汽车底盘基础知识概
- 格式:doc
- 大小:415.50 KB
- 文档页数:9
底盘控制知识点归纳总结一、底盘控制的概念底盘控制是指控制汽车底盘部分的各项功能和性能,实现汽车稳定、舒适、安全、高效运行的技术。
底盘是汽车的主要组成部分,包括悬挂系统、制动系统、转向系统、轮胎和轮毂等。
二、底盘控制的重要性底盘控制对汽车的性能和安全有着至关重要的影响。
一个良好的底盘控制系统可以使汽车更加稳定、操控更加灵活,可以有效提升汽车的通过性和安全性,提高汽车的悬挂舒适性和行驶稳定性,对于提升汽车的整体性能有着重要的意义。
三、底盘结构1.悬挂系统悬挂系统是汽车底盘的重要组成部分,主要作用是减震和支撑车辆,保证车辆在行驶过程中的稳定性和舒适性。
常见的悬挂系统包括独立悬挂、非独立悬挂等。
在底盘控制中,悬挂系统扮演着重要的角色,对车辆的行驶性能有着直接的影响。
2. 制动系统制动系统是汽车底盘的关键部件,主要作用是在车辆行驶中实现制动功能,保证车辆行驶的安全性。
常见的制动系统包括盘式制动、鼓式制动等。
在底盘控制中,制动系统的稳定性和性能是至关重要的。
3. 转向系统转向系统是汽车底盘的重要组成部分,主要作用是实现车辆的转向功能,保证车辆在行驶过程中的灵活性和可控性。
转向系统包括了转向机构、转向传动机构等。
在底盘控制中,转向系统的稳定和精准对汽车的操控和安全有着重要的影响。
4. 轮胎和轮毂轮胎和轮毂是汽车底盘的重要部件,直接与地面接触,对汽车的通过性和行驶性能有着重要的影响。
在底盘控制中,轮胎的选择、轮毂的稳定性等都是需要关注的重点。
四、底盘控制系统1. ABS防抱死制动系统ABS是汽车底盘控制系统的重要组成部分,主要作用是防止车轮在紧急制动时出现抱死现象,使得车辆保持稳定,大大提高了车辆的制动性能,增强了车辆的安全性。
2. EBD电子制动力分配系统EBD是汽车底盘控制系统的重要组成部分,主要作用是根据车辆的动态状态和车载负荷的不同,智能调节前后轮的制动力分配,使得制动效果更加稳定,减少了制动距离,提高了车辆的行驶稳定性和安全性。
汽车底盘构造与维修复习资料第一章底盘概述1、汽车是由发动机、底盘、车身和电器电子设备四大局部组成的,底盘是构成汽车的根底。
2、汽车底盘由传动系、行驶系、转向系和制动系四局部组成。
3、汽车底盘的功用:是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并承受发动机的动力,使汽车产生运动并按驾驶员的操控而正常行驶的部件。
4、传动系的布置方案有前置前驱〔FF〕、前置后驱〔FR〕、后置后驱〔RR〕、中置后驱〔MR〕和四轮驱动五中方案。
第二章汽车传动系1、机械式传动系统主要由离合器、变速器、万向传动装置和驱动桥组成。
其中万向传动装置由万向节和传动轴组成,驱动桥由主减速器和差速器组成。
2、传动系统的功用:〔1〕减速增矩。
发动机输出的动力具有转速高、转矩小的特点,无法满足汽车行驶的根本需要,通过传动系统的主减速器,可以到达减速增矩的目的,即传给驱动轮的动力比发动机输出的动力转速低,转矩大。
〔2〕变速变矩。
发动机的最正确工作转速*围很小,但汽车行驶的速度和需要克制的阻力却在很大*围内变化,通过传动系统的变速器,可以在发动机工作*围变化不大的情况下,满足汽车行驶速度变化大和克制各种行驶阻力的需要。
〔3〕实现倒车。
发动机不能反转,但汽车除了前进外,还要倒车,在变速器中设置倒档,汽车就可以实现倒车。
〔4〕必要时中断传动系统的动力传递。
起动发动机、换档过程中、行驶途中短时间停车〔如等候交通信号灯〕、汽车低速滑行等情况下,都需要中断传动系统的动力传递,利用变速器的空档可以中断动力传递。
〔5〕差速功能。
在汽车转向等情况下,需要两驱动轮能以不同转速转动,通过驱动桥中的差速器可以实现差速功能。
3、离合器的功用:(1).平顺接合动力,保证汽车平稳起步。
汽车起步时,有静止到行驶的过程中,其速度由零逐渐增大;此时,如果发动机与传动系刚性连接,一旦变速器挂上档,汽车将因突然承受动力而猛烈地向前窜动,使汽车未能起步而迫使发动机熄火。
汽车底盘基础知识概述第一章汽车底盘概述汽车底盘由传动系、行驶系、转向系与制动系四部分构成。
汽车传动系的功用就是将发动机发出的动力按需要传给驱动轮。
汽车行驶系的功用是同意发动机经传动系传来的转矩,并通过驱动轮与路面间附着作用,产生路面对汽车的牵引力,以保证整车正常行驶;此外,它应尽可能缓与不平路面对车身造成的冲击与振动,保证汽车行驶平顺性,同时能与汽车转向系很好地配合工作,实现汽车行驶方向的正确操纵,以保证汽车操纵稳固性。
汽车转向系的功用是用来保持或者者改变汽车行驶方向的机构。
制动系的功用是使行驶中的汽车减低速度或者停止行驶,或者使已停驶的汽车保持不动。
通常用汽车车轮总数×驱动车轮数(车轮数是指轮毂数)来表示汽车的驱动形式。
布置形式FR(货车)、FF(轿车)、RR(客车)、MR(赛车或者超跑)、4WD、AWD第二章离合器机械式传动系要紧由离合器,手动变速器,万向传动装置,主减速器及差速器,半轴构成。
离合器的功用(1)保证汽车平稳起步;(2)保证传动系平顺换档;(3)防止传动系过载。
离合器的类型–摩擦式•干式•湿式–液力偶合–电磁离合摩擦式离合器由主动部分、从动部分、压紧装置、分离机构与操纵机构五部分构成。
为消除离合器自由间隙及机件弹性变形所需的离合器踏板行程,称之离合器踏板的自由行程。
离合器的工作原理(1)接合状态离合器接合状态时,压紧弹簧将压盘、飞轮及从动盘互相压紧。
发动机转矩经飞轮及压盘通过摩擦面的摩擦力矩传递到从动盘,再经变速器输入轴向传动系输入。
2)分离过程踏下踏板时,离合器分泵向前移动带动分离叉向前移动,分离叉内端则通过分离轴承推动分离杠杆内端向前移动,分离杠杆外端依靠安装在离合器盖上的支点拉动压盘向后移动,使其在进一步压缩压紧弹簧的同时,解除对从动盘的压力。
因此离合器的主动部分处于分离状态而中断动力的传递。
(3)接合过程若要接合离合器,驾驶员应松开离合器踏板,操纵操纵机构使分离轴承与分离叉向后移,压盘弹簧的张力迫使压盘与从动盘压向飞轮。
汽车构造底盘机部分复习要点基本概念1、汽车的基本结构都由发动机、底盘、车身和电器与电子设备四大部分所组成。
2、汽车行驶时,滚动阻力和空气阻力是在任何行驶条件下均存在的。
坡度阻力和加速阻力仅在一定行驶条件下存在。
3、膜片弹簧离合器中的膜片弹簧是一种旋转对称零件,平衡性好,在高速下,其压紧力降低很少。
(p19)4、综合式变速器其传动比可在最大值与最小值之间的几个间断范围内作无级变化。
(p40)5、综合式变速器是指由液力变矩器和机械式变速器组成的液力机械式变速器。
(p40)6、液力机械变速器的主要缺点是结构复杂,造价较高,传动效率低,因此在一般轿车和货车上未能得到广泛采用。
7、按传动比变化方式,汽车变速器可分为有级式、无级式和综合式三种。
(p40)8、变速器由变速传动机构和操纵机构组成,需要时,还可以加装动力输出器。
(p40)9、普通齿轮变速器的变速传动机构主要有三轴式和两轴式。
(p46)11、惯性式同步器通过专门的机构保证接合套与待接合的花键齿圈在达到同步之前不可能接触,从而避免了齿间冲击。
(p55)12、目前汽车变速器中广泛采用的同步器是惯性式同步器。
惯性式同步器是依靠摩擦作用实现待啮合齿间同步的。
(p55)13、越野汽车的分动器要挂入低速挡工作时,分动器的操纵机构必须保证:非先接上前桥,不得挂入低速档;非先退出低速档,不得摘下前桥。
(p68)14、常见的液力变矩器主要由可旋转的泵轮(主动件)和涡轮(从动件),以及固定不动的导轮三个元件组成。
(p73)15、与耦合器不同的是:变矩器不仅能传递转矩,而且能在泵轮转速不变的情况下,随着涡轮的转速(反映着汽车行驶速度)不同而改变涡轮输出的转矩数值。
(p73)16、液力变矩器之所以能起变矩作用,是由于结构上比液力偶合器多了导轮机构。
(p73)17、液力机械变速器是由液力传动装置、机械变速器及操纵系统组成的。
(p81)18、液力机械传动变速器的自动操纵系统包括动力源、执行机构和控制机构三部分。
复习第一章汽车底盘概述汽车底盘由传动系、行驶系、转向系和制动系四部分组成。
汽车传动系的功用就是将发动机发出的动力按需要传给驱动轮。
汽车行驶系的功用是接受发动机经传动系传来的转矩,并通过驱动轮与路面间附着作用,产生路面对汽车的牵引力,以保证整车正常行驶;此外,它应尽可能缓和不平路面对车身造成的冲击和振动,保证汽车行驶平顺性,并且能与汽车转向系很好地配合工作,实现汽车行驶方向的正确控制,以保证汽车操纵稳定性。
汽车转向系的功用是用来保持或者改变汽车行驶方向的机构。
制动系的功用是使行驶中的汽车减低速度或停止行驶,或使已停驶的汽车保持不动。
通常用汽车车轮总数×驱动车轮数(车轮数系指轮毂数)来表示汽车的驱动形式。
布置形式FR(货车)、FF(轿车)、RR(客车)、MR(赛车或超跑)、4WD、AWD第二章离合器机械式传动系主要由离合器,手动变速器,万向传动装置,主减速器及差速器,半轴组成。
离合器的功用(1)保证汽车平稳起步;(2)保证传动系平顺换档;(3)防止传动系过载。
离合器的类型–摩擦式•干式•湿式–液力偶合–电磁离合摩擦式离合器由主动部分、从动部分、压紧装置、分离机构和操纵机构五部分组成。
为消除离合器自由间隙及机件弹性变形所需的离合器踏板行程,称为离合器踏板的自由行程。
离合器的工作原理(1)接合状态离合器接合状态时,压紧弹簧将压盘、飞轮及从动盘互相压紧。
发动机转矩经飞轮及压盘通过摩擦面的摩擦力矩传递到从动盘,再经变速器输入轴向传动系输入。
2)分离过程踏下踏板时,离合器分泵向前移动带动分离叉向前移动,分离叉内端则通过分离轴承推动分离杠杆内端向前移动,分离杠杆外端依靠安装在离合器盖上的支点拉动压盘向后移动,使其在进一步压缩压紧弹簧的同时,解除对从动盘的压力。
于是离合器的主动部分处于分离状态而中断动力的传递。
(3)接合过程若要接合离合器,驾驶员应松开离合器踏板,控制操纵机构使分离轴承和分离叉向后移,压盘弹簧的张力迫使压盘和从动盘压向飞轮。
发动机转矩再次作用在离合器从动盘摩擦面和带花键的毂上,从而驱动变速器的输入轴。
在离合器接合过程中,摩擦面间存在一定的打滑,直到离合器完全接合为止。
注意:膜片弹簧既可以作为压紧装置又可以作为分离机构。
第三章手动变速器变速器的功用1.实现变速变矩。
2.必要时中断传动。
利用变速器中的空档,中断动力传递,使发动机能够起动和怠速运转,满足汽车暂时停车或滑行的需要。
3.由于内燃机是不能反向旋转的,利用变速器的倒档,实现汽车的倒向行驶,倒车。
变速器的分类按传动比变化方式分类(1) 有级变速器(2)无级变速器(3)综合式变速器按操纵方式不同分类(1)手动变速器(2)自动变速器(3)半自动变速器手动变速器(MT )分类(1)按齿轮传动方式分两轴式和三轴式(FR )(2)按齿轮啮合方式分滑动选择式、结合套式和同步啮合式。
变速变矩原理单级齿轮传动的传动比 多级齿轮传动的传动比当i >1时,为降速增扭传动,其档位称为降速档;当i <1时,为增速降扭传动,其档位称为超速档;当i =1时,为等速等扭传动,其档位称为直接档。
掌握两轴和三轴式手动变速器的组成、传动原理和传动路线两轴包括输入轴和输出轴,三轴包括输入轴(一轴)、输出轴(二轴)和中间轴(三轴) 同步器同步器的功用是使接合套与待接合的齿圈二者之间迅速达到同步,并阻止二者在同步前进入啮合;消除换档时的冲击,缩短换档时间;简化换档过程,使换档操作简捷而轻便。
锁环式惯性同步器主要由同步器花键毂、接合套、两个锁环(也称同步环)、三个滑块和滑块弹簧等组成。
惯性锁销式同步器主要由两个摩擦锥环、三个均布的锁销和定位销、接合套及花键毂等组成。
变速器操纵机构的功用是保证驾驶员根据使用条件,准确可靠地使变速器挂入所需要的档位工作,并可随时使之退入空档。
对变速器操纵机构的要求(1)能防止变速器自动换档和自动脱档,为此,在操纵机构中应设有自锁装置。
(2)能保证变速器不会同时挂入两个档位,为此,在操纵机构中应设有互锁装置。
(3)能防止误挂倒档,为此,在操纵机构中应设有倒档锁装置。
变速器操纵机构的类型 (1)直接操纵式(2)远距离操纵式换档拨叉机构主要由变速杆、叉形拨杆、换档轴、各档拨块、拨叉轴及拨叉等组成。
第四章 自动变速器自动变速器分类按传动比有级(AMT )、无级(CVT )和综合(AT )自动变速器的组成(1)液力变矩器:使发动机产生的转矩成倍增长;起到自动离合器的作用,传送发动机转矩至变速器;缓冲发动机及传动系的扭转振动;兼起到飞轮的作用,使发动机转动平稳;驱动液压控制系统的油泵。
(2)变速齿轮机构:根据行车条件及驾驶员所需,提供几种传动比,以获得适当的转矩及转动速度;为倒车提供倒档档位;提供停车时所需要的空档档位,以使发动机怠速运转。
(3)液压控制系统:向变矩器提供变速器液;控制油泵产生的液压;根据发动机载荷及车速等调节系统压力;对离合器及制动器施加液压,以控制行星齿轮机构动作;用变速器液润滑转动部件及为变矩器及变速器散热。
(4)电子控制系统:利用传感器采集各种数据,并且将其转换为电信号;ECU 根据传感器的信息确定换档正时及锁止正时,并发出指令操纵阀体中电磁阀,调节管道压力、控制换档阀和锁止控制阀的动作,实现自动换档和变矩器锁止控制。
自动变速器档位P 驻车档,停车用,输出轴被锁止。
R 倒挡。
N 空档。
D 前进档,可在1档和最高档之间自动升降档。
S/2 只能在1档和二档之间转换。
L/1只能在1档行驶。
发动机在P 、N 档起动。
液力变矩器主要由泵轮(输入)、涡轮(输出)、导轮组成导轮不转时增矩,导轮旋转时偶合。
行星齿轮机构单排行星齿轮机构主要由太阳轮、行星齿轮、行星架和齿圈组成运动规律: 行星架固定必反向,行星架主动必减速,行星架从动必减速。
辛普森式行星齿轮机构:前后两排行星轮共用一个太阳轮,前行星架和后齿圈共件。
拉维娜式行星齿轮机构:一大一小两个太阳轮,一长一短两组行星轮,共用一个齿圈,一个行星架。
换档执行元件(离合器、制动器和单向离合器)离合器的作用是将输入或输出轴与行星齿轮机构中某个基本元件连接起来,或将行星齿轮机构中某两个基本元件连接在一起,使之成为一个整体转动,以传递动力。
(连接作用) 湿式多片式离合器通常由离合器鼓、离合器活塞、回位弹簧、一组钢片、一组摩擦片、花键毂等制动器的作用是约束行星齿轮机构中某个基本构件,使其不能运动,以获得必要传动比。
(制动作用)湿式多片式制动器(原理同湿式多片式离合器,没有离合器鼓)带式制动器是利用围绕在鼓周围的制动带收缩而产生制动效果的,它由制动带和伺服机构组成。
单向离合器的作用是单向锁止行星齿轮机构中某个基本元件的旋转。
楔块式和滚柱式两种 液压控制系统由动力源部分(油泵)、执行机构部分(离合器、制动器等)和控制机构部分(控制阀体、蓄压器等)组成。
换挡信号:车速信号和节气门开度信号液控式对应的是调速器阀和节气门阀,电控的是车速传感器和节气门位置传感器电子控制自动变速器的电子控制系统由输入部分(即传感器/开关)、电子控制单元(即ECT 的ECU )和执行器(即电磁阀)等组成第五章 电控机械无级变速器CVT (Continuously Variable Transmission )工作原理:主、从动轮由可动和不可动两部分组成,其工作面大多为直线锥面体。
在液压控制系统的作用下,依靠钢球—滑道结构作轴向移动,可连续地改变行动带工作半径,实现无级变速传动。
第六章 万向传动装置万向传动装置的功用是能在汽车上任何一对轴间夹角和相对位置经常发生变化的转轴之间传递动力。
它一般由万向节和传动轴组成,对于传动距离较远的分段式传动轴,还需设置中间支承。
0)1(321=+-+n n n α万向传动装置的应用:(1)变速器(或分动器)与驱动桥之间;(2)变速器与离合器或与分动器之间;(3)转向驱动桥和断开式驱动桥中;(4)转向操纵机构中。
万向节分类:刚性万向节:不等速(十字轴)、准等速(双联式、三销轴式)、等速(球叉式、球笼式)挠性万向节十字轴式万向节,它允许相邻两轴的最大交角为15°-20°,在汽车上应用最广。
它主要由万向节叉,十字轴及轴承等组成。
两个万向节叉分别与主、从动轴相连,其叉形上的孔分别套在十字轴的四个轴颈上。
在十字轴轴颈与万向节叉孔之间装有滚针和套筒,用带有锁片的螺钉和轴承盖来使之轴向定位。
为了润滑轴承,十字轴内钻有油道,且与滑脂嘴、安全阀相通第七章驱动桥驱动桥的功用是将万向传动装置(或变速器)传来的动力经降速增扭、改变动力传递方向(发动机纵置时)后,分配到左右驱动轮,使汽车行驶,并允许左右驱动轮以不同的转速旋转。
驱动桥是传动系的最后一个总成,它由主减速器、差速器、半轴和桥壳等组成整体式驱动桥采用非独立悬架。
其驱动桥壳为一刚性的整体,两端通过悬架与车架连接。
行驶时左右驱动轮不能相互独立地跳动,整个车桥和车身会随着路面的凸凹变化而发生倾斜。
这种结构多用于汽车的后桥上。
断开式驱动桥采用独立悬架。
其主减速器固定在车架上,驱动桥壳制成分段并用铰链连接,半轴也分段并用万向节连接。
驱动桥两端分别用悬架与车架连接。
这样,两侧的驱动轮及桥壳,可以彼此独立地相对于车架上下跳动,而车身不会随车轮跳动,提高了行驶平顺性和通过性。
主减速器的功用是将输入的转矩增大,转速降低,并将动力传递方向改变后(发动机横置的差速器的功用是将主减速器传来的动力传给左、右两半轴,并在必要时允许左、右半轴以不同转速旋转,以满足两侧驱动轮差速的需要。
差速器按其用途可分为轮间差速器和轴间差速器。
轮间差速器装在同一驱动桥两侧驱动轮之间,而轴间差速器装在各驱动桥之间。
按其工作特性均可分为普通差速器和防滑差速器两大类。
行星锥齿轮差速器。
它由四个行星锥齿轮、一个十字形行星锥齿轮轴(简称十字轴)、两个半轴锥齿轮、差速器壳以及垫片等组成。
差速器的运动特性:差速器无论差速与否,都具有两半轴齿轮转速之和始终等于差速器壳转速的两倍,而与行星齿轮自转速度无关的特性。
ω1+ω2=2ω0或n1+n2=2n0全浮式半轴支承指半轴只承受转矩,而两端均不承受其它任何反力和反力矩的半轴支承型式。
多用于货车上。
半浮式半轴支承是指半轴内端只受转矩,而外端除承受转矩外,还要承受全部弯矩的半轴支承型式。
主、从动锥齿轮啮合印痕与齿侧间隙的调整口诀:大进从、小出从;顶进主、根出主。
第10章车架和车桥车架的功用是安装汽车的各总成和部件,并使它们保持正确的相对位置,并承受来自车上和地面的各种静、动载荷。
汽车车架按其结构形式可分为边梁式、中梁式、综合式和无梁式车架(承载式车身)许多轿车和公共汽车没有单独的车架,而以车身代替车架,主要部件连接在车身称为承载式车身。