选优化,并对产物的立体异构体进行严格的监测,确定该步反应的工艺条件与反应产物的光学纯度控制指标。
如我们进行的新型HMG-CoA还原酶抑制剂开发项目中,需要构建(3R,5S)-3,5-二羟基戊酸手性侧链。
消旋体的拆分:此种方式是指采用手性拆分试剂与外消旋的中间体或终产品反应生成非对映异构体,分离纯化得到所需的非对映异构体,再去掉手性拆分试剂,从而得到所需构型的手性化合物。
(2) 手性药物的生物催化与转化关键技术研究随着低碳经济的要求,国内外很多传统的高温、高压、高物耗能耗的工艺正逐渐向原子经济、条件温和、环境友好的新工艺路线转移,而以手性医药及精细化学品合成为应用主体的生物催化过程,由于具有催化效率高、反应条件温和、立体专一性强等显著特征,特别符合资源节约、环境友好等绿色化学的时代要求,近20年来很多国际大公司如BASF、Merck、DSM、Degussa、Daicel等纷纷投入技术力量进行这方面的研究,目前已有100多个生物催化过程实现了产业化,形成生物技术的第三次浪潮。
手性药物的合成与生物转化摘要:药物分子的立体化学决定了其生物活性,手性已成为药物研究的一个关键因素,生物技术在手性药物合成中具有重要意义,利用酶催化的相关性质,通过酶拆分外消旋体酶法不对称合成等方法合成手性药物,采用定向进化技术酶分子修饰辅酶再生等方法对手性药物合成方法进行改进。
关键词:手性药物生物转化生物合成手性(Chirality) 是自然界的本质属性之一。
构成生命有机体的分子都是不对称的手性分子,生命界中普遍存在的糖为D型,,氨基酸为L型,蛋白质和DNA的螺旋构象又都是右旋的。
手性药物( Chiral drug) 是指有药理活性作用的对映纯化合物。
手性药物的制备方法包括化学制备法和生物制备法,生物转化具有一些化学方法无可比拟的优点:反应条件比较温和;产物比较单一,具有很高的立体选择性(Enantioselectivity)、区域选择性(Regioselectivity)和化学选择性(Chemoselectivity);并且能完成一些化学合成难以进行的反应。
目前,生物转化已涉及羟基化、环氧化、脱氢、氢化等氧化还原反应;水解、水合、酯化、酯转移、脱水、脱羧、酰化、胺化、异构化和芳构化等各类化学反应。
生物合成手性药物法主要包括酶拆分外消旋体法、酶法不对称合成和微生物发酵法。
1 酶法拆分外消旋体合成手性药物近年来随着酶技术的发展,利用酶的高度立体选择性进行外消旋体的拆分从而获得光活性纯的化合物是得到手性药物的重要途径。
酶是由L-氨基酸组成,其活性中心构成了一个部队称环境,有利于对消旋体的识别,属于高度手性的催化剂,催化效率高,有很强的专一性,反应产物的对映体过量百分率(ee)可达100%。
因此,在售性药物合成过程中,用酶拆分消旋体是理想的选择。
D-苯甘氨酸金额D-对羟基苯甘氨酸是生产半合成青霉素和头孢菌类抗生素的重要侧链。
DSM公司(Geleen,荷兰)利用恶臭假单胞菌(Pseydomonas putida)和L-氨肽酶拆分DL-氨基酸酰胺获得了D-苯甘氨酸和D-对羟基苯甘氨酸。
手性药物的分离分析(日本)(美国)(美国)诺贝尔化学奖与手性化合物1974年,诺尔斯的手性催化剂催化烯烃的氢化反应用于左旋多巴的生产;1980年,野依良治发现能够适用于各种双键化合物氢化的有效手性催化剂;1980年夏普莱斯发现用钛和酒石酸二乙酯形成的手性催化剂可以有效地催化烯丙醇化合物的环氧化反应,后来又发现了催化不对称烯双烃基化反应。
瑞典皇家科学院指出:“这三位科学家的发现对科学研究以及新药、新材料的发展产生了极大的影响,并已在许多药物和其他生理活性化合物的商业合成上得到了广泛的应用。
”1、手性及手性分子手性:左右手互为镜像与实物关系,彼此又不能重合的现象。
外消旋体:一对对映体等量的混合物。
有机分子手征性的发现(L.Pasteur, 1822~1895)发现酒石酸两种不同的存在形式:左旋酒石酸右旋酒石酸图:巴斯顿把酒石酸晶体分开成两个镜像异构体2、手性的重要性手性问题涉及到生命的起源以及各种动植物的生存和演化,因此和人类健康、环境、经济等都有密切联系。
氨基酸:除甘氨酸残基不具手性外,其余的氨基酸都是L-型的(D-型氨基酸只存在于细菌的细胞壁和某些抗菌素中)。
生物酶:用D-型氨基酸来取代L-氨基酸,破坏了酶的高级结构,活性就要降低甚至丧失。
核酸:DNA的五元糖则都是D-型的。
3、手性药物的效用临床上常用的1850多种药物中有1045多种是手性药物,高达62%。
紫杉醇、青蒿素、沙丁胺醇和萘普生都是手性药物按药效可将手性药物划分为四种不同的情况:(1)一对对映体中的两个化合物都有同等的或近乎同等的药理活性;(2)各对映体药理活性相同但不相等;(3)两种对应体具有不同的药理活性。
对映体药理活性相同但不相等左氧氟沙星抑制细菌拓扑异构酶9.3倍,是消旋体的1.3倍。
对各种细菌的抑菌活性左旋强于右8~128倍。
(2S,3S)-(-)-植物增长剂问题:如果只需要杀死真菌,为什么也要喷洒植物生长剂呢?“反应停”(沙利度胺)胺。
1 引言手性制药是医药行业的前沿领域,2001年诺贝尔化学奖就授予分子手性催化的主要贡献者。
自然界里有很多手性化合物,这些手性化合物具有两个对映异构体。
对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。
当一个手性化合物进入生命体时,它的两个对映异构体通常会表现出不同的生物活性。
对于手性药物,一个异构体可能是有效的,而另一个异构体可能是无效甚至是有害的。
手性制药就是利用化合物的这种原理,开发出药效高、副作用小的药物。
在临床治疗方面,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性。
因而具有十分广阔的市场前景和巨大的经济价值。
目前世界上使用的药物总数约为1900 种手性药物占50%以上,在临床常用的200种药物中,手性药物多达114种。
全球2001年以单一光学异构体形式出售的市场额达到1 472亿美元,相比于2000年的1 330亿美元增长了10%以上。
预计手性药物到2010年销售额将达到2 000亿美元。
2、手性药物的制取方法一般可通过从天然产物中提取、外消旋体拆分法获取手性药物,近年来,随着合成法的发展和先进分析技术的出现,越来越多的手性化合物可通过化学合成法得到不对称合成己成为获取手性物质的重要手段,与此同时,随着生物技术的不断进步以及生物技术与有机化学的交叉融合也使得生物合成成为手性药物生产取得突破的关键技术。
2.1 从天然产物中提取在某些生物体中含有具备生理活性的天然产物,可用适当的方法提取而得到手性化合物,某些手性药物是从动植物中提取的氨基酸、萜类化合物和生物碱。
如: 具有极强抗癌活性的紫彬醇最初是从紫彬树树皮中发现和提取的。
2.2 外消旋体拆分法通过拆分外消旋体在手性药物的获取方法中是最常用的方法。
目前为止报道的拆分方法有机械拆分法、化学拆分法、微生物拆分法和晶种结晶法等。