高中数学 (12 指数函数及其性质 第1课时)示范教案 新人教A版
- 格式:doc
- 大小:510.00 KB
- 文档页数:10
指数函数及其性质教学设计教材:普通高中课程标准实验教科书人教社A 版,数学必修1教学内容:第二章,基本初等函课题:2.1.2指数函数及其性质(第1课时) 教学目标1.知识目标:理解指数函数的概念,初步掌握指数函数的影象和性质2.能力目标:经过定义的引入,影象特点的观察,培养先生的探求发现能力,在学习过程中领会从具体到普通及数形结合的方法3情感目标:经过先生的参与过程,培养他们手脑并用、多思勤练的良好学习习气和勇于探求、锲而不舍的治学精神。
学情分析:先生曾经学习了函数的知识,指数函数是函数知识中重要的一部分内容.但先生普遍基础不好,乃至有些先生放弃数学,对解决一些数学成绩有必然的难度。
针对这类情况,经过教师启发式与课前预习相结合,引导先生自主探求完成本节课的学习,同时浸透一些数学思想、方法,从而更好的掌握本节知识。
教学重点﹑难点重点:指数函数的概念和影象难点:用数形结合的方法从具体到普通地探求﹑概括指数函数的性质 教法:质疑探求,讲练结合。
教具:多媒体演示教学流程设计(一)指数函数概念的构建1.创设情境,引出课题先生朗读棋盘上麦粒故事,引出本节课题。
2.交流讨论,构成概念本节成绩1中函数的解析式x y 2=与成绩2中函数x y )21(=的解析式有甚么特点?设计意图:充实实例,突出底数a 的取值范围,让先生领会到数学来源于消费生活理论。
函数y =2x 、y =)21(x 分别以0<a<1或a>1的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。
师生活动:教师提出成绩引导先生把对应关系概括到x a y =的方式,先生考虑归纳概括共同特点3.给出指数函数的概念普通地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R4.剖析概念(1)成绩:为甚么规定底数a 大于零且不等于1?设计意图:教师首先提出成绩:为甚么要规定底数大于0且不等于1呢?这是本节的一个难点,为打破难点,采取讨论的方式,达到互相启发,补充,活跃气氛,激发兴味的目的。
2.1 指数函数2.1.2 指数函数及其性质第一课时一、教学目标(一)学习目标1.掌握指数函数的概念(定义、解析式).2.掌握指数函数的图像及其性质.3.灵活运用指数函数的图像及性质.(二)学习重点1.指数函数的定义和解析式.2.指数函数的图像及其性质.(三)学习难点1.指数函数的图像性质与底数a的关系.2.如何由图像、解析式归纳指数函数的性质.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第54页至第58页,填空:一般地,函数0y x且)1a=a(>a叫做指数函数(exponential function),其中x是自变量,≠函数的定义域是R.指数函数的解析式x ay=中,x a的系数是1.指数函数0y x且)1a=a(>a的图象和性质:≠(2)写一写:指数函数x a y =中为什么要规定0>a 且1≠a 呢? ①若0=a ,则当0>x 时,0=x a ;当0≤x 时,x a 无意义. ②若0<a ,则对于x 的某些数值,可使x a 无意义.③若1=a ,则对于任意的R ∈x ,1=x a 是一个常量,没有研究的必要性. 2.预习自测(1)下列函数中是指数函数的是( ) A .x y 32⋅=B .x a y =C .x y 2=D .2x y =【知识点】指数函数的定义、解析式. 【数学思想】【解题过程】只有选项C 符合0(>=a a y x 且)1≠a . 【思路点拨】理解指数函数满足的条件. 【答案】C .(2)已知函数x y 2=的图象经过点),1(0y -,那么=0y ( ) A .21 B .21-C .2D .2-【知识点】指数函数图像上点的坐标.【数学思想】【解题过程】点),1(0y -满足x y 2=,则102-=y ,解得210=y . 【思路点拨】根据指数函数图像上点的坐标特征,将点),1(0y -代入x y 2=即可求得0y . 【答案】A .(3)函数x a a y 2)2(-=是指数函数,则a 的值是( ) A .1=a 或3=aB .1=aC .3=aD .0>a 且1≠a【知识点】指数函数的定义、解析式. 【数学思想】【解题过程】由⎩⎨⎧=-≠>1)2(102a a a 且 解得3=a . 【思路点拨】理解指数函数的系数为1,底数范围为0>a 且1≠a . 【答案】C . (二)课堂设计 1.知识回顾(1)一般地,如果a x n =,那么x 叫做a 的n 次方根(n th root ),其中n >1,且*∈N n(2)当n 为奇数时,a a nn=;当n 为偶数时,⎩⎨⎧<-≥=0,0,a a a a a nn(3)有理数指数幂的运算性质:),,0(Q ∈>=+s r a a a a s r s r ),,0()(Q ∈>=s r a a a rs s r ),0,0()(Q ∈>>=r b a b a ab r r r2.问题探究探究一 结合实例,认识指数函数 ●活动① 提炼概念(归纳指数函数模型) 请你想一想,这两个函数的结构有什么共同特征?①设x 年后我国的GDP 为2000年的y 倍,那么: 1.073(N ,20)x y x x *=∈≤②生物体内碳14含量P 与死亡年数t 之间的关系:57301(0)2t P t ⎛⎫=≥ ⎪⎝⎭在x y 073.1=,573021t P ⎪⎭⎫ ⎝⎛=中,x ,t 是自变量,底数是一个大于0且不等于1的常量.一般地,函数(01)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域是R .【设计意图】考虑到知识间的联系,以本章开篇的两个例子为出发点,找出两个函数表达形式上的共同特征——底数是常数而指数是自变量,进而提炼出指数函数模型x a y =. ●活动② 辨析概念(判定指数函数解析式)分析指数函数定义,你能判断下列哪些不是指数函数吗?22x y += (2)x y =- 2x y =- π=x y 2y x = 24y x =x y x = (1)(12)x y a a a =->≠且 根据指数函数的定义来判断说明:若a >0,x 是任意一个实数时,x a 是一个确定的实数,所以函数的定义域为实数集R .若a =0,⎪⎩⎪⎨⎧≤>=0,0x a x a x x无意义,.若a <0,如x y )2(-=,对于81,61==x x 等等,在实数范围内的函数值不存在.若a =1,11==x y 是一个常量,没有研究的意义.通过探究,你能否归纳出判断一个函数是否为指数函数的方法呢?(抢答)底数的值是否符合要求(01)a a >≠且;x a 前面的系数是否为1;指数是否符合要求. 【设计意图】通过概念辨析,加深对指数函数概念(定义及解析式)的理解,掌握指数函数解析式中的隐藏条件.探究二 探究指数函数的图像★▲ ●活动① 大胆操作 累积经验★在直角坐标系下,请用描点法分别作出函数x y 2=和函数xy ⎪⎭⎫⎝⎛=21的图像,并探究图像分别位于哪几个象限?与x 轴的相对位置关系如何?图像中有哪些特殊的点?图像在y 轴左、右两侧的分布情况如何?函数x y 2=的图像如图所示:由该图像可知,函数x y 2=的图像位于第一、二象限;始终在x 轴上方,且有特殊点(0,1),图像在y 轴左侧无限接近于-∞、在y 轴右侧无限接近于+∞.函数xy ⎪⎭⎫⎝⎛=21的图像如图所示:由该图像可知,函数xy ⎪⎭⎫⎝⎛=21的图像也位于第一、二象限;也始终在x 轴上方,且有特殊点(0,1),但图像在y 轴左侧无限接近于+∞、在y 轴右侧无限接近于-∞.【设计意图】通过具体的动手操作,归纳出指数函数的图像特征,以及对比底数与1的大小,培养学生学会数形结合的思想. ●活动② 巩固理解 发现性质★在同一坐标系下,你能画出函数a x y +-=和x a y =的大致图像吗?x y11O当a >1时,a x y +-=单调递增,x a y =也单调递增,且直线在y 轴交点为(0,1)上边. 【设计意图】通过一次函数和指数函数的结合,深入认识指数函数中图像底数a 的特征,培养学生数学抽象、归类整理意识. ●活动③ 反思过程 认识性质★▲在同一坐标系中,你能分别作出函数xy 2=,xy ⎪⎭⎫ ⎝⎛=21,x y 10=,xy ⎪⎭⎫⎝⎛=101的图像吗?列表如下:指数函数的图像和性质透析: 当底数a 大小不确定时,必须分a >1或0<a <1两种情况讨论函数的图像和性质, 当a >1时,x 的值越小,函数的图像越接近x 轴, 当0<a <1时,x 的值越大,函数的图像越接近x 轴,指数函数的图像都经过点(0,1),且图像都只经过第一、第二象限.【设计意图】通过观察xy 2=,xy ⎪⎭⎫ ⎝⎛=21,x y 10=,xy ⎪⎭⎫⎝⎛=101的图像特征,就可以得到xa y =的图像和特征,培养从特殊到一般的思想方法.从给出的例子到学生自行举出例子,检查反馈学生对指数函数图像的理解,加深对指数函数的认识,培养数形结合的思想方法. ●活动④ 发散思维 重新认识如图是指数函数(1)x a y =,(2)x b y =,(3)x c y =,(4)x d y =的图像,你能判断出a,b,c,d 与1的大小关系吗?x y1(4)(3)(2)(1)O我们经过实际操作,会得到(2)>(1)>1>(4)>(3),也即b >a >1>d >c .由指数函数图像特征判断指数函数底数大小的方法: 由第一象限内“底大图高”的规律判断,取特殊值x =1得函数值的大小即底数大小进行判断.【设计意图】通过学生对图像的深化认识,并通过具体的操作,归纳指数函数中图像的特征,培养学生数学抽象、归类整理意识.探究三 指数函数的概念、图像性质及其应用★▲ ●活动① 巩固基础 检查反馈例1 下列函数中是指数函数的个数是( ) ①x y 32-= ②13+=x y ③x y 3= ④3x y = A .0个B .1个C .2个D .3个【知识点】指数函数的定义. 【数学思想】类比归纳思想.【解题过程】只有函数x y 3=和13+=x y 符合指数函数定义)1,0(≠>=a a a y x ,则上述函数中有2个是指数函数.【思路点拨】理解指数函数的定义形式,进行运用. 【答案】C .同类训练 已知函数x a a a x f ⋅+-=)33()(2是指数函数,则a 的值为( ) A .1B .2C .1或2D .0>a 且1≠a【知识点】指数函数的定义、解析式. 【数学思想】【解题过程】由指数函数定义得⎩⎨⎧≠>=+-101332a a a a 且,故2=a .【思路点拨】根据指数函数的定义进行求解待定系数即可. 【答案】B .例2 已知指数函数x a x f =)(的图像经过点(-1,3),则f (2)=( )A .31B .91C .3D .9【知识点】指数函数的定义、解析式. 【数学思想】【解题过程】由过点(-1,3)得xx f ⎪⎭⎫⎝⎛=31)(,则91)2(=f .【思路点拨】通过指数函数的解析式形式求解. 【答案】B .同类训练 已知函数b x x f b x ,42(3)(≤≤=-为常数)的图像经过点)(1,2,则)(x f 的取值范围为( ) A .[]81,9B .[]9,3C .[]9,1D .[)∞+,1【知识点】指数函数的定义、解析式. 【数学思想】【解题过程】23)(-=x x f ,且42≤≤x ,故9)(1≤≤x f .【思路点拨】通过求得指数函数解析式,再求其定义域下的值域. 【答案】C .【设计意图】掌握指数函数的基本概念、定义,以及解析式的常规应用. ●活动② 强化提升 灵活应用例3 要使t x g x +=+13)(的图像不经过第二象限,则t 的取值范围是( ) A .1-≤tB .1-<tC .3-≤tD .3-≥t【知识点】指数函数的图像与性质. 【数学思想】数形结合思想.【解题过程】函数t x g x +=+13)(过定点)3,0t +(且为增函数,则03≤+t ,得到3-≤t . 【思路点拨】通过指数函数过定点和其图像特征列出不等式解得范围. 【答案】C .同类训练 已知1,10-<<<b a ,则函数b a y x +=的图象必定不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限【知识点】指数函数的图像与性质. 【数学思想】数形结合思想.【解题过程】图像恒过点(0,1+b ),且1-<b ,故)1,0(b +在y 轴的负半轴上,也即图像不经过第一象限.【思路点拨】通过图像过定点这一图像特征进行判断图像的位置. 【答案】A .例4 函数)1()(||>=a a x f x 的图像是( )xy1Oxy1Oxy 1Oxy1OA .B .C .D .【知识点】指数函数的图像和性质、奇偶性的函数图像. 【数学思想】数形思想和分类讨论思想.【解题过程】去绝对值,可得(0)1(0)x x a x x a ⎧≥⎪⎨⎛⎫≤⎪ ⎪⎝⎭⎩,又因为a >1,由指数函数图像易知选A .【思路点拨】通过指数函数图像和性质求解即可. 【答案】A .同类训练 已知指数函数(1)x m x f =)(,(2)x n x g =)(满足不等式01>>>m n ,则它们的图像是( )xy (2)(1)1Oxy (2)(1)1Oxy(2)(1)1Oxy(2)(1)1OA .B .C .D .【知识点】指数函数的图像和性质. 【数学思想】数形结合的思想.【解题过程】由01>>>m n 可知(1)(2)为两条单调递减曲线,再选特殊点x =1,(1)(2)对应的函数值分别为m 和n ,由n m <可知选C .【思路点拨】首先根据底数的范围判断图像的升降性,再根据两个底数的大小比较判断对应的曲线. 【答案】C .【设计意图】通过对比指数函数图像的各种形式,从图像中探索指数函数的底数问题,体会到分类讨论和数形结合的思想,培养学生的思维转化能力,以及图像的运用能力. ●活动③ 深入探究 实际应用例 5 若关于x 的方程)1,0(21≠>=-a a a a x 且有两个不相等的实数根,则a 的取值范围是 .【知识点】指数函数图像的应用. 【数学思想】分类讨论思想和换元思想.【解题过程】由题得,函数1-=x a y 与a y 2=有两个交点;①当0<a <1时,又满足有两个交点,则0<2a <1,即102a <<,如图所示:k 无解?有一解?有两解? 【知识点】指数函数的值域、图象. 【数学思想】数形结合和分类讨论的思想.【解题过程】将方程分解成函数|13|-=x y 和k y =,首先画出|13|-=x y 的图象,如图所示:x y y=k1O由图可知,当函数0<=k y ,两函数无交点,方程k x =-|13|无解;当0==k y 时,两函数有一个交点,方程k x =-|13|有一解;当10<=<k y 时,两函数有两个交点,方程k x =-|13|有两解;当1≥=k y 时,两函数有一个交点,方程k x =-|13|有一解.【思路点拨】该类问题可将函数转化为常见的函数图像的交点问题,分类讨论交点个数,判断解的个数.【答案】当0<k 时,k x =-|13|无解;当0=k 和1≥k 时,k x =-|13|有一解;当10<<k 时,k x =-|13|有两解.例6 某种放射性物质不断变化为其他物质,每经过1年剩留的这种物质是原来的84%,画出这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩量留是原来的一半(结果保留1个有效数字).【知识点】指数函数的图象及其实际应用. 【数学思想】数形结合思想.【解题过程】设这种物质量初的质量是1,经过x 年,剩留量是y .经过1年,剩留量()1184.0%841=⨯=y ;经过2年,剩留量()2284.0%841=⨯=y ;……一般地,经过x 年,剩留量x y 84.0=. 根据这个函数关系式可以列表如下:用描点法画出指数函数x y 84.0=的图象.从图上看出y =0.5只需x ≈4.【思路点拨】通过恰当假设,将剩留量y 表示成经过年数x 的函数,并可列表、描点、作图,进而求得所求. 【答案】4年.同类训练 某环保小组发现某市生活垃圾年增长率为b ,2009年该市生活垃圾量为a 吨,由此可预测2019年垃圾量为( ) A .)101(b a +吨B .)91(b a +吨C .10)1(b a +吨D .9)1(b a +吨【知识点】指数函数的实际应用. 【数学思想】递推法.【解题过程】先逐年计算前几年的生活垃圾量,再递推可得. 【思路点拨】关注指数函数的实际应用中的指数递增的特征. 【答案】C .【设计意图】从图像中发现性质并应用性质,体会方程和方程分解为函数的思想,数形结合的思想,培养学生的思维转化能力、分类讨论能力,以及图像的运用能力.从生活的具体到数学的数字抽象,体会指数函数的指数递增规律. 3.课堂总结 知识梳理(1)定义:一般地,函数(01)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域是R . (2)指数函数的图象与性质:(3)指数函数的图像特征:(4)指数函数记忆口诀:指数增减要看清,抓住底数不放松;反正底数大于0,不等于1已表明;底数若是大于1,图像从下往上增,底数0到1之间,图像从上往下减,无论函数增或减,图像都过(0,1)点. 重难点归纳(1)在解决指数函数有关问题时,如果底数a 大小不确定,那么必须分a >1和0<a <1两种情况讨论.(2)利用指数函数的性质(单调性)课比较两个数的大小:当x >0时,同底数幂,0<a <1时,幂大指数小,a >1时,幂大指数大. (三)课后作业 基础型 自主突破1.若函数x a a x f ⋅-=)321()(是指数函数,则=)21(f ( )A .2B .2-C .22-D .22【知识点】指数函数的定义. 【数学思想】【解题过程】由题意,131201a a a ⎧-=⎪⎨⎪>≠⎩且,得8=a ;则xx f 8)(=,即228)21(21==f .【思路点拨】由指数函数的定义和解析式即可求解. 【答案】D .2.已知函数)(x f 是指数函数,且255)23(=-f ,则=)(x f .【知识点】指数函数的定义、解析式. 【数学思想】【解题过程】设)1,0()(≠>=a a a x f x且,由255)23(=-f 得232212355---==a ,解得5=a .【思路点拨】利用指数函数的定义解未知数即可. 【答案】x 5.3.下列函数中,随x 的增大,增长速度最快的是( )A .)(50Z ∈=x yB .x y 1000=C .124.0-⋅=x yD .x e y ⋅=1000001【知识点】指数函数的实际应用. 【数学思想】【解题过程】指数函数增长速度最快,且2>e ,因而x e y ⋅=1000001增长最快.【思路点拨】直接根据幂函数、正比例函数、指数函数的增长差异得出结论. 【答案】D .4.函数xx f ⎪⎭⎫⎝⎛=31)(的图像是( )xy1Oxy1Oxy1Oxy1OA .B .C .D .【知识点】指数函数的解析式、图像. 【数学思想】数形结合的思想. 【解题过程】由于1310<<,所以指数函数单调递减,且函数过定点)1,0(. 【思路点拨】熟练掌握关于指数函数底数不同时的函数图像问题. 【答案】B .5.设1212121<⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<ab,那么( )A .10<<<a bB .10<<<b aC .1>>b aD .1>>a b【知识点】指数函数的图像与性质. 【数学思想】数形结合的思想.【解题过程】根据函数xx f ⎪⎭⎫⎝⎛=21)(在R 上是减函数,由1212121<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<ab得01>>>a b .【思路点拨】掌握指数函数单调性这一基本性质. 【答案】B .6.已知()x f x a -=(0a >且1)a ≠,且(2)(3)f f ->-,则实数a 的取值范围是 . 【知识点】指数函数的解析式、单调性的应用. 【数学思想】【解题过程】由xxa ax f ⎪⎭⎫⎝⎛==-1)(且(2)(3)f f ->-,则)(x f 单调递增,即11>a .【思路点拨】.由指数函数的解析式和单调性可得. 【答案】)1,0( 能力型 师生共研7.某钢厂的年产量由1990年的40万吨增加到2000年的50吨,如果按照这样的年增长率计算,则该钢厂2010年的年产量约为( ) A .60万吨B .61万吨C .63万吨D .64万吨【知识点】指数函数的实际应用. 【数学思想】【解题过程】可设年增长率为x ,根据题意列方程得50)1(4010=+x ,解得45)1(10=+x ,如果按照这样的年增长率计算,则该钢厂2010年的年产量约为635.624540)1(40220≈=⎪⎭⎫⎝⎛⨯=+x .【思路点拨】可设年增长率为x ,第一年(1990年)产量为)1(40x +,第二年(1991年)产量为2)1(40x +,...,列出指数函数方程求解x ,再解答该钢厂2010年的年产量即可两个集合相等,则两个集合的元素对应相等. 【答案】C .8.若函数b a y x +=的部分图像如图所示,则( )B .10,10<<<<b aC .01,1<<->b aD .10,1<<>b a【知识点】指数函数的定义、解析式、图像及其性质. 【数学思想】数形结合的思想.【解题过程】由图像可以看出,函数为减函数,故10<<a ,又由函数x a y =过定点)1,0(,则函数b a y x +=过定点)1,0(+b ,即01<<-b . 【思路点拨】根据指数函数的图像和性质即可判断. 【答案】A . 探究型 多维突破9.设函数)1,0()(≠>=a a a x f x 且在区间[]21,上的最大值比最小值大2a,求a 的值. 【知识点】指数函数的图像与性质. 【数学思想】数形结合、分类讨论的思想.【解题过程】当1>a 时,函数)(x f 在区间[]21,上单调递增,所以2)1()2(2aa a f f =-=-,解得23=a 或0=a (舍去); 当10<<a 时,函数)(x f 在区间[]21,上单调递减,所以2(1)(2)2a f f a a -=-=,解得21=a 或0=a (舍去).【思路点拨】正确理解指数函数的图像和性质,注意指数函数底数的分情况讨论就不会漏掉部分答案. 【答案】23=a 或21=a . 10.在下列函数中,二次函数bx ax y +=2与指数函数xa b y ⎪⎭⎫⎝⎛=的图像只可能是( )【知识点】指数函数图像的应用.【数学思想】数形结合、分类讨论、排除法的思想.【解题过程】根据xa b y ⎪⎭⎫⎝⎛=可知b a ,同号且不相等,则二次函数bx ax y +=2的对称轴02<-a b 可排除 B 和D 选项;选项C 中,0,0<>-a b a ,所以1>ab,则指数函数单调递增,故选项C 不正确,因此选项D 正确.【思路点拨】分类讨论b a ,的取值排除错误图像即可. 【答案】D . 自助餐1.若函数x a a a y )33(2+-=是指数函数,则( ) A .0>a 且1≠aB .1=aC .1=a 或2=aD .2=a【知识点】指数函数的定义、解析式. 【数学思想】【解题过程】若函数x a a a y )33(2+-=是指数函数,则1332=+-a a ,解得1=a 或2=a ;又∵指数函数的底数0>a 且1≠a ,故2=a .【思路点拨】利用指数函数的定义和解析式底数的条件求解. 【答案】D .2.在同一坐标系下,函数a x y +-=和x a y =图象可能是( )A .B .C .D .【知识点】指数函数的图象及其性质. 【数学思想】数形结合、分类讨论的思想.【解题过程】当1>a ,易知a x y +-=单调递减,x a y =单调递增,且直线在y 轴交点为)1,0(上边,故选项D 是符合题意的.【思路点拨】分类讨论函数的单调性. 【答案】D .3.函数)1,0()(2≠>=-a a a x f x 的图象过定点( ) A .()1,0B .()0,1C .()0,2D .()1,2【知识点】指数函数的定义、解析式和图象的平移. 【数学思想】数形结合思想.【解题过程】x a y =的图象沿着x 轴向右平移2个单位得到2-=x a y ,故过定点()1,2. 【思路点拨】由指数函数的定义和解析式出发,探索图象的平移问题. 【答案】D .4.已知集合},24|{},|{2M x y y N x x x M x∈==>=,则=⋂N M ( )A .}210|{<<x xB .}121|{<<x x C .}10|{<<x x D .}21|{<<x x【知识点】指数函数的定义、解析式. 【数学思想】【解题过程】集合}10|{<<=x x M ,集合}221|{<<=y y N ,求其交集为}121|{<<x x . 【思路点拨】利用一元二次不等式的解法和指数函数的性质可化简集合N M ,,再利用交集的运算即可得出. 【答案】B .5.按复利计算利率的储蓄,存入银行2万元,如果年息3%,5年之后支取,本利和应为人民币( )元. A .5)3.01(2+B .5)03.01(2+C .4)3.01(2+D .4)03.01(2+【知识点】指数函数的实际应用. 【数学思想】【解题过程】由题意,存入银行2万元后,每一年的本利和都是前一年的03.131=+%,故五年之后支取,本利和应为人民币5)03.01(2+⋅.【思路点拨】根据找出每一年的本利和和前一年的关系进行求解. 【答案】B .21 / 21 6.若函数1()(4)212xa x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的增函数,则实数a 的取值范围为( )A .()∞+,1B .)(8,1C .)(8,4D .[)8,4 【知识点】指数函数单调性的应用.【数学思想】数形结合以及分类讨论思想.【解题过程】因为)(x f 在R 上是增函数,故在(]1,∞-上和),1(+∞上都单调递增,即)1(>=x a y x 和(4)1(1)2a y x x =-+≤都是增函数,且(4)12a y x =-+在(]1,∞-上的最大值不大于x y a =在),1(+∞上的最小值. 由此可得111408244122⎧⎪>>⎪⎧⎪⎪->⇒<⎨⎨⎪⎪≥⎩⎪⎛⎫-⋅+≤ ⎪⎪⎝⎭⎩a a a a a a a ,解得48a ≤<. 【思路点拨】由分段函数结合图象对参数进行讨论.【答案】D .。
指数函数及其性质一、【教学目标】1.知识与技能:理解指数函数的概念,画出具体指数函数图象,能经过观察图象得出两类指数函数图象的地位关系;在理解函数概念的基础上,能运用所学知识解决简单的数学成绩;2.过程与方法:在教学过程中,利用画板作图加深对指数函数的认识,让先生在数学活动中感受数学思想方法之美、领会数学思想方法之重要;3.情感、态度、价值观:经过本节课自主探求研讨式教学,使先生获得研讨函数的规律和方法;培养先生自动学习、合作交流的认识。
二、【学情分析】指数函数式在先生零碎学习了函数概念,基本掌握函数性质的基础上进行研讨的,是先生对函数概念及其性质的第一次运用.教材在之前的学习中给出链各个理论的例子(GDP的增长成绩和碳14的衰减成绩),曾经让先生感遭到了指数函数的理论背景,但这两个例子的背景对于先生来说有些陌生.本节课先设计两个看似简单的成绩,但能经过得到超出想象的结果来激发先生学习新知的兴味和愿望。
三、【教材分析】本节课是《普通高中课程标准实验教科书·数学1》(人教A版)第二章第一节第二课【(2.1.2)《指数函数及其性质》.根据理论情况,将《指数函数及其性质》划分为三节课指数函数及其性质、指数函数及其性质的运用(1)、指数函数及其性质的运用(2)】,这是第一节“指数函数及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及消费理论中有着广泛的运用,所以指数函数应重点研讨。
四、【教学重难点】1.教学重点:指数函数的概念、底数互为倒数的指数函数的图象关于y轴对称。
2.教学难点:底数a的范围讨论,自变量的取值范围和由函数的图象归纳指数函数的性质。
五、【教学方法】自主预习、合作探求、体验践行。
六、 【教学装备】多媒体装备。
七、 【课时安排】第一课时(新知课)。
八、 【教学过程】(一) 创设情境,引出成绩(约3分钟)师:观察图片,你能说出这是甚么吗?生:国际象棋师:这盘象棋隐含了这么一个故事?生:....师:国王为了奖励发明者达依尔特许愿满足他提的任意一个请求,那么达伊尔提出如下要求在棋盘第一格放2粒大米,第二格放4粒大米,第三格放8粒大米,…按这个规律.最初一格棋盘上的大米数就是我要的.请问:最初一格的大米数是多少呢?生:642师:那么国王能否满足他的要求呢?【学情预设】先生会说能.也有说不能的.教师公布数据领会指数函数的爆炸增长,642粒大米是每年全世界粮食产量的1000多倍,明显国王是满足不了他的请求.师:请写出米粒数与棋盘格数的函数关系式.生:{}2,1,2,,64x y x =∈师: “一尺之棰,日取其半,万世不竭.”这句话来自著名的《庄子·天下篇》,哪位同学能用数学言语来表述它的含义?生:。
2.1.2-1指数函数的概念教案【教学目标】1. 理解指数函数的概念,能画出具体指数函数的图像;2. 在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;3. 通过类比,回顾归纳从图象和解析式两个角度研究函数性质的方法;4. 感受数学思想方法之美,体会数学思想方法只重要 【教学重难点】教学重点:指数函数概念、图象和性质教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质 【教学过程】1、创设情境、提出问题师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,……,按这样的规律,50号同学该准备多少粒米? 学生:回答粒数师:如果改成1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,……,按这样的规律,51号同学该准备多少粒米? 师:大家能否估计一下50好同学准备的米有多重吗?教师公布事先估算的数据:51号同学准备的大米约有1.2亿吨师:1.2亿吨是什么概念?相当于2007~2008年度我国全年的大米产量!以上两个问题中,每位同学所需准备的米粒数用y 表示,每位同学的座号数用x 表示,y 与x 之间的关系分别是什么?学生很容易得出y=2x 和y =2x(*x N ∈)学生可能漏掉x 的范围,教师要引导学生思考具体问题中x 的取值范围。
2、新知探究(1)指数函数的定义师:在本章开头的问题中,也有一个与y =2x类似的关系式 1.073xy =(*x N ∈且x20≤)请思考以下问题①y =2x(*x N ∈)和 1.073xy =(*x N ∈且x20≤)这两个解析式有什么共同特征?②他们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?引导学生观察,两个函数中底数是常数,指数是自变量. 师:把这两个函数归为一般形式就是我们今天要学习的函数,我们把它称作指数函数.(2)让学生讨论并给出指数函数的的定义。
2.1.2指数函数及其性质(2个课时)一. 教学目标:1.知识与技能①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质. ③体会具体到一般数学讨论方式及数形结合的思想; 2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理. ②培养学生观察问题,分析问题的能力. 3.过程与方法展示函数图象,让学生通过观察,进而研究指数函数的性质. 二.重、难点重点:指数函数的概念和性质及其应用. 难点:指数函数性质的归纳,概括及其应用. 三、学法与教具:①学法:观察法、讲授法及讨论法. ②教具:多媒体.第一课时一.教学设想: 1. 情境设置①在本章的开头,问题(1)中时间x 与GDP 值中的 1.073(20)xy x x =∈≤与问题(2)t 5301中时间t和C-14含量P的对应关系P=[()2,请问这两个函数有什么共同特征.②这两个函数有什么共同特征157301][()]2t P =t57301把P=[()变成2,从而得出这两个关系式中的底数是一个正数,自变量为指数,即都可以用xy a =(a >0且a ≠1来表示).二.讲授新课 指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .提问:在下列的关系式中,哪些不是指数函数,为什么?(1)22x y += (2)(2)x y =- (3)2xy =-(4)x y π= (5)2y x = (6)24y x =(7)x y x = (8)(1)xy a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x 当时,等于若当时,无意义若a <0,如1(2),,8xy x x =-=1先时,对于=等等,6在实数范围内的函数值不存在. 若a =1, 11,xy == 是一个常量,没有研究的意义,只有满足(0,1)xy a a a =>≠且的形式才能称为指数函数,5,,3,31x x x a y x y y +===+1xx为常数,象y=2-3,y=2等等,不符合(01)x y a a a =>≠且的形式,所以不是指数函数.我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究a >1的情况用计算机完成以下表格,并且用计算机画出函数2xy =的图象x3.00- 2.50- 2.00- 1.50- 1.00- 0.00 0.50 1.00 1.50 2.002x y =18-14121 2 4- - --- ---------xyy =2x再研究,0<a <1的情况,用计算机完成以下表格并绘出函数1()2xy =的图象.从图中我们看出12()2xxy y ==与的图象有什么关系?通过图象看出12()2xxy y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2xx y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x xx x y y y y ====的函数图象.问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.从图上看x y a =(a >1)与xy a =(0<a <1)两函数图象的特征.xx问题2:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性.问题3:指数函数xy a =(a >0且a ≠1),当底数越大时,函数图象间有什么样的关系.5.利用函数的单调性,结合图象还可以看出:(1)在[,]xa b f x a 上,()=(a >0且a ≠1)值域是[(),()][(),()];f a f b f b f a 或 (2)若0,x f x f x x ≠≠∈则()1;()取遍所有正数当且仅当R; (3)对于指数函数()x f x a =(a >0且a ≠1),总有(1);f a = (4)当a >1时,若1x <2x ,则1()f x <2()f x ; 例题:例1:(P 66 例6)已知指数函数()xf x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.分析:要求(0),(1),(3),,xf f f a x π-13的值,只需求出得出f()=()再把0,1,3分别代入x ,即可求得(0),(1),(3)f f f -.提问:要求出指数函数,需要几个条件? 课堂练习:P 68 练习:第1,2,3题补充练习:1、函数1()()2xf x =的定义域和值域分别是多少? 2、当[1,1],()32xx f x ∈-=-时函数的值域是多少? 解(1),0x R y ∈> (2)(-53,1)例2:求下列函数的定义域: (1)442x y -= (2)||2()3x y =分析:类为(1,0)xy a a a =≠>的定义域是R ,所以,要使(1),(2)题的定义域,保要使其指数部分有意义就得 . 3.归纳小结作业:P 69 习题2.1 A 组第5、6题1、理解指数函数(0),101xy a a a a =>><<注意与两种情况。
2.1.2 指数函数及其性质〔1〕从容说课指数函数是在学生系统的学习了函数概念、基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产中有着广泛的应用,所以指数函数应重点研究.指数函数对学生来说是完全陌生的一类函数,对于这样的函数应该怎样进行较为系统的研究是学生面临的重要问题.所以,从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到对其他函数的研究中去.本课主要学习指数函数的概念、图象,并根据图象归纳出指数函数的性质.指数函数是在把指数范围扩充到实数的基础上引入的,因此在教学指数函数之前,可以先扼要地复习一下指数范围的扩充过程,以便让学生理解指数函数的定义域.在指数函数的概念讲解过程中,既要说清楚指数函数的定义域是什么,又要向学生交待为什么要规定底数a 是一个大于0且不等于1的常量.函数图象是研究函数性质的直观工具,利用图象便于学生记忆函数的性质和变化规律.在用描点法画指数函数的图象时,首先要通过计算列出对应值表.因此,教学中可以指导学生借助计算机在同一坐标系内画出y =2x ,y =〔21〕x这两个具有典型意义的指数函数的图象,并引导学生借助于具体函数图象来分析它们的特征,得出指数函数的性质.引导学生结合指数的有关概念来理解指数函数的概念,并向学生指出指数函数的形式特点,在研究指数函数的图象时,遵循由特殊到一般的研究规律,要求学生自己作出特殊的较为简单的指数函数的图象然后推广到一般情况,类比地得到指数函数的图象,并通过观察图象,总结出指数函数的性质,而且是分a >1与0<a <1两种情形.本节课的整体设计是按照一般研究函数的规律设计的.由实例引入定义,再根据定义并利用描点法画出函数图象,通过图象得到函数的性质.学生在学习函数时,往往感到比较困难、抽象,不易理解和掌握,要让学生掌握学习函数的一般规律,再继续学习新的函数,学生就能顺理成章,而不会产生无所适从的感觉.本节的容量较大,为了提高效率,可采用现代化教学手段,利用投影仪或电脑.在引导学生观察分析了三种典型函数的图象性质之后,将得到的结论直接投影出来,课上的引例、例题、练习题、作业题也都可投影出来,但要注意一定要表达过程教学.比如画函数图象,不要一下就把图象投影出来,这样不利于学生掌握图象的画法,既使用了投影仪或电脑,也要将建立坐标系〔要强调三要素〕、描点、用光滑曲线将这些点连结起来的整个过程展现出来.又如函数性质的教学,一定先让学生观察图象,分析特点,从而提高学生观察归纳的能力和看图用图的意识,例题的解答也要让学生去分析,发现解法.这样有利于学生尽快掌握函数的性质,掌握比较两个数大小的方法,让学生在观察的过程中,发现的过程中,解决问题的过程中,建立起学好函数、学好数学的信心.三维目标一、知识与技能1.掌握指数函数的概念、图象和性质.2.能借助计算机或计算器画指数函数的图象.3.能由指数函数图象探索并理解指数函数的性质.二、过程与方法1.在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程,数形结合的方法等.2.通过探讨指数函数的底数a >0,且a ≠1的理由,明确数学概念的严谨性和科学性,做一个具备严谨科学态度的人.三、情感态度与价值观1.通过实例引入指数函数,激发学生学习指数函数的兴趣,体会指数函数是一类重要的函数模型,并且有广泛的用途,逐步培养学生的应用意识.2.在教学过程中,通过现代信息技术的合理应用,让学生体会到现代信息技术是认识世界的有效手段.教学重点指数函数的概念和性质. 教学难点用数形结合的方法从具体到一般地探索、概括指数函数的性质. 教具准备多媒体课件、投影仪、打印好的作业. 教学过程一、以生活实例,引入新课 〔多媒体显示如下材料〕材料1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个……一个这样的细胞分裂x 次后,得到的细胞分裂的个数y 与x 的函数关系是什么?〔生思考,师组织学生交流各自的想法,捕捉学生交流中与以下结论有关的信息,并简单板书〕结论:材料1中y 和x 的关系为y =2x .材料2:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期〞.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系,这个关系式应该怎样表示呢?〔生思考〕生:P =〔21〕5730t.师:你能发现关系式y =2x ,P =〔21〕5730t有什么相同的地方吗?〔生讨论,师及时总结得到如下结论〕我们发现:在关系式y =2x和P =〔21〕5730t中,每给一个自变量都有唯一的一个函数值和它对应,因此关系式y =2x 和P =〔21〕5730t都是函数关系式,且函数y =2x 和函数P =〔21〕5730t在形式上是相同的,解析式的右边都是指数式,且自变量都在指数位置上.师:你能从以上两个解析式中抽象出一个更具有一般性的函数模型吗? 〔生交流,师总结得出如下结论〕生:用字母a 来代替2与〔21〕57301.结论:函数y =2x 和函数P =〔21〕5730t都是函数y =a x 的具体形式.函数y =a x 是一类重要的函数模型,并且有广泛的用途,它可以解决好多生活中的实际问题,这就是我们下面所要研究的一类重要函数模型——指数函数.〔引入新课,书写课题〕 二、讲解新课〔一〕指数函数的概念〔师结合引入,给出指数函数的定义〕一般地,函数y =a x 〔a >0,a ≠1〕叫做指数函数,其中x 是自变量,函数的定义域是R .合作探究:〔1〕定义域为什么是实数集? 〔生思考,师适时点拨,给出如下解释〕知识拓展:在a >0的前提下,x 可以取任意的实数,所以函数的定义域是R . 〔2〕在函数解析式y =a x 中为什么要规定a >0,a ≠1?〔生思考,师适时点拨,给出如下解释,并明确指数函数的定义域是实数R 〕 知识拓展:这是因为〔ⅰ〕a =0时,当x >0,a x 恒等于0;当x ≤0,a x 无意义.〔ⅱ〕a <0时,例如a =-41,x =-41,那么a x=〔-41〕41无意义.〔ⅲ〕a =1时,a x 恒等于1,无研究价值.所以规定a >0,且a ≠1.〔3〕判断以下函数是否是指数函数:①y =2·3x ;②y =3x -1;③y =x 3;④y =-3x ;⑤y =〔-4〕x ;⑥y =πx ;⑦y =42x ;⑧y =x x ;⑨y =〔2a -1〕x 〔a >21,且a ≠1〕. 生:只有⑥⑨为指数函数.方法引导:指数函数的形式就是y =a x ,a x 的系数是1,其他的位置不能有其他的系数,但要注意化简以后的形式.有些函数貌似指数函数,实际上却不是,例如y =a x +k 〔a >0,且a ≠1,k ∈Z 〕;有些函数看起来不像指数函数,实际上却是指数函数,例如y =a -x 〔a >0,且a ≠1〕,这是因为它的解析式可以等价化归为y =a -x =〔a -1〕x ,其中a -1>0,且a -1≠1.如y =23x 是指数函数,因为可以化简为y =8x .要注意幂底数的范围和自变量x 所在的部位,即指数函数的自变量在指数位置上.〔二〕指数函数的图象和性质师:指数函数y =a x ,其中底数a 是常数,指数x 是自变量,幂y 是函数.底数a 有无穷多个取值,不可能逐一研究,研究方法是什么呢?〔生思考〕师:要抓住典型的指数函数,分析典型,进而推广到一般的指数函数中去.那么选谁作典型呢?生:函数y =2x 的图象.师:作图的基本方法是什么? 生:列表、描点、连线. 借助多媒体手段画出图象.师:研究函数要考虑哪些性质?生:定义域、值域、单调性、奇偶性等.师:通过图象和解析式分析函数y =2x 的性质应该如何呢?生:图象左右延伸,说明定义域为R ;图象都分布在x 轴的上方,说明值域为R +;图象上升,说明是增函数;不关于y 轴对称也不关于原点对称,说明它既不是奇函数也不是偶函数.师:图象在数值上有些什么特点?生:通过图象不难发现y 值分布的特点:当x <0时,0<y <1;当x >0时,y >1;当x =0时,y =1.合作探究:是否所有的指数函数的图象均与y =2x 的图象类似? 画出函数y =8x ,y =3.5x ,y =1.7x ,y =0.8x 的图象,你有什么发现呢?〔生思考,师适时点拨,给出如下结论〕结论:y =0.8x 的图象与其余三个图象差别很大,其余三个图象与y =2x 的图象有点类似,说明还有一类指数函数的图象与y =2x 有重大差异.师:类似地,从中选择一个具体函数进行研究,可选什么函数?生:我们选择函数y =〔21〕x的图象作典型. 作出函数y =〔21〕x的图象.合作探究:函数y =2x 的图象和函数y =〔21〕x的图象的异同点. 〔生思考,师适时点拨,给出如下结论〕 一般地,指数函数y =a x 在底数a >1及0<a <1这两种情况下的图象和性质如下表所示:a >10<a <1图象性质 〔1〕定义域为〔-∞,+∞〕;值域为〔0,+∞〕 〔2〕过点〔0,1〕,即x =0时,y =a 0=1〔3〕假设x >0,那么a x >1; 假设x <0,那么0<a x <1 〔3〕假设x >0,那么0<a x <1; 假设x <0,那么a x >1〔4〕在R 上是增函数〔4〕在R 上是减函数合作探究:函数y =2x 的图象和函数y =〔21〕x的图象有什么关系?〔生观察并讨论,给出如下结论〕 结论:函数y =2x 的图象和函数y =〔21〕x的图象关于y 轴对称. 师:理由是什么呢?能否给予证明?证明:因为函数y =〔21〕x =2-x,点〔x ,y 〕与〔-x ,y 〕关于y 轴对称,所以y =2x 的图象上的任意一点P 〔x ,y 〕关于y 轴的对称点P 1〔-x ,y 〕都在y =〔21〕x 的图象上,反之亦然.根据这种对称性就可以利用函数y =2x 的图象得到函数y =〔21〕x 的图象.方法引导:要证明两个函数f 〔x 〕与g 〔x 〕的图象关于某一直线成轴对称图形,要分两点证明:〔1〕f 〔x 〕图象上任意一点关于直线的对称点都在g 〔x 〕的图象上;〔2〕g 〔x 〕图象上的任意一点关于直线的对称点都在f 〔x 〕的图象上.合作探究:思考底数a 的变化对图象的影响. 例如:比较函数y =2x 和y =10x 的图象以及y =〔21〕x 和y =〔101〕x 的图象.〔生观察并讨论,给出如下结论〕结论:在第一象限内,底数a 越小,函数的图象越接近x 轴. 合作探究:如何快速地画出指数函数简图?〔学生讨论,交流各自的想法,师适时地归纳,得出如下注意点〕〔1〕要注意图象的分布区域:指数函数的图象知分布在第一、二象限;〔2〕注意函数图象的特征点:无论底数取符合要求的任何值,函数图象均过定点〔0,1〕;〔3〕注意函数图象的变化趋势:函数图向下逐渐接近x 轴,但不能和x 轴相交. 〔三〕例题讲解[例1] 求以下函数的定义域:〔1〕y =8121-x ;〔2〕y =x )21(1-.〔多媒体显示,师组织学生讨论完成〕 师:我们已经有过求函数定义域的一些实战经验,你觉得求函数定义域时哪些方面应该引起你的高度注意?〔生交流自己的想法,师归纳,得出如下结论〕 〔1〕分式的分母不能为0;〔2〕偶次根号的被开方数大于或等于0; 〔3〕0的0次幂没有意义.师:这些注意点在我们所要解决的问题中又没有出现,是否还有其他新的要求或限制条件?〔生讨论交流,并板演解答过程,师组织学生进行评析,规范学生解题〕解:〔1〕∵2x -1≠0,∴x ≠21,原函数的定义域是{x |x ∈R ,x ≠21}; 〔2〕∵1-〔21〕x ≥0,∴〔21〕x ≤1=〔21〕0.∵函数y =〔21〕x 在定义域上单调递减,∴x ≥0.∴原函数的定义域是[0,+∞〕.[例2] 比较以下各题中两个值的大小:〔1〕1.72.5,1.73;〔2〕0.8-0.1,0.8-0.2;〔3〕1.70.3,0.93.1. 师:你能发现题中所给的各式有哪些共同点和不同点吗?这些特点能否给你解答该题有所启示呢?〔生讨论,师适时点拨,得出如下解析过程〕 解:〔1〕1.72.5,1.73可看作函数y =1.7x 的两个函数值.由于底数1.7>1,所以指数函数y=1.7x在R上是增函数.因为2.5<3,所以1.72.5<1.73.〔2〕0.8-0.1,0.8-0.2可看作函数y=0.8x的两个函数值.由于底数0.8<1,所以指数函数y=0.8x在R上是减函数.因为-0.1>-0.2,所以0.8-0.1<0.8-0.2.〔3〕因为1.70.3、0.93.1不能看作同一个指数函数的两个函数值,所以我们可以首先在这两个数值中间找一个数值,将这一个数值与原来两个数值分别比较大小,然后确定原来两个数值的大小关系.由指数函数的性质知1.70.3>1.70=1,0.93.1<0.90=1,所以1.70.3>0.93.1.师:问题解决了,通过解决这些问题,你有什么心得体会吗?〔生交流解题体会,师适时归纳总结,得出如下结论〕方法引导:在解决比较两个数的大小问题时,一般情况下是将其看作是一个函数的两个函数值,利用函数的单调性比较之.当两个数不能直接比较时,我们可以将其与一个数进行比较大小,从而得出该两数的大小关系.三、巩固练习课本P68练习1、2〔生完成后,同桌之间互相交流解答过程〕1.略.2.〔1〕{x|x≥2};〔2〕{x|x≠0}.四、课堂小结师:通过本节课的学习,你觉得你都学到了哪些知识?请同学们互相交流一下自己的收获,同时也让你们的同桌享受一下你所收获的喜悦.〔生交流,师简单板书,多媒体显示如下内容〕1.指数函数的定义以及指数函数的一般表达式的特征.2.指数函数简图的作法以及应注意的地方.3.指数函数的图象和性质.一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:a>10<a<1图象性质〔1〕定义域为〔-∞,+∞〕;值域为〔0,+∞〕性质〔2〕过点〔0,1〕,即x=0时,y=a0=1〔3〕假设x>0,那么a x>1;假设x<0,那么0<a x<1〔3〕假设x>0,那么0<a x<1;假设x<0,那么a x>1 〔4〕在R上是增函数〔4〕在R上是减函数4.结合函数的图象说出函数的性质,这是一种重要的数学研究思想和研究方法——数形结合思想〔方法〕.5.a的取值范围是今后应用指数函数讨论问题的前提.五、布置作业课本P69习题2.1A组第5、6、7、8、10、11题.板书设计2.1.2 指数函数及其性质〔1〕一、1.指数函数的概念2.指数函数的图象和性质二、例题评析三、课堂小结四、布置作业。
课题:指数函数及其性质教学过程〔第一课时〕教学内容教学环节教师活动学生活动教学媒体使用预期效果〔1〕在本节的问题2中时间和碳14含量的对应关系:和问题1中时间x与GDP值y的对应关系能否构成函数?〔2〕这两个函数有什么共同特征?给出指数函数的定义.〔3〕你能根据指数函数的定义解决课本练习2,3吗?〔4〕你能类比前面讨论函数性质时的方法,指出研究指数函数性质的方法吗?教师组织学生思考、分小组讨论所提出的问题,注意引导学生从函数的定义出发来解释两个问题中变量之间的关系.教师注意引导学生把对应关系概括到的形式.注意提示的取值X围.课堂巡视,个别辅导,针对学生的共同问题集中解决.教师引导学生回顾需要研究函数的哪些性质,讨论研究指数函数性质的方法,强调数形结合,强调函数图象研究性质中的作学生独立思考、小组讨论,推举代表解释这两个问题中变量间的关系为什么构成函数.学生思考,概括共同特征独立思考,尝试解决课本练习2,3,并且小组讨论、交流;学生独立思考,提出研究指数函数的基本思路.教学过程教学内容教学环节教师活动学生活动教学媒体使用预期效果〔5〕如何画指数函数和的图象?(6)从画出的图象中你能发现函数的图象和函数的图象有什么关系?可否利用的图象画出的图象?〔7〕你能利用指数函数的图象归纳出指数函数的性质吗?用,注意从特殊到一般的思想方法的应用,渗透概括能力的培养.课堂巡视,个别辅导,展示画得较好的部分学生的图象.投影展示课本表2.1-1、2.1-2以及图2.1-2、2.1-3;师生:概括出根据对称性画指数函数图象的方法.教师引导学生选取假设干个不同的底数()画出的图象,并指导学生观察图象,概括指数函数性质.独立画图,同学间交流;观察图象及表格,表述自己的发现;学生通过选取不同的底数()画出的图象,观察图象、得出性质、相互交流等活动,形成对指数函数性质的认识.教学过程教学内容教学环节教师活动学生活动教学媒体使用预期效果〔8〕根据例6,你能说出确定一个指数函数需要几个条件吗?〔9〕通过本节课的学习,你对指数函数有什么认识?教科书是怎样研究指数函数的?〔10〕课后作业:习题2.1 A组第5、6题思考题:探究签合同问题A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?答案:15天的合同可以签,而30天的合同不能签. 投影出例6〔题目见教科书〕并引导学生分析,当函数图象过某点时,该点的坐标满足该函数解析式,即当时,.根据学生回答的情况进行评价和补充.思考,表达解决例6的步骤和过程.思考、小组讨论,推举代表表达,其他同学补充;〔第一课时〕教学流程图〔第二课时〕复习旧知—导入新课——应用举例——知能训练——课堂小结——作业布置。
指数函数及其性质〔三〕〔一〕教学目标1.知识与技能:〔1〕熟练掌握指数函数概念、图象、性质;〔2〕掌握指数形式的函数定义域、值域的求法,以及单调性、奇偶性判断;〔3〕培养学生数学应用意识2.过程与方法:〔1〕让学生了解数学来自生活,数学又服务于生活的哲理;〔2〕培养学生观察问题,分析问题的能力.3.情感、态度与价值观〔1〕认识从特殊到一般的研究方法.〔2〕了解数学在生产实际中的应用.〔二〕教学重点、难点1.教学重点:指数形式的函数图象、性质的应用.2.教学难点:判断单调性.〔三〕教学方法启发学生运用证明函数单调性的基本步骤对指数形式的复合函数的单调性进行证明,但应在变形这一关键步骤帮助学生总结、归纳有关指数形式的函数变形技巧,以利于下一步判断.〔四〕教学过程备选例题例10>a 且1≠a ,讨论232)(++-=x x ax f 的单调性.[分析]这是一道与指数函数有关的复合函数讨论单调性题, 指数417)23(2322+--=++-x x x ,当x ≥23时是减函数,x ≤23时是增函数, 而)(x f 的单调性又与10<<a 和1>a 两种X 围有关,应分类讨论. [解析]设232u x x =-++2317()24x =--+,那么当x ≥23时,u 是减函数,当x ≤23时,u 是增函数,又当1>a 时,ua y =是增函数, 当10<<a 时,ua y =是减函数, 所以当1>a 时,原函数232)(++-=x x a x f 在),23[+∞上是减函数,在]23,(-∞上是增函数.当10<<a 时,原函数232)(++-=x x a x f 在),23[+∞上是增函数,在]23,(-∞上是减函数.[小结]一般情况下,两个函数都是增函数或都是减函数,那么其复合函数是增函数;如果两个函数中一增一减,那么其复合函数是减函数,但一定注意考虑复合函数的定义域.例2函数 222xx y -+= 求函数的定义域、值域解:作出函数图像,观察分析讨论,教师引导、整理.定义域为 R由222x x y -+=得 012222=+⋅-xx y∵x ∈R,∴△≥0, 即 0442≥-y ,∴12≥y , 又∵0>y ,∴1≥y ∴值域为{|1}y y ≥.。
2.1.2 指数函数及其性质整体设计教学分析有了前面的知识储备,我们就可以顺理成章地学习指数函数的概念,作指数函数的图象以及研究指数函数的性质.教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP 的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫. 本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,编写时充分关注与实际问题的结合,体现数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情景,为学生的数学探究与数学思维提供支持. 三维目标1.通过实际问题了解指数函数的实际背景,理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质,体会具体到一般数学讨论方式及数形结合的思想.2.让学生了解数学来自生活,数学又服务于生活的哲理.培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力.3.通过训练点评,让学生更能熟练指数幂运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美. 重点难点教学重点:指数函数的概念和性质及其应用. 教学难点:指数函数性质的归纳、概括及其应用. 课时安排 3课时教学过程第1课时 指数函数及其性质(1)导入新课思路1.用清水漂洗衣服,若每次能洗去污垢的43,写出存留污垢y 与漂洗次数x 的关系式,它是函数关系式吗?若是,请计算若要使存留的污垢不超过原有的641,则至少要漂洗几次?教师引导学生分析,列出关系式y=(41)x,发现这个关系式是个函数关系且它的自变量在指数的位置上,这样的函数叫指数函数,引出本节课题.思路2.教师复习提问指数幂的运算性质,并要求学生计算23,20,2-2,1641,2732,4921.再提问怎样画函数的图象,学生思考,分组交流,写出自己的答案8,1, 41,2,9,71,先建立平面直角坐标系,再描点,最后连线.点出本节课题.思路3.在本章的开头,问题(2)中时间t 和碳14含量P 的对应关系P=[(21)57301]t,如果我们用x 表示时间,y 表示碳14的含量,则上述关系可表示为y=[(21)57301]x,这是我们习惯上的函数形式,像这种自变量在指数的位置上的函数,我们称为指数函数,下面我们给出指数函数的确切概念,从而引出课题. 推进新课 新知探究 提出问题1.一种放射性物质不断衰减为其他物质,每经过一年剩留量约是原来的84%,求出这种物质经过x 年后的剩留量y 与x 的关系式是_________.(y=0.84x)2.某种细胞分裂时,由一个分裂成两个,两个分裂成四个,四个分裂成十六个,依次类推,一个这样的细胞分裂x 次后,得到的细胞个数y 与x 的关系式是_________.(y=2x) 提出问题(1)你能说出函数y=0.84x 与函数y=2x的共同特征吗?(2)你是否能根据上面两个函数关系式给出一个一般性的概念? (3)为什么指数函数的概念中明确规定a>0,a≠1? (4)为什么指数函数的定义域是实数集?(5)如何根据指数函数的定义判断一个函数是否是一个指数函数?请你说出它的步骤. 活动:先让学生仔细观察,交流讨论,然后回答,教师提示点拨,及时鼓励表扬给出正确结论的学生,引导学生在不断探索中提高自己的应用知识的能力,教师巡视,个别辅导,针对学生共性的问题集中解决.问题(1)看这两个函数的共同特征,主要是看底数和自变量以及函数值. 问题(2)一般性的概念是指用字母表示不变化的量即常量. 问题(3)为了使运算有意义,同时也为了问题研究的必要性.问题(4)在(3)的规定下,我们可以把a x看成一个幂值,一个正数的任何次幂都有意义.问题(5)使学生回想指数函数的定义,根据指数函数的定义判断一个函数是否是一个指数函数,紧扣指数函数的形式. 讨论结果:(1)对于两个解析式我们看到每给自变量x 一个值,y 都有唯一确定的值和它对应,再就是它们的自变量x 都在指数的位置上,它们的底数都大于0,但一个大于1,一个小于1.0.84与2虽然不同,但它们是两个函数关系中的常量,因为变量只有x 和y.(2)对于两个解析式y=0.84x 和y=2x,我们把两个函数关系中的常量用一个字母a 来表示,这样我们得到指数函数的定义:一般地,函数y=a x(a>0,a≠1)叫做指数函数,其中x 叫自变量,函数的定义域是实数集R.(3)a=0时,x>0时,a x 总为0;x≤0时,a x没有意义.a<0时,如a=-2,x=21,a x=(-2)21=2-显然是没有意义的.a=1时,a x恒等于1,没有研究的必要.因此规定a>0,a≠1.此解释只要能说明即可,不要深化.(4)因为a>0,x 可以取任意的实数,所以指数函数的定义域是实数集R.(5)判断一个函数是否是一个指数函数,一是看底数是否是一个常数,再就是看自变量是否是一个x 且在指数位置上,满足这两个条件的函数才是指数函数. 提出问题(1)前面我们学习函数的时候,根据什么思路研究函数的性质,对指数函数呢? (2)前面我们学习函数的时候,如何作函数的图象?说明它的步骤.(3)利用上面的步骤,作函数y=2x的图象. (4)利用上面的步骤,作函数y=(21)x的图象. (5)观察上面两个函数的图象各有什么特点,再画几个类似的函数图象,看是否也有类似的特点?(6)根据上述几个函数图象的特点,你能归纳出指数函数的性质吗? (7)把y=2x和y=(21)x的图象,放在同一坐标系中,你能发现这两个图象的关系吗? (8)你能证明上述结论吗? (9)能否用y=2x的图象画y=(21)x的图象?请说明画法的理由. 活动:教师引导学生回顾需要研究的函数的那些性质,共同讨论研究指数函数的性质的方法,强调数形结合,强调函数图象在研究函数性质中的作用,注意从具体到一般的思想方法的运用,渗透概括能力的培养,进行课堂巡视,个别辅导,投影展示画得好的部分学生的图象,同时投影展示课本表21,22及图2.12,2.13及2.14,及时评价学生,补充学生回答中的不足.学生独立思考,提出研究指数函数性质的思路,独立画图,观察图象及表格,表述自己的发现,同学们相互交流,形成对指数函数性质的认识,推荐代表发表本组的集体的认识. 讨论结果:(1)我们研究函数时,根据图象研究函数的性质,由具体到一般,一般要考虑函数的定义域、值域、单调性、奇偶性,有时也通过画函数图象,从图象的变化情况来看函数的性质. (2)一般是列表,描点,连线,借助多媒体手段画出图象,用计算机作函数的图象. x -3.00 -2.50 -2.00 -1.50 -1.00 0.00 0.50 1.00 1.50 2.00 y=2x814121 124作图如图2-1-2-1图2-1-2-1x -2.50 -2.00 -1.50 -1.00 0.00 1.00 1.50 2.00 2.50 y=(21)x4121 124作图如图2-1-2-2图2-1-2-2(5)通过观察图2121,可知图象左右延伸,无止境说明定义域是实数.图象自左至右是上升的,说明是增函数,图象位于x 轴上方,说明值域大于0.图象经过点(0,1),且y 值分布有以下特点,x<0时0<y<1,x>0时y>1.图象不关于x 轴对称,也不关于y 轴对称,说明函数既不是奇函数也不是偶函数.通过观察图2122,可知图象左右延伸,无止境说明定义域是实数.图象自左至右是下降的,说明是减函数,图象位于x 轴上方,说明值域大于0.图象经过点(0,1),x<0时y>1,x>0时0<y<1.图象不关于x 轴对称,也不关于y 轴对称,说明函数既不是奇函数也不是偶函数. 可以再画下列函数的图象以作比较,y=3x,y=6x,y=(31)x ,y=(61)x.重新观察函数图象的特点,推广到一般的情形.x图象特征函数性质 a >10<a <1a >10<a <1向x 轴正负方向无限延伸 函数的定义域为R 图象关于原点和y 轴不对称 非奇非偶函数 函数图象都在x 轴上方 函数的值域为R +函数图象都过定点(0,1)a 0=1自左向右,图象逐渐上升 自左向右,图象逐渐下降 增函数 减函数 在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于 1x >0,a x>1 x >0,a x<1 在第二象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都大于1 x <0,a x <1x <0,a x >1a >10<a <1图象性质①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时y=1④在R 上是增函数,当x <0时,0<y <1;当x >0时,y >1④在R 上是减函数,当x <0时,y >1;当x >0时,0<y <1(7)在同一坐标系中作出y=2x和y=(2)x两个函数的图象,如图2-1-2-3.经过仔细研究发现,它们的图象关于y 轴对称.图2-1-2-3(8)证明:设点p(x 1,y 1)是y=2x上的任意一点,它关于y 轴的对称点是p 1(-x 1,y 1),它满足方程y=(21)x =2-x ,即点p 1(-x 1,y 1)在y=(21)x 的图象上,反之亦然,所以y=2x和y=(21)x 两个函数的图象关于y 轴对称. (9)因为y=2x和y=(21)x两个函数的图象关于y 轴对称,所以可以先画其中一个函数的图象,利用轴对称的性质可以得到另一个函数的图象,同学们一定要掌握这种作图的方法,对以后的学习非常有好处. 应用示例思路1例1判断下列函数是否是一个指数函数? y=x 2,y=8x,y=2·4x,y=(2a-1)x(a>21,a≠1),y=(-4)x ,y=πx ,y=6x 3+2. 活动:学生观察,小组讨论,尝试解决以上题目,学生紧扣指数函数的定义解题,因为y=x 2,y=2·4x ,y=6x 3+2都不符合y=a x 的形式,教师强调y=a x的形式的重要性,即a 前面的系数为1,a 是一个正常数(也可是一个表示正常数的代数式),指数必须是x 的形式或通过转化后能化为x 的形式. 解:y=8x,y=(2a-1)x(a>21,a≠1),y=(-4)x ,y=πx 是指数函数;y=x 2,y=2·4x ,y=6x 3+2不是指数函数. 变式训练函数y=23x,y=a x+k,y=a -x,y=(a 2)-2x(a>0,a≠1)中是指数函数的有哪些? 答案:y=23x =(23)x ,y=a -x=(a 1)x ,y=(a 2)-2x=[(a2)-2]x 是指数函数.例2比较下列各题中的两个值的大小:(1)1.72.5与1.73;(2)0.8-0.1与0.8-0.2;(3)1.70.3与0.93.1.活动:学生自己思考或讨论,回忆比较数的大小的方法,结合题目实际,选择合理的,再写出(最好用实物投影仪展示写得正确的答案),比较数的大小,一是作差,看两个数差的符号,若为正,则前面的数大;二是作商,但必须是同号数,看商与1的大小,再决定两个数的大小;三是计算出每个数的值,再比较大小;四是利用图象;五是利用函数的单调性.教师在学生中巡视其他学生的解答,发现问题及时纠正并及时评价.解法一:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y=1.7x的图象,如图2-1-2-4.图2-1-2-4在图象上找出横坐标分别为2.5、3的点,显然,图象上横坐标为3的点在横坐标为2.5的点的上方,所以1.72.5<1.73,同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法二:用计算器直接计算:1.72.5≈3.77,1.73≈4.91,所以1.72.5<1.73.同理0.8-0.1<0.8-0.2,1.70.3>0.93.1. 解法三:利用函数单调性,①1.72.5与1.73的底数是1.7,它们可以看成函数y=1.7x,当x=2.5和3时的函数值;因为1.7>1,所以函数y=1.7x 在R 上是增函数,而2.5<3,所以1.72.5<1.73;②0.8-0.1与0.8-0.2的底数是0.8,它们可以看成函数y=0.8x,当x=-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y=0.8x 在R 上是减函数,而-0.1>-0.2,所以0.8-0.1<0.8-0.2;③因为1.70.3>1,0.93.1<1,所以1.70.3>0.93.1.点评:在第(3)小题中,可以用解法一、解法二解决,但解法三不适合.由于1.70.3与0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小,这里的1是中间值. 思考在上面的解法中你认为哪种方法更实用?活动:学生对上面的三种解法作比较,解题有法但无定法,我们要采取多种解法,在多种解法中选择最优解法,这要通过反复练习,强化来实现. 变式训练1.已知a=0.80.7,b=0.80.9,c=1.20.8,按大小顺序排列a,b,c.答案:b<a<c(a 、b 可利用指数函数的性质比较,而c 是大于1的). 2.比较a 31与a 21的大小(a >0且a≠0).答案:分a >1和0<a<1两种情况讨论.当0<a<1时,a 31>a 21;当a>1时,a 31<a 21. 例3求下列函数的定义域和值域: (1)y=241-x ;(2)y=(32)||x -;(3)y=10112-+x x .活动:学生先思考,再回答,由于指数函数y=a x,(a >0且a≠1)的定义域是R,所以这类类似指数函数的函数的定义域要借助指数函数的定义域来求,教师适时点拨和提示,求定义域,只需使指数有意义即可,转化为解不等式. 解:(1)令x-4≠0,则x≠4,所以函数y=241-x 的定义域是{x∈R ∣x≠4},又因为41-x ≠0,所以241-x ≠1,即函数y=241-x 的值域是{y|y>0且y≠1}.(2)因为-|x|≥0,所以只有x=0. 因此函数y=(32)||x -的定义域是{x∣x=0}.而y=(32)||x -=(32)0=1,即函数y=(32)||x -的值域是{y∣y=1}.(3)令12+x x ≥0,得12+x x ≥0,即11+-x x ≥0,解得x<-1或x≥1, 因此函数y=10112-+x x 的定义域是{x∣x<-1或x≥1}.由于12+x x -1≥0,且12+x x ≠2,所以112-+x x ≥0且112-+x x≠1. 故函数y=10112-+x x的值域是{y∣y≥1,y≠10}.点评:求与指数函数有关的定义域和值域时,要注意到充分考虑并利用指数函数本身的要求,并利用好指数函数的单调性,特别是第(1)题千万不能漏掉y>0. 变式训练求下列函数的定义域和值域: (1)y=(21)22x x -;(2)y=91312--x ;(3)y=a x-1(a>0,a≠1). 答案:(1)函数y=(21)22x x -的定义域是R ,值域是[21,+∞);(2)函数y=91312--x 的定义域是[21-,+∞),值域是[0,+∞);(3)当a>1时,定义域是{x|x≥0},当0<a<1时,定义域是{x|x≤0},值域是[0,+∞).思路2例1一种放射性物质不断衰减为其他物质,每经过一年剩留量约是原来的84%,求出这种物质的剩留量随时间(年)变化的函数关系式,作出它的图象,并从图象上求出经过多少年剩留量是原来的一半?(结果保留一个有效数字)活动:师生共同分析,先求出解析式,列出数值对应表,再描点,画出图象后,利用图象求解,由学生回答,学生有困难,教师可以提示,仔细审题,利用代数式分别表示出经过1年,2年,3年…,的剩留量,归纳出关系式,取几个关键点,作出函数图象,在纵轴上取表示0.5的点,作纵轴的垂线交图象于一点,过这一点作横轴的垂线,横轴与垂线交点的横坐标即为所求的年数.解:设最初的质量为1,时间用变量x 表示,剩留量用y 表示,则经过1年,y=1×84%=0.841;2x *画出指数函数y=0.84的图象,如图2-1-2-5.从图上可以看出y=0.5时,只需x=4.图2-1-2-5答:约经过4年,剩留量是原来的一半.点评:实际问题中要注意自变量的取值范围. 例2比较下列两个数的大小:(1)30.8,30.7;(2)0.75-0.1,0.750.1;(3)1.80.6,0.81.6;(4)(31)32-,253-.活动:教师提示学生指数函数的性质,根据学生的解题情况及时评价学生. 解法一:直接用科学计算器计算各数的值,再对两个数进行大小的比较:对(1)因为30.8=2.408225,30.7=2.157669,所以30.8>30.7;对(2)因为0.75-0.1=1.029186,0.750.1=0.971642,所以0.75-0.1>0.750.1;对(3)因为1.80.6=1.422864,0.81.6=0.699752,所以1.80.6>0.81.6;对(4)因为(31)32-=2.080084,253-=0.659754,所以(31)32->253-.解法二:利用指数函数的性质对两个数进行大小的比较:对(1)因为函数y=3x 在R 上是增函数,0.8>0.7,所以30.8>30.7;对(2)因为函数y=0.75x 在R 上是减函数,0.1>-0.1,所以0.75-0.1>0.750.1;对(3)由指数函数的性质知1.80.6>1.80=1=0.80>0.81.6,所以1.80.6>0.81.6;对(4)由指数函数的性质知(31)32->(31)0=1=20>253-,所以(31)32->253-.解法三:利用图象法来解,具体解法略.点评:在利用指数函数的性质对两个数进行大小比较时,首先把这两个数看作指数函数的两个函数值,利用指数函数的单调性比较.若两个数不是同一函数的两个函数值,则寻求一个中间量,两个数都与这个中间量进行比较,这是常用的比较数的大小的方法,然后得两个数的大小,数学上称这种方法为“中间量法”. 变式训练比较1-n n a 与n n a 1+(a>0,a≠1,n∈N *,n>2)的大小关系.解:因为1-n na =a1-n n ,n n a1+=a1+n n ,而n∈N *,n>2,所以n n n n 11+--=)1(1-n n >0,即nn n n 11+>-.因此:当a>1时a 1-n n >a1+n n ,即1-n n a >n n a 1+;当0<a<1时a1-n n <a1+n n ,即1-n n a <n n a 1+.知能训练课本P 58练习 1、2. 【补充练习】1.下列关系中正确的是( )A.(21)32<(51)12<(21)31B.(21)31<(21)32<(51)32C.(51)32<(21)31<(21)32D.(51)32<(21)32<(21)31答案:D2.函数y=a x(a>0,a≠1)对任意的实数x,y 都有( )A.f(xy)=f(x)·f(y)B.f(xy)=f(x)+f(y)C.f(x+y)=f(x)·f(y)D.f(x+y)=f(x)+f(y) 答案:C3.函数y=a x+5+1(a>0,a≠1)恒过定点________. 答案:(-5,2) 拓展提升 探究一:在同一坐标系中作出函数y=2x ,y=3x ,y=10x的图象,比较这三个函数增长的快慢.活动:学生深刻回顾作函数图象的方法,交流作图的体会.列表、描点、连线,作出函数y=2x ,y=3x ,y=10x的图象,如图2-1-2-6. x -2 -1 0 1 2 3 10 y=2x0.25 0.5 1 2 4 8 1024 y=3x 0.11 0.33 1 3 9 27 59049 y=10x0.010.111010010001010图2-1-2-6从表格或图象可以看出:(1)x<0时,有2x >3x >10x;(2)x>0时,有2x <3x <10x;(3)当x 从0增长到10,函数y=2x 的值从1增加到1 024,而函数y=3x的值从1增加到59 049.这说明x>0时y=3x 比y=2x 的函数值增长得快.同理y=10x 比y=3x的函数值增长得快.因此得:一般地,a>b>1时,(1)x<0时,有a x <b x<1;(2)x=0时,有a x =b x=1;(3)x>0时,有a x >b x>1;(4)指数函数的底数越大,x>0时其函数值增长就越快. 探究二:分别画出底数为0.2、0.3、0.5的指数函数的图象(图2-1-2-7),对照底数为2、3、5的指数函数的图象,研究指数函数y=a x(0<a<1)中a对函数的图象变化的影响.图2-1-2-7由此得:一般地,0<a<b<1时,(1)x>0时,有a x<b x<1;(2)x=0时,有a x=b x=1;(3)x<0时,有a x>b x>1;(4)指数函数的底数越小,x>0时,其函数值减少就越快.课堂小结1.指数函数的定义.2.指数函数的图象和性质.3.利用函数的图象说出函数的性质,即数形结合的思想(方法),它是一种非常重要的数学思想和研究方法.4.利用指数函数的单调性比较几个数的大小,特别是中间变量法.作业课本P59习题2.1A组 5、6、8、10.设计感想本节课是在前面研究了函数性质的基础上,研究具体的初等函数,它是重要的初等函数,它有着丰富的内涵,且和我们的实际生活联系密切,也是以后学习对数函数的基础,在指数函数的概念讲解过程中,既要向学生说明定义域是什么,又要向学生交代,为什么规定底数a是大于0而不等于1的,本节内容课堂容量大,要提高课堂的效率和节奏,多运用信息化的教学手段,顺利完成本堂课的任务.。