钴钼系耐硫变换催化剂使用注意事项
- 格式:doc
- 大小:50.50 KB
- 文档页数:5
硫化成功的必备条件有三个:1)要有足够高的硫化温度,一般不大于500 ℃;2)要有足够的强制硫化时间,并且最好有数小时的闷炉;3)强制硫化时,原料气中的硫化氢越高越好,一般不低于15 g/Nm3 。
硫化时要防止催化剂超温,超过550 ℃对催化剂造成危害,但短时间超温对催化剂活性影响不大。
一、硫化条件1、温度对硫化反应深度的影响很大,一般入口温度控制在230~260℃,床层温度控制在250~280℃。
硫化反应后期应尽量提温,适当的高温(~425℃)既可以保证催化剂的活性,又可缩短硫化时间。
2、硫化压力对硫化深度的影响不是很大,可根据装置的实际情况来确定压力,一般不低于1.0MPa(表压)。
3、H2S的浓度过低(体积分数≤0.2%)时,还原后的催化剂活性较差;H2S的较高时,对催化剂的影响不大。
出于安全考虑,H2S的浓度不宜提的太高。
4、系统中H2的体积分数尽量控制在10%~20%,过低会影响CS2的氢解,过高则有可能发生还原反应。
CS2在200℃以上时才发生氢解反应,所以添加CS2要等到温度达230℃左右开始添加。
过早添加容易使CS2氢解不完全,在系统内冷凝和吸附。
当达到温度时,就会突然发生氢解反应,放出大量的反应热导致床层温度暴涨。
但超过250℃再加CS2,就可能发生CoO和MoO3的还原反应,使催化剂失活。
运行过程中要保持H2的体积分数在10%~35%之间,因为当H2的浓度过低时,亦有可能造成CS2氢解不完全,在系统内冷凝和吸附。
当H2含量提高时,CS2大量氢解,释放过多的反应热,从而导致催化剂床层温度暴涨。
串联硫化时要防止“提温提硫”的同时发生,因为当上段硫穿透时,较高的热点温度和上段穿透的硫进入下一段,造成下段“提温提硫”,很容易造成超温。
钴钼系耐硫变换催化剂装填及使用过程注意事项钴钼系耐硫变换催化剂装填及使用过程注意事项摘要:摘要:从钴钼系耐硫宽温变换催化剂的装填、硫化、接气、操作等方面简述了其生产中的使用要求,提出了操作过程中的注意事项。
关键词:钴钼系催化剂装填硫化活性一、装填催化剂的装填是一个十分重要的步骤,要分层装填,每层都要整平之后再装下层,装填后的床层必须平整均匀,严防疏密不均形成沟流,影响催化剂的使用。
1.装填注意事项1.1当汽气比、CO变换负荷选定后,可简单地由操作压力确定空速。
空速以半水煤气为准,如果原料气中CO含量体积分数约为45%,则选定的空速适当降低。
1.2为防止气体偏流,每段床层的高度不应小于1 m,床层高径比以0.5~1.0为宜。
1.3催化剂装填时,其上下均要铺设铁丝网下面2层,上面1层,在上层铁丝网上放置高度为50~100 mm的耐火球或铝球,以防止冷凝水直接接触催化剂。
二、硫化1.硫化过程注意事项在钴钼催化剂中,Mo是主催化剂,Co是助催化剂,对钴钼催化剂的硫化主要是对Mo的硫化。
Mo在硫化时一般Mo+6、Mo+5、Mo+4 3种价态存在,Mo+5与变换反应中的变换活性有关,,由于Mo+6、Mo+4 同时存在,因此Mo不能完全被还原,为保证硫化完全彻底硫化时应注意以下几点。
1.1干态硫化一般在硫化之前,首先应对催化剂升温,脱除吸附水。
1.2提高H2S浓度高硫浓度可保证硫化反应的需要,并缩短反应时间,不过在硫化初期不要将H2S含量提得太高,应采取逐渐渗透的方式,避免反应过急,使催化剂温度波动过大。
1.3低温硫化当床层温度达到180℃时,将气体入口温度降到170~180℃,然后加入CS2,使催化剂在H2S吸收区反应,可避免硫化初期温度超过200℃而引起的异常激烈反应。
主要硫化阶段为180~300℃为保证温度,应将炉温控制在250℃左右,并逐步加大CS2的量。
当分析显示变换炉出口H2S达到1 g/m3或进出口H2S含量相等时,保持运行2 h 即为合格。
钴钼系耐硫宽温变换催化剂使用过程注意事项
吕洪浩
【期刊名称】《化肥设计》
【年(卷),期】2008(46)3
【摘要】从钴钼系耐硫宽温变换催化剂的选用、装填、硫化、接气、操作等方面简述了其在合成氨生产中的使用要求,提出了操作过程中的注意事项.
【总页数】4页(P41-44)
【作者】吕洪浩
【作者单位】兖矿鲁南化肥厂,合成氨分厂,山东,滕州,277527
【正文语种】中文
【中图分类】TQ426.6
【相关文献】
1.钴钼系CO宽温耐硫变换催化剂硫化条件的研究 [J], 连熠磊;秦媛媛;纵秋云
2.钴钼系耐硫变换催化剂非氧化扒卸技术总结 [J], 马高永;孟庆庆
3.钴钼系耐硫变换催化剂装填及使用过程注意事项 [J], 王亮亮
4.钴钼系耐硫变换催化剂非氧化扒卸技术总结 [J], 马高永; 孟庆庆
5.钴钼系耐硫变换催化剂运行问题分析及解决措施 [J], 赵岩;徐程程
因版权原因,仅展示原文概要,查看原文内容请购买。
浅析变换工艺催化剂的使用及常见问题的处理作者:永学健张涛来源:《中国化工贸易·下旬刊》2019年第07期摘要:本篇文章中所讲的变换催化剂主要指的是钴、钼系催化剂,这种催化剂使用时间较长,使用面积覆盖也较为广泛,为钴、钼系催化剂的积累了丰富的使用经验。
但是在钴、钼系催化剂这么多年的使用过程之中,也出现了诸多的问题影响了催化剂的正常使用。
因此,笔者针对现如今关于钴、钼系催化剂在使用当中的问题提出自己的论述观点,并且总结出原因分析以及提出此昂对应的解决办法,希望可以对钴、钼系催化剂的使用有一定的借鉴意义。
关键词:变换工艺催化剂;钴、钼系催化剂;催化剂的使用钴、钼系催化剂主要适用于以煤或者是重油为主要原料的合成氨厂,这种催化剂有着超高的耐硫功能,但是在没有或者有很少的硫化氢的环境之中,钴、钼系催化剂的活性就会比较弱。
由于最近几年,人们越发的关注环境保护问题,化肥行业也随之开展了节约能源,降低能源消耗的工作,因此,钴、钼系催化剂由于它的耐硫功能就得到了诸多厂家的青睐,但是在使用的过程之中由于存在着问题没有得到解决,也就造成了催化剂在工作之中出现结焦、失活等现象的发生。
1 钴、钼系催化剂的正确使用在上个世纪50年代的时候,钴、钼系催化剂就是在当时研发的最新型的催化剂,它对一氧化碳的变换工艺有着很好的变幻效果。
最有典型的主要是有K8-11等等。
钴、钼系催化剂主要是通过氧化铝为主要的載体,利用氧化铝改善低温活性性能,钴、钼系催化剂的助催化剂在一般情况之下都是选择碱金属钾。
在进行催化剂的选用的时候,一定要注意不仅是要关注它的活性性能,还要考虑它的强度。
通常情况下来说的话,催化剂的活性与强度是成反比例的,催化剂的活性性能越好,反之,催化剂的强度就会变得非常的差[1]。
催化剂生产商在进行制造催化剂的过程之中要充分的考虑到强度与活性性能二者之间的关系,并且还要找到一个可以达到这两者之间的平衡点。
钴、钼系催化剂的最大的特点就是很高的宽温耐硫性,这种催化剂通常情况之下都具有良好的活性性能、较高的机械强度以及选择性,尤其是在低温变换活性和低硫变换活性这两个方面,在世界上也是处于领先地位的,同时钴、钼系催化剂对高空速、高水气的环境适应能力很强,具有良好的稳定,还具有较大的操作弹性。
耐硫变换催化剂及其使用技术1.钴-钼系耐硫变换催化剂及其使用工艺1.1加压气化工艺及其耐硫变换催化剂众所周知,在合成氨厂中,合成氨原料气中一氧化碳的变换通常是在铁-铬变换催化剂的存在下进行:CO+H2O<----------->C02+H2+Q以铁为主的催化剂,由于其中(300~450℃)活性高,价格低廉,几十年来一直被广泛用于一氧化碳和水蒸气的变换反应。
这种催化剂的缺点是水蒸气消耗高,在高硫气氛中,其变换活性低。
因此,几十年来合成氨的净化流程历来是先脱硫后变换再脱碳。
高温的粗煤气经经降温脱硫,在升温补入水蒸气变换,这样就带来流程长,能耗高的缺点。
五十年代,重油部分氧化工艺用于制合成氨原料气,之后,又开发了水煤浆德士古气化制合成氨原料气。
针对直接回收热能的冷凝流程,为了充分利用气化反应热及气体中的水蒸气,国外首先开发了一种钴-钼系耐硫变换催化剂串联于气化之后,实现了先变换然后再脱硫脱碳的工艺,从而缩短了流程,降低了能耗。
由于重油(或渣油)部分氧化工艺以及水煤浆德士古气化工艺都是在较高的压力(一般在3.5~8.OMpa)下进行,而且气体中的一氧化碳浓度较高(46~48%),水蒸气浓度高(汽/气比高达1.5),反应热较高,(第一段出口温度可达450~460℃),因此要求用于该流程的耐硫变换催化剂能耐热、耐水汽和耐高压,催化剂有较高的强度和稳定的结构,使之具有足够的使用寿命。
这种催化剂一般在载体中添加了镁及其它一些添加剂,或采用一些特殊的制法以稳定载体和催化剂的结构。
我们把这种催化剂归为耐高压的中温型钴-钼耐硫变换催化剂。
近十多年来,我国已引进了一批油气化和水煤浆加压气化的大、中型化肥(化工厂),形成了应用这类型钴-钼耐硫变换和节能工艺的一个系列。
1.2中串低流程及其变换催化剂国内煤固定床气化制合成氨原料气的工艺,几十年来一直采用铁-铬型催化剂用于一氧化碳的变换反应,净化工艺一直采用先变换后脱硫脱碳的工艺。
Co - Mo系耐硫变换催化剂的硫化处理1、硫化反应耐硫变换催化剂在使用前一般要将其活性组份的氧化态转化为硫化态,这一转化过程称之为硫化。
钴钼系耐硫催化剂的硫化反应在热力学上可用下列式子表示:CS2 + 4H2 = 2H2S + CH4 + 230. 45 kJMoO3 + H2 + 2H2S = MoS2 + 3H2O +48. 15 kJCoO + H2S = CoS + H2O + 13. 4 kJCO + 3H2 = CH4 + H2O + 214. 8 kJCO+H2O = CO2+H2 +41.19 KJ/mol2H2 +O2 =2 H2O + 241. 83 kJ上述反应均为放热反应。
常用的硫化剂有CS2和H2S两种。
其中H2S来自高硫煤气或固体硫化剂, CS2可直接加入原料气。
另外,硫氧化碳等有机硫也可作硫化剂。
2、硫化反应机理在催化剂的硫化过程中,不论采用何种硫化方法,最基本的硫化剂就是H2S。
因此只要在硫化条件下容易提供H2S的物质都可用作硫化剂。
工业上通常采用低分子量的有机硫化合物和无机的固体硫化剂。
硫化过程通常分为两个反应步骤,即硫化剂的分解和催化剂活性组分的相态转化。
(1)硫化剂的分解硫化剂的分解是指硫化剂在催化剂正常的硫化工艺条件下,硫化剂与氢气或水发生化学反应生成H2S的过程,下面是常见的几种硫化剂及其分解反应。
CS2(二硫化碳)十4H2=CH4十2H2SCOS(硫氧碳)十H2O=CO2十H2S(2)硫化对耐硫变换催化剂的作用:使催化剂中的金属组分即活性组分由氧化态变成硫化态,如MoO3变成活性物种MoS2;使催化剂中的活性组分处于最佳活性价态,以Mo为例,Mo由MoO3中Mo6+经过硫化变为活性物种MoS2。
MoO3和CoO在催化剂硫化过程中发生的化学变化表示如下:(3)硫化剂的选择从硫化剂的分解反应上看,其最终产物为H2S,理论上认为除本身的分解反应外,不会对催化剂的硫化过程造成影响。
变换工艺催化剂的使用及常见问题的处理王海龙(中国神华煤制油鄂尔多斯煤制油分公司,内蒙古鄂尔多斯 071209) 摘 要:变换系统钴、钼系催化剂正常使用、新购催化剂的装填、硫化注意事项及使用过程中出现结焦、粉化、失活原因分析及处理办法。
关键词:钴;钼系催化剂;正确使用;填装;硫化;结交;粉化;失活 中图分类号:O643.3 文献标识码:A 文章编号:1006—7981(2017)09—0066—02 煤制氢净化工段变换工序主要任务是将来自Shell煤气化工号的粗合成气中的CO在催化剂作用下与水蒸汽在适宜的温度下反应生成CO2和H2,将粗合成气中的约60%(干基)的CO降至1%以下。
基于Shell煤气化合成气组成的特点,充分考虑催化剂特性及装置流程配置的前提下,CO变换工序选用了Co-Mo系耐硫变换催化剂。
该催化剂具有起活温度低、热稳定性好以及能耐高硫、高压、高水汽比分压等特点[1]工艺采用两段宽温耐硫变换串联一段低温耐硫变换工艺。
1 催化剂的正确使用钴钼系催化剂是上世纪50年代开发的新型催化剂,其对CO变换工艺具有很好的效果。
代表有K8-11、QCS-01、QCS-04等。
钴钼系催化剂通常采用Al2O3、Al2O3/MgO为主要载体,为改善其低温活性,这种催化剂往往加入碱金属钾作为助催化剂。
在选用催化剂时,不仅要关注其活性,还要注意其强度。
一般而言,催化剂的活性与强度成反比,活性越好,催化剂的强度则较差。
催化剂生产厂家在催化剂制造的过程中已考虑到两者的关系,并找到了一定的平衡点,但此平衡点并不一定适合任何工况。
其特点是宽温耐硫,该类催化剂具有优良的机械强度、选择性和活性,特别是低温变换活性和低硫变换活性在国际上处于领先地位,同时对高空速,高水气比的适应能力强,稳定性好,操作弹性较大。
催化剂的使用寿命与使用条件有关,该催化剂的使用寿命预计为3~8年。
新鲜催化剂中活性组份钴、钼以氧化钴、氧化钼的形式存在,使用时首先应进行硫化,使金属氧化物转变成硫化物,可以用含硫工艺气体硫化,也可用硫化剂单独硫化。
QCS―05耐硫变换预变催化剂使用说明书山东齐鲁科力化工研究院有限公司地址:山东省淄博市临淄区胜利路35号邮政编码:255400 电话:(0533) 7544767传真; (0533) 7542016 电挂:0116http://www. kelicc. com. cnE-mail:chengych@riqpc. comQ C S-05耐硫变换预变催化剂使用说明书1、概要QCS―05 是山东齐鲁科力化工研究院有限公司开发成功的含有新型组份和特殊助剂的钴钼系一氧化碳耐硫变换预变催化剂,适用于以重油、渣油部分氧化法或煤气化法造气的变换工艺,促进含硫气体的变换反应,是一种适应宽温(200℃~500℃)、宽硫(工艺气硫含量≥0.02% v/v)和高水气比(0.3~1.6)的耐硫变换预变催化剂。
该催化剂具有机械强度高,结构稳定性好,脱氧能力强等特点,能有效地脱除与吸附原料气中的氧和焦油等杂质或毒物。
对高空速,高水气比的适应能力强,稳定性好,操作弹性较大。
具有稳定的变换活性,可适当延长一氧化碳耐硫变换催化剂的使用寿命。
新鲜催化剂活性组份钴、钼以氧化钴、氧化钼的形式存在,使用时应首先进行硫化,使金属氧化物转变为硫化物。
可以用含硫工艺气体硫化,也可用硫化剂单独硫化。
QCS―05耐硫变换预变催化剂化学组成比较简单,不含对设备和人体有危害的物质,硫化时也只有少量的水生成并随工艺气排出,对设备无危害。
2、QCS―05耐硫变换预变催化剂的物化性能2.1 耐硫变换预变催化剂的物理性质外观灰绿色或兰绿色条形外形尺寸(mm):直径3.7~4.0堆密度(kg/l):0.80~0.90抗压碎力(N/cm):≥100(平均值)*催化剂的尺寸可以根据用户的需要适当调整,尺寸不同其堆密度及床层阻力降也不同。
2.2 耐硫变换预变催化剂的化学性质QCS-05耐硫变换预变催化剂以钴和钼为活性组份,以氧化物表示的化学组成见下表。
QCS-05耐硫变换预变催化剂的主要化学组成3、工业使用条件3.1 使用温度QCS―05耐硫变换预变催化剂可在250~500℃的温度范围内使用,短时间(几小时内)耐热温度可达550℃,在开车初期,可选择较低的入口温度,随着使用时间的延长可逐渐提高入口温度。
钴钼系催化剂使用过程中注意事项吕洪浩(兖矿鲁南化肥厂合成氨分厂,山东滕州木石镇,277527)内容简介:本篇文章主要是介绍钴-钼系催化剂从催化剂的选用到催化剂硫化,再到催化剂的接原料气和催化剂使用过程中注意的事项,及相关的原因和处理方法等。
关键词:钴-钼系催化剂活性压力降空速高径比硫化超温升华反硫化腐蚀Co-Mo catalyst in the process of noteLu:honggao(Yankuang Lunan ammonia plant fertilizer plant, the town of stone inTengzhou, Shandong, 277527)Synopsis : This article is to introduce the main cobalt-molybdenum catalyst from the use of the catalyst curing catalyst, the catalyst then take raw gas and catalyst to the process of the issues and related causes and treatment methods.Key words : cobalt-molybdenum catalyst activity space velocity, pressure drop, high-Drive than curing temperature distillation sulfide corrosion 随着近几年化肥行业节能降耗工作的开展,钴钼系耐硫宽温变换催化剂得到越来越多厂家的青睐。
现根据本人的经验,并结合我厂钴钼系催化剂使用的情况,介绍一下在其使用过程中的注意事项。
1、钴钼系催化剂的选用(1)钴钼系催化剂的选用原则钴钼系催化剂有突出的耐硫性能,它适用于以煤、重油(或渣油)为原料的合成氨厂;在无H2S或少H2S的环境中,活性比较差,通常不适用于以轻油、天然气为原料的合成氨厂。
1.简介1.1Co-Mo系变换催化剂的发展历程Co-Mo系催化剂最早是在炼油行业中使用,属炼油行业加氢催化剂。
国内最早研究开发此催化剂用于变换工艺的有三家:上海化工研究院、湖北化工研究所、齐鲁石化研究院。
上世纪八十年代初上海化工研究院研制出了Co-Mo系变换催化剂,化工部命名的牌号是B301。
该催化剂系混捏法生产,外观为圆柱形,生产工艺复杂,成本较高。
但该催化剂开创了国内Co-Mo系耐硫变换催化剂的先河,在当时为中、小氮肥的节能降耗做出了很大贡献。
八十年代后期,湖北所吸收了丹麦技术研制出了B302Q.B303Q,在国内首先采用了r-Al2O3球形载体,首先采用了无焙烧工艺即浸泽工艺,制造工艺大为简化,生产成本进一步降低,从而推动了Co-Mo系变换催化剂的迅速发展。
九十年代中期,齐鲁院开发出了中石化命名的Qcs-01、Qcs-02、Qcs-03,在国内首先采用了钛复合载体,使Co-Mo系耐硫变换催化剂的稳定性、活性助剂、硫化性能大为改进。
目前国内生产该催化剂的厂家已发展有十多家。
1.2我公司采用的Co-Mo系变换催化剂我公司采用的Co-Mo系耐硫变换催化剂型号为K8-11和QDB-04,K8-11为德国巴斯夫公司生产,采用混捏法制备工艺,以MgO、AL2O3、SiO2为复合载体。
在CO含量高、汽/气比低、压力高、床层温度高的情况下,抑制CH4化副反应方面性能更优越。
QDB-04为青岛联信化学有限公司生产,在齐鲁院技术的基础上有所发展,以镁铝尖晶石为载体,含有多元复合助剂,在高温低硫的条件下使用时,与同类催化剂相比,更能显示其优越的催化性能。
两种催化剂性能相近均为新型耐硫变换催化剂,均含有特殊载体,都有良好的低温、宽温、宽硫特性,都有较强抗毒性能,较高的选择性。
下面就以QDB-04为例对Co-Mo系耐硫变换催化剂做详细介绍。
2.Co-Mo系耐硫变换催化剂QDB-04的物理性能表1 QDB-04的物理性能项目物理性能CoO%MoO3%外形尺寸mm堆密度Kg/L破碎强度N/cm比表面积m2/g孔容cm3/g颜色磨损率%钾流失率%1.8±0.28±1.0φ3.5-4.50.8-1.0≧130≧100≧0.25红色或绿色≦2.0≦1.0(正常使用1年)3.Co-Mo系耐硫变换催化剂QDB-04的主要使用条件表2 QDB-04的主要使用条件项目使用条件压力MPa温度℃最佳使用温度℃起活温度℃初期最佳入口温度℃耐热温度℃耐热时间h干气空速h-1最佳装填高径比汽气比~5.0190-500240-450180高于露点205502-41000-45000.8-1.5~1.44.Co-Mo系耐硫变换催化剂QDB-04的突出优点4.1添加特殊助剂并使用活性载体,由于助剂、活性载体与活性组分三者的协同效应,提高了催化剂的变换活性,特别是提高了催化剂在高温低硫下的变换活性及稳定性。
钴钼系耐硫变换催化剂哎呀,今天咱们聊聊钴钼系耐硫变换催化剂,听起来是不是有点儿拗口?但别担心,咱们就把它聊得轻松有趣,保证让你听得懂、记得住!首先呢,钴和钼这两位老兄可不是随便的人物,它们可是化学界的明星。
钴呢,大家可能知道,它常常出现在电池和合金里,而钼呢,那就是一位默默无闻的好帮手,常常被用来增强材料的耐热性。
两者结合在一起,那真是碰撞出火花,让我们能够对抗那些 pesky 硫元素。
说到硫,很多人一想到它就觉得有点恶心,那股味道,真的是让人反胃。
不过别小看了这位“臭小子”,在一些化工过程中,它可是个常客。
想象一下,在某个繁忙的工厂里,油气转化成更有价值的产品,这时候硫就开始捣乱了,真让人恼火。
可别担心,咱们有钴钼系耐硫变换催化剂来救场。
它们就像是工厂里的超级英雄,能在高温、高压的环境下,依然保持镇定,化解这些硫带来的麻烦。
你可能会想,这催化剂到底是怎么运作的?这就好比是你厨房里的调料,一旦放对了,整道菜瞬间提升档次。
钴钼系催化剂在化学反应中,就像那小撮盐,让原本平淡无奇的反应变得活色生香。
它们通过降低反应的活化能,让反应更加顺畅,搞得硫也没办法对它们施加太大压力,真的是一绝。
还有一点很重要,咱们得知道,这钴钼系催化剂可不是一劳永逸的,使用久了,它们也会有些疲惫。
不过别怕,科学家们可不是吃干饭的,研究者们不断在这方面摸索,努力提高催化剂的稳定性和耐硫性能。
想象一下,经过精心设计的催化剂,能在恶劣环境下奋勇向前,真的是“马到成功”。
聊到这里,可能有的小伙伴就开始想,为什么我们不直接用其他材料,比如铂?铂虽然也是个好东西,但价格太高了,简直就是奢侈品啊!钴钼系催化剂的优势就在于,既能发挥出色的催化效果,又不至于让我们的钱包大出血。
想想看,能以较低的成本获得高效的催化,简直就是“物超所值”。
咱们还得提到环保问题。
现代社会越来越重视可持续发展,钴钼系催化剂在减少有害排放、提升资源利用效率方面也发挥了重要作用。
K8-11系列催化剂使用注意事项一、催化剂的使用1.1 催化剂的装填装填催化剂之前,必须认真检查反应器,保持清洁干净,支撑栅格正常牢固。
为了避免在高的蒸汽分压和高温条件下损坏失去强度,催化剂床层底部支撑催化剂的金属部件应选用耐高温和耐腐蚀的惰性金属材料。
惰性材料应不含硅,防止高温、高水汽分压下释放出硅。
催化剂装填时,通常没有必要对催化剂进行过筛,如果在运输及装卸过程中,由于不正确地作业使催化剂损坏,发现有磨损或破碎现象必须过筛。
催化剂的装填无论采取从桶内直接倒入,还是使用溜槽或充填管都可以。
但无论采用哪一种装填方式,都必须避免催化剂自由下落高度超过1米,并且要分层装填,每层都要整平之后再装下一层,防止疏密不均,在装填期间,如需要在催化剂上走动,为了避免直接踩在催化剂上,应垫上木版,使身体重量分散在木版的面积上。
一般情况下,催化剂床层顶部应覆盖金属网和/或惰性材料,主要是为了防止在装置开车或停车期间因高的气体流速可能发生催化剂被吹出或湍动,可能由于气体分布不均发生催化剂床层湍动,损坏催化剂。
由于高压,原料气密度较大,为了尽可能的减小床层阻力降,应严格控制催化剂床层高度和催化剂床层高径比。
通常催化剂床层高度应控制在3〜5m催化剂床层高径比控制在1.0〜1.8。
1.2 开车1.2.1 升温为防止水蒸气在催化剂上冷凝,首次开车升温时,应使用惰性气体(Nl、H、空气或天然气)把催化剂加热到工艺气露点以上温度,最好使用2。
采用務O C /h的升温速度加热催化剂,根据最大可获得流量来设定压力,从而确保气体在催化剂上能很好分布。
在通常情况下,气体的有效线速度不应小于设计值的50%但也不应超过设计值。
当催化剂床层温度达到100C〜130C时,恒温2〜3小时排除吸附的物理水,然后继续升温至200C〜230C时,进行下一步的硫化程度。
如果最初加热选用的是空气,在引入硫化气之前,必须用氮气或蒸汽吹扫系统,以置换残余氧气。
钴钼催化剂在使用一段时间后,由于重烃聚合而会产生结碳。
这不仅降低催化剂活性,而且会使催化剂床层阻力增加,产生压差,此时就应将催化剂烧碳以获得再生。
在粗煤气被切断,并加上了相应的盲板之后,把与触媒重量比为0.1-0.3:1的中压蒸汽与正常变换过程的相反流向,由反应器底部通入,自顶部排出,这样可将粉尘杂质吹出。
蒸汽以84℃/h的速度给催化剂床层升温,直到催化剂床层温度为350-450℃时为止(若超过500℃将会损害催化剂)然后继续通蒸汽,直到气流的冷凝液在取样中大致没有杂质为止。
之后通入工作空气,使蒸汽中含氧量为0.2-0.4%(即空气0.5%~2%),进行烧碳;观察床层温度,可以从床温的变化来观察床层含碳物质的燃烧情况,蒸汽中的空气决不能超过5%,通入的空气量可适量调节,以将床温控制在501℃以下。
压力对烧碳无大影响,但从气体分布均匀考虑,气体压力以1到3个大气压为宜。
在烧碳过程中也会将催化剂中的硫烧去,而使催化剂变成氧化态。
烧碳过程中应当密切观测床层温度,调节空气或氧的浓度来控制床层温度,当床层中不出现明显温升、燃烧前缘已经通过反应器,出口温度下降,气体中O2上升,就意味着烧碳结束。
适当提高氧浓度进一步烧碳。
若温度不出现明显上升,可连续提高氧浓度,最后用空气冷却到50℃以下。
烧碳之后的催化剂需重新硫化方能使用。
若需将催化剂卸出,由于使用过的催化剂在70℃以上有自燃性,因此应先在反应器内冷却至大气温度。
卸时准备水龙头喷水降温熄火。
除了一个卸出孔外,不要再特意开孔,以免因“烟囱效应”导致催化剂床层温度飞升。
正常生产中工艺气中一般含有0.3-0.6%的氧气,由于氧气的纯在,对催化剂有较大的危害,不仅会使钴钼催化剂硫酸盐化,而且还会与催化剂中的Cos和Mos2发生反应,生成SO2和无活性的单质Co、Mo使催化剂永久失活。
所以现在都在研究使用保护剂(也就是脱氧剂)。
处于硫化状态的钻钼系耐硫变换催化剂非常活泼.遇空气易于氧化.并放出大量的热,引起催化剂床层温度暴涨,反应方程式如下:(1)2MoS2+ 702—2Mo03+ 4SO2(2)2CoS+ 302—2Co0+ 2SO2使用Co-Mo耐硫变换催化剂的氮肥厂家,经常因催化剂床层出现问题(如偏流、结块及部分出现粉化等),需要重新装填处理;有些厂家需更换部分催化剂或需要卸出催化剂复活。
钴钼催化剂在使用一段时间后,由于重烃聚合而会产生结碳。
这不仅降低催化剂活性,而且会使催化剂床层阻力增加,产生压差,此时就应将催化剂烧碳以获得再生。
在粗煤气被切断,并加上了相应的盲板之后,把与触媒重量比为0.1-0.3:1的中压蒸汽与正常变换过程的相反流向,由反应器底部通入,自顶部排出,这样可将粉尘杂质吹出。
蒸汽以84℃/h的速度给催化剂床层升温,直到催化剂床层温度为350-450℃时为止(若超过500℃将会损害催化剂)然后继续通蒸汽,直到气流的冷凝液在取样中大致没有杂质为止。
之后通入工作空气,使蒸汽中含氧量为0.2-0.4%(即空气0.5%~2%),进行烧碳;观察床层温度,可以从床温的变化来观察床层含碳物质的燃烧情况,蒸汽中的空气决不能超过5%,通入的空气量可适量调节,以将床温控制在501℃以下。
压力对烧碳无大影响,但从气体分布均匀考虑,气体压力以1到3个大气压为宜。
在烧碳过程中也会将催化剂中的硫烧去,而使催化剂变成氧化态。
烧碳过程中应当密切观测床层温度,调节空气或氧的浓度来控制床层温度,当床层中不出现明显温升、燃烧前缘已经通过反应器,出口温度下降,气体中O2上升,就意味着烧碳结束。
适当提高氧浓度进一步烧碳。
若温度不出现明显上升,可连续提高氧浓度,最后用空气冷却到50℃以下。
烧碳之后的催化剂需重新硫化方能使用。
若需将催化剂卸出,由于使用过的催化剂在70℃以上有自燃性,因此应先在反应器内冷却至大气温度。
卸时准备水龙头喷水降温熄火。
除了一个卸出孔外,不要再特意开孔,以免因“烟囱效应”导致催化剂床层温度飞升。
正常生产中工艺气中一般含有0.3-0.6%的氧气,由于氧气的纯在,对催化剂有较大的危害,不仅会使钴钼催化剂硫酸盐化,而且还会与催化剂中的Cos和Mos2发生反应,生成SO2和无活性的单质Co、Mo使催化剂永久失活。
所以现在都在研究使用保护剂(也就是脱氧剂)。
处于硫化状态的钻钼系耐硫变换催化剂非常活泼.遇空气易于氧化.并放出大量的热,引起催化剂床层温度暴涨,反应方程式如下:(1)2MoS2+ 702—2Mo03+ 4SO2(2)2CoS+ 302—2Co0+ 2SO2使用Co-Mo耐硫变换催化剂的氮肥厂家,经常因催化剂床层出现问题(如偏流、结块及部分出现粉化等),需要重新装填处理;有些厂家需更换部分催化剂或需要卸出催化剂复活。
钴钼系耐硫变换催化剂运行问题分析及解决措施摘要:CO位移是合成氨生产中负责制氢的重要环节,层催化剂是层段的核心。
因此,开关催化剂的使用寿命不仅关系到整个设备的稳定运行,也影响到企业的经济效益。
自分层催化剂停用以来,全厂相继研究了导致催化剂停用的因素,最后发现是有机氯转化为原煤所致。
目前还没有很好的方法来防止氯气对耐硫变换催化剂的中毒和停用,因此只能从煤炭开采和洗涤过程的源头进行控制。
关键词:钴钼催化剂;耐硫变换;床层温度;催化剂活性;积灰;预变换过滤器引言层状段是合成氨生产中的一个重要过程,承担着将CO转化为H2以供后续合成物段使用的任务。
CoH2O产生H2和CO2的反应需要催化剂的参与,只能在一定温度和压力下进行。
当前,工业中广泛使用的CO-Shift催化剂主要分为高温催化剂(Fe-Cr)、低温催化剂(Cu-Zn)和远距离温度催化剂(Co-Mo)。
高温Fe-Cr催化剂和低温Cu-Zn催化剂要求原料气(主要是硫含量)的高进气条件,限制了其在煤化工行业的应用。
钴基催化剂具有较广的温度变化,不需要饲料气体中含硫量,满足煤炭化工行业的发展要求。
即使Co-Mo宽度的温度位移催化剂与供气不那么严格,但催化剂失活的因素很多,如氧含量过高和蒸汽冷凝。
1、钴钼系耐硫变换催化剂的装填负载耐硫共Mo变换催化剂是使用耐硫共Mo变换催化剂的重要步骤之一。
在装入催化剂之前,应对反应堆进行仔细检查,以保持反应堆的清洁,并确保支撑网架的强度。
一般来说,安装前无需筛选催化剂。
但是,在运输和装卸过程中,催化剂可能由于运行异常而损坏。
当发现含有催化剂的装置磨损或损坏时,应仔细筛选。
催化剂可以直接从通道或通过滑道充电,但无论选择哪种充电方法,都必须防止催化剂的自由跌落高度超过1 m。
为了防止催化剂在加载、燃烧或燃烧过程中由于气流速度高而褪色或移动,有必要用铁丝网和专用防锈板复盖催化剂床的顶部,以防止冷凝水直接接触催化剂,并确保炉温。
K8-11系列催化剂使用注意事项一、催化剂的使用1.1 催化剂的装填装填催化剂之前,必须认真检查反应器,保持清洁干净,支撑栅格正常牢固。
为了避免在高的蒸汽分压和高温条件下损坏失去强度,催化剂床层底部支撑催化剂的金属部件应选用耐高温和耐腐蚀的惰性金属材料。
惰性材料应不含硅,防止高温、高水汽分压下释放出硅。
催化剂装填时,通常没有必要对催化剂进行过筛,如果在运输及装卸过程中,由于不正确地作业使催化剂损坏,发现有磨损或破碎现象必须过筛。
催化剂的装填无论采取从桶内直接倒入,还是使用溜槽或充填管都可以。
但无论采用哪一种装填方式,都必须避免催化剂自由下落高度超过1米,并且要分层装填,每层都要整平之后再装下一层,防止疏密不均,在装填期间,如需要在催化剂上走动,为了避免直接踩在催化剂上,应垫上木版,使身体重量分散在木版的面积上。
一般情况下,催化剂床层顶部应覆盖金属网和/或惰性材料,主要是为了防止在装置开车或停车期间因高的气体流速可能发生催化剂被吹出或湍动,可能由于气体分布不均发生催化剂床层湍动,损坏催化剂。
由于高压,原料气密度较大,为了尽可能的减小床层阻力降,应严格控制催化剂床层高度和催化剂床层高径比。
通常催化剂床层高度应控制在3~5m;催化剂床层高径比控制在1.0~1.8。
1.2 开车1.2.1 升温为防止水蒸气在催化剂上冷凝,首次开车升温时,应使用惰性气体(N2、H2、空气或天然气)把催化剂加热到工艺气露点以上温度,最好使用N2。
采用≤50℃/h的升温速度加热催化剂,根据最大可获得流量来设定压力,从而确保气体在催化剂上能很好分布。
在通常情况下,气体的有效线速度不应小于设计值的50%,但也不应超过设计值。
当催化剂床层温度达到100℃~130℃时,恒温2~3小时排除吸附的物理水,然后继续升温至200℃~230℃时,进行下一步的硫化程度。
如果最初加热选用的是空气,在引入硫化气之前,必须用氮气或蒸汽吹扫系统,以置换残余氧气。
硫化气的切换基本上在常压或较高压力下进行,这取决于气流的方便。
1.2.2 硫化与铁铬系催化剂的还原相似,钴钼系耐硫变换催化剂使用前一般需要经过活化(硫化)方能使用,硫化的好坏对硫化后催化剂的活性有着重要作用。
如果工艺气中的硫含量较高,一般使用工艺气直接硫化时,硫化过程中可能发生下述反应:CoO+H2S ↔ CoS+H2O ∆H0298=-13.4KJ/mol (1)MoO3+2H2S+H2↔ MoS2+3H2O ∆H0298=-48.1KJ/mol (2)CO+H2O ↔ CO2+H2∆H0298=-41.4KJ/mol (3)CO+3H2↔ CH4+H2O ∆H0298=-206.2KJ/mol (4)硫化过程为了使产生的热量尽可能小,便于硫化温度控制,在硫化过程中应尽可能地抑制这后两个反应,特别是反应(4),通常催化剂转化成硫化态后,对反应(3)是有利的,但催化剂为氧化态时,并在较高的压力下,即开车的初期对反应(4)是有利的。
为了初期一般采用低压、小气量硫化,随着硫化,逐渐提高压力和气量。
如果工艺气中的硫含量较低,可采用补加硫化剂进行硫化,可利用的硫化剂有多种。
主要有H2S、硫醚、硫醇、CS2和COS等用CS2和COS作为硫化剂时,硫化过程除了发生上述反应外,还发生如下反应:CS2+4H2↔ 2H2S+CH4∆H0298=-240.6KJ/mol (5)COS+H2O ↔ CO2+H2S ∆H0298=-35.2KJ/mol (6)反应(5)产生热量最多,如果用CS2来硫化催化剂,应控制加料速度,防止超温。
温度达200℃时,CS2的氢解才具有较大的转化率。
硫化时,硫的加入量一般根据催化剂中的活性组份完全硫化来计算,K8-11G 催化剂每1000kg近似需56kg硫,加硫速度依催化剂床层温升情况而定。
由反应器出口H2S含量大大增加并与入口平衡来确定硫化结束。
温度大于200℃时,硫化反应就可以足够高的速度进行,以CS2作硫化剂单独循环时,要求气体和催化剂床层之间的∆T≤50℃,选用天然气或氮气加热催化剂时应加入5~10%氢气,以利于CS2氢解;而使用工艺气硫化时,∆T也应≤50℃。
硫化结束时,将温度慢慢提升到规定的变换入口温度。
K8-11G催化剂的硫化程序(1)用工艺气硫化用工艺气硫化催化剂,尤其在较高压力下,应该注意存在甲烷化反应的可能性。
为了防止此反应发生,或者如果已经发生了这种反应,应通过控制温度来限制此反应。
硫化前,应该用氮气吹净反应器,催化剂在近似于0.5MPa压力下,按上述升温程序用氮气升温到200~230℃,然后,把湿工艺气加到到氮气中(比例:湿工艺气:氮气=1:3)同氮气一起进入反应器,并保持温度,压力不变。
采用渣油部分氧化气作原料,由于气体混合物中,氢气分压、CO分压低,甲烷化反应的可能性很小,万一发生此反应导致超温,则可通过减少或切断工艺气,用氮气将催化剂床层冷却到250℃左右,再慢慢地加入湿工艺气继续硫化。
当硫化剂床层温度稳定时,将湿工艺气流量增加一倍。
同时相应减少氮气,为的是使气体的线速度不超过允许值,此时气体的比率为:工艺气:氮气=2:3。
为了达到所规定的硫含量,缩短硫化时间,可以通过添加硫成分。
增加硫分的办法有两种,一种是增加工艺气流量并相应地减少氮气流量直到停用氮气,但是要严格防止硫化过快引起超温,在催化剂被硫化20%之前,不宜增加流量,另一种办法是增加工艺气的硫含量,例如当工艺气体中硫含量较低时,可添加CS2等硫化剂或向原料渣油中添加硫化剂、煤中添加硫磺,后者安全,易于控制。
但是,不管采用何种办法增加硫分,缩短硫化时间,都必须保证由硫化反应造成的温升∆T不能超过50℃当有明显的硫穿透时,为了深度硫化,应逐步增加压力至0.8Mpa、1.2Mpa、1.5Mpa进行硫化。
当在1.5Mpa压力下有明显的硫穿透时,表明硫化接近完全,等出口硫含量与入口硫含量平衡时,表明硫化结束。
如有几个反应器时,当第一反应器的催化剂基本硫化完成后,必须将温度增加到280~300℃以上,目的是使第二或第三反应器达到足够高的温度,保证硫化完成,但不应超过350℃。
硫化结束后,以10~15℃/h的速度将入口温度提高到设计温度,将工艺气流量及压力也相应地提高到设计值,同时切除N和停止补充硫分。
此时,催化2剂床层温度要保持足够高,避免水蒸气在催化剂上冷凝。
(2)用循环气硫化当催化剂床层入口温度达到200℃~230℃时,开始进行硫化程序。
首先按设计用硫量的50%(m/m)进行硫化,硫化开始,可以通过分析反应器出口硫含量变化来观察硫化进行情况,同时注意温度变化。
在硫化剂的含量增加到所规定的设计值之前,应该保持温度稳定,并且温升 T不应超过50℃。
当床层出口有显著的硫穿透时,表明催化剂硫化接近完全。
硫化末期催化剂床层几乎没有硫化反应,然后以近似于10~15℃/h的速度,把入口温度提高到规定温度(280~300℃)。
如有几个反应器时,当第一反应器的催化剂基本硫化完成后,必须将温度增加到280~300℃以上,目的是使第二或第三反应器达到足够高的温度,保证硫化完成,但不应超过350℃。
硫化结束后,停止送入硫分,如果可能,变换反应器的压力应通过天然气、氮气、氢气或这三种气体的混合气提压到约 3.0MPa。
然后将原料气送入催化剂床层,慢慢的把压力和温度调整到设计值。
在这个阶段,应该一直小心保持流速,并且根据实际压力调节气体流量,注意催化剂上的气体有效线速度不超过设计值。
每个反应器都必须保持足够高的温度,以保证高于露点温度25℃以上。
1.3正常运转为了延长催化剂使用寿命,在正常运转期间应尽可能保持较低的入口温度(露点以上25℃),并保持温度、压力、水/气、硫化氢浓度等各项操作参数的平稳,减少开停车次数,避免无硫操作或含量过低。
运行中,不允许瞬间大幅度降压或升压。
注意各反应器的压差变化,工况改变或操作异常时,应注意测定出口CO含量,必要时标定各项参数。
当长时间运转后催化剂活性衰退,出口CO的含量增加时,可小幅度逐渐提高入口温度使出口CO含量保持在设计值以下。
1.4停车装置短时间停车时,在不发生蒸汽冷凝的情况下,切断原料气保持压力即可。
如果是较长时间停车,则应该降低反应器压力,引纯氮吹扫保护催化剂,防止蒸汽冷凝,保持反应器压力稍大于常压。
如果要从反应器中卸出催化剂,应用氮气将催化剂冷却到50~70℃,打开反应器顶部的人孔和反应器出口卸料阀,卸出催化剂。
1.5使用过的催化剂开车操作中已经用过的催化剂呈硫化状态,因此必须绝对避免这些催化剂与空气接触。
加热这些催化剂的最好方法是使用天然气或纯氮。
若氮气中含有少量氧气,,应该加入适量氢气。
也可用纯氢升为了防止形成可能造成下游装置腐蚀的SO2温,但必须考虑到氢气会使催化剂脱硫,最好使用纯氮来加热催化剂。
1.6催化剂的氧化和再生催化剂再生的目的在于尽可能使催化剂恢复到原来的活性。
但是,这种再生只有由于外来化合物而引起的活性降低,并且这类化合物可用氧脱除时才有可能,通常这类化合物是指在变换炉上游形成的碳,或者在操作期间,沉积在催化剂上,向焦碳一样的聚合物。
催化剂床层阻力降的上升常常是由于原料气中夹带的杂质和焦碳在上层催化剂沉积造成的。
当焦碳含量达到5%~10%(m/m)时,应进行除碳再生。
再生方法通常采用添加少量空气(如开始2%然后逐渐增加到10%)的水蒸气或N2,在一定温度下与焦碳反应生成CO2、CO。
脱除碳的同时,催化剂中的硫化物也会与氧反应生成SO2。
氧化过程放出大量的热量,因此要缓慢进行,严防超温烧毁催化剂。
根据床层温度变化和出口CO2含量的变化判断氧化反应进行情况,逐渐增加空气量直至出口检测不到CO2,表明再生过程结束。
为了达到满意的再生效果,蒸汽的入口温度可选择在350~400℃,达到预定入口温度之后,开始通入空气,密切注意催化剂床层温度变化,防止超温。
依除碳情况,可将入口温度降到300℃,床层热点温度最好接近450~500℃。
为了利于气体分布,烧碳时应降低压力,但也不能过低,以避免气速太高。
碳和硫不仅与氧反应,也能与水蒸气反应,因此出口气体除CO2和SO2之外,还有氢和硫化氢。
若再生后床层阻力降仍然较大,则应卸出催化剂筛除杂质和破碎催化剂,然后重新装填,最好按原来的床层位置回装催化剂,补充的新催化剂装在最上层。
由于上述再生和重新装填催化剂操作复杂,不易掌握,最好不采用再生的办法。
由于杂质和焦碳沉积主要集中在催化剂的入口部分,因此推荐采用更换上层催化剂的办法来达到降低阻力降和恢复上层催化剂活性的目的。
也可用在流程上增加预变换段,装少量催化剂起到滤除粉尘、杂质和毒物的作用,保护主床催化剂。
2、反硫化形成的条件(1)在一定的温度、水汽比的条件下,有相对应的最低H2S含量。