七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)
- 格式:docx
- 大小:112.31 KB
- 文档页数:7
北师大版七年级数学下册第六章概率初步综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中错误的是()A.抛掷一枚质地均匀的硬币,落地后“正面朝上”和“反面朝上”是等可能的B.甲、乙两地之间质地均匀的电缆有一处断点,断点出现在电缆的各个位置是等可能的C.抛掷一枚质地均匀的骰子,“朝上一面的点数是奇数”和“朝上一面的点数是偶数”是等可能的D.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,“摸到白球”和“摸到红球”是等可能的2、一个袋中装有红、黑、黄三种颜色小球共15个,这些球除颜色外均相同,其中红色球有4个,若从袋中任意取出一个球,取出黄色球的概率为25,则黑色球的个数为()A.3 B.4 C.5 D.63、下列事件中是不可能事件的是()A.铁杵成针B.水滴石穿C.水中捞月D.百步穿杨4、下列事件中,是必然事件的是()A.如果a2=b2,那么a=bB.车辆随机到达一个路口,遇到红灯C.2021年有366天D.13个人中至少有两个人生肖相同5、下列说法中,正确的是()A.随机事件发生的概率为12B.不可能事件发生的概率为0C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次6、袋中有除颜色以外其余都相同的红球3个,黄球2个,摇匀后,从中任意摸出1个球,记录颜色后放回、摇匀,再从中任意摸出1个球,像这样有放回地先后摸球3次,摸到的都是红球,则第4次摸到红球的概率是()A.1B.35C.0D.147、下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上8、小梅随机选择在下周一至周五的某一天去打新冠疫苗,则她选择在周二去打疫苗的概率为()A.1 B.15C.17D.139、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为()A.13B.12C.23D.3410、掷一个骰子时,点数小于2的概率是()A.16B.13C.12D.0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个袋子中有2个红球和若干个白球,这些球除颜色外,形状、大小、质地完全相同,在看不到的情况下,随机摸出一个红球的概率是15,则袋中有___个白球.2、一枚质地均匀的骰子,每个面标有的点数是1~6,抛掷骰子,点数是3的倍数的概率是____.3、不透明的袋子里装有红球2个,绿球1个,除颜色外无其他差别,每次摸球前先将球摇匀,摸出一个后记下颜色再放回袋中,连续摸球两次为一红一绿的概率是 __.4、同时抛掷两枚质地均匀的骰子(骰子的6个面上分别刻有1~6的数字),向上一面的点数之和为1是_______(填“随机事件”或“确定事件”).5、一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无差别,从中随机摸出一个小球,则摸到的是红球的概率为___.三、解答题(5小题,每小题10分,共计50分)1、在一个不透明的口袋里装有4个白球和6个红球,它们除颜色外完全相同.(1)事件“从口袋里随机摸出一个球是绿球”发生的概率是__________;(2)事件“从口袋里随机摸出一个球是红球”发生的概率是__________;(3)从口袋里取走x个红球后,再放入x个白球,并充分摇匀,若随机摸出白球的概率是45,求x的值.2、袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?为了验证你的想法,动手摸一下吧!每名同学随机从袋子中摸出1个球,记下球的颜色,然后把球重新放回袋子并摇匀.汇总全班同学摸球的结果并把结果填在下表中.比较表中记录的数字的大小,结果与你事先的判断一致吗?在上面的摸球活动中,“摸出黑球”和“摸出白球”是两个随机事件.一次摸球可能发生“摸出黑球”,也可能发生“摸出白球”,事先不能确定哪个事件发生.由于两种球的数量不等,所以“摸出黑球”与“摸出白球”的可能性的大小不一样,“摸出黑球”的可能性大于“摸出白球”的可能性.你们的试验结果也是这样吗?3、某商场进行有奖促销活动,转盘分为5个扇形区域,分别是特等奖、一等奖、二等奖、三等奖及不获奖,制作转盘时,将获奖扇形区域圆心角分配如下表:30如果不用转盘,请设计一种等效实验方案(要求写清楚替代工具和实验规则).4、动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3.(1)现年20岁的这种动物活到25岁的概率为多少?(2)现年25岁的这种动物活到30岁的概率为多少?5、把一副普通扑克牌中的13张黑桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,求下列事件的概率:(1)抽出的牌是黑桃6;(2)抽出的牌是黑桃10;(3)抽出的牌带有人像;(4)抽出的牌上的数小于5;(5)抽出的牌的花色是黑桃.-参考答案-一、单选题1、D【分析】根据随机事件发生的可能性结合概率公式分别对每一项进行分析,即可得出答案.【详解】解:A、抛掷一枚质地均匀的硬币,落地后“正面朝上”和“反面朝上”的概率是相等的,是等可能的,正确,不符合题意;B、甲、乙两地之间质地均匀的电缆有一处断点,断点出现在电缆的各个位置上的概率相同,是等可能的,正确,不符合题意;C、抛掷一枚质地均匀的骰子,“朝上一面的点数是奇数”和“朝上一面的点数是偶数”的概率是相等的,是等可能的,正确,不符合题意;D、一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,“摸到白球”的概率大于“摸到红球”的概率,故本选项错误,符合题意;故选:D.【点睛】本题考查的是随机事件发生的可能性的大小,概率的含义,掌握“等可能事件的理解”是解题的关键.2、C【分析】根据取到黄球的概率求出黄球个数,总数减去红黄球个数,即可得到黑球个数.【详解】根据题意可求得黄球个数为:15×25=6个,所以黑球个数为:15-6-4=5个,故选:C.【点睛】本题考查的是概率计算相关知识,熟记概率公式是解答此题的关键.3、C【分析】根据随机事件,必然事件和不可能事件的定义,逐项即可判断.【详解】A、铁杵成针,一定能达到,是必然事件,故选项不符合;B、水滴石穿, 一定能达到,是必然事件,故选项不符合;C、水中捞月,一定不能达到,是不可能事件,故选项符合;D、百步穿杨,不一定能达到,是随机事件,故选项不符合;故选:C【点睛】本题考查了随机事件,必然事件,不可能事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、D【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.【详解】解:如果a2=b2,那么a b=±,原说法是随机事件,故A不符合题意;车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;2021年是平年,有365天,原说法是不可能事件,故C不符合题意;13个人中至少有两个人生肖相同,是必然事件,故D符合题意,故选:D.【点睛】本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.5、B【分析】根据事件发生可能性的大小进行判断即可.【详解】解:A、随机事件发生的概率为0到1之间,选项错误,不符合题意;B、不可能事件发生的概率为0,选项正确,符合题意;C、概率很小的事件可能发生,选项错误,不符合题意;D、投掷一枚质地均匀的硬币 100 次,正面朝上的次数可能是 50 次,选项错误,不符合题意;故选:B【点睛】本题考查随机事件与不可能事件的概率,掌握随机事件发生的概率在0到1之间,不可能事件发生的概率为0是关键.6、B【分析】根据概率的计算公式直接解答即可.【详解】解:∵袋中有除颜色以外其余都相同的红球3个,黄球2个共5个球,∴第4次摸到红球的概率是35,故选:B.【点睛】此题考查简单的概率计算,熟记概率计算公式并理解事件的意义是解题的关键.7、D【分析】必然事件就是一定发生的事件,根据定义即可解答.【详解】解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.故选:D.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、B【分析】根据题意中从下周一至周五的某一天去打新冠疫苗,共有5种情况,且每种情况的可能性相同,即可得出选择周二打疫苗的概率.【详解】解:小梅选择周一到周五共有5种情况,且每种情况的可能性相同,均为15,∴选择周二打疫苗的概率为:15,故选:B.【点睛】题目主要考查简单概率的计算,理解题意是解题关键.9、B【分析】由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案.【详解】解:∵在不透明的布袋中装有1个白球,2个红球,3个黑球,∴从袋中任意摸出一个球,摸出的球是红球的概率是:31 1232=++.故选:B.【点睛】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.10、A【分析】让骰子里小于2的数的个数除以数的总数即为所求的概率.【详解】解:掷一枚均匀的骰子时,有6种情况,即1、2、3、4、5、6,出现小于2的点即1点的只有一种,故其概率是16.故选:A.【点睛】本题考查了概率公式的应用,解题的关键是注意概率=所求情况数与总情况数之比.二、填空题1、8【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,求出即可.【详解】解:设白球x个,根据题意可得:21 25x=+,解得:x=8,故袋中有8个白球.故答案为:8【点睛】本题主要考查了根据概率的有关计算,准确计算是解题的关键.2、1 3【分析】根据题意可得点数是3的倍数的数有3、6,再由概率公式,即可求解.【详解】解:根据题意得:点数是3的倍数的数有3、6,∴点数是3的倍数的概率是2163 .故答案为:1 3【点睛】本题主要考查了计算概率,熟练掌握概率的公式是解题的关键.3、4 9【分析】根据概率公式计算概率即可【详解】解:列表如下:由表知,共有9种等可能结果,其中连续摸球两次为一红一绿的有4种结果,所以连续摸球两次为一红一绿的概率为49,故答案为:4 9【点睛】本题考查了概率的计算,正确画出表格是解题关键.4、确定事件【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:两枚骰子向上的一面的点数之和等于1,是不可能事件,是确定事件.故答案为:确定事件.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、3 5【分析】将红球的个数除以球的总个数即可得.【详解】解:根据题意,摸到的不是红球的概率为663 631105==++,答案为:35.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.三、解答题1、(1)0;(2)35;(3)4x=【分析】(1)根据口袋中没有黑球,不可能摸出黑球,从而得出发生的概率为0;(2)用红球的个数除以总球的个数即可;(3)根据概率公式列出算式,求出x的值即可得出答案.【详解】解:解:(1)∵口袋中装有4个白球和6个红球,∴从口袋中随机摸出一个球是绿球是不可能事件,发生的概率为0;故答案为:0;(2)∵口袋中装有4个白球和6个红球,共有10个球,∴从口袋中随机摸出一个球是红球的概率是63105=;故答案为:35;(3)根据题意得:44105x +=, 解得:x =4,答:取走了4个红球.【点睛】此题考查了概率的定义:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 2、(1)都有可能;(2)不一样大,黑球的可能性大;验证:30,15(答案不唯一);结果和事先判断一致,试验结果一致【分析】(1)根据随机事件的定义可知;(2)根据事件发生的可能性大小判断即可.【详解】(1)都有可能;(2)不一样大,黑球的可能性大.验证:答案不唯一,假设全班学生共45人,汇总全班同学摸球的结果并把结果填在下表中.根据等可能性的概率,试验结果和事先判断一致;试验结果一致.故答案为:30,15(答案不唯一).【点睛】本题考查了事件的可能性,简单概率的求法,掌握比较事件的可能性是解题的关键.【分析】根据扇形圆心角度数可得出各种奖项所占比例,进而利用抽签方式得出等效试验方案.【详解】解:由题意可得出:可采取“抓阄”或“抽签”等方法替代,例如在一个不透明的箱子里放进36个除标号不同外,其他均一样的乒乓球,其中1个标“特”,2个标“一”,3个标“二”,9个标“三”,其余不标数字,摸出标有哪个奖次的乒乓球,则获相应的等级的奖品.【点睛】此题主要考查了模拟实验,替代实验的设计方案很多,但要抓住问题的实质,即各奖项发生的概率要保持不变.4、(1)现年20岁的这种动物活到25岁的概率为0.625;(2)现年25岁的这种动物活到30岁的概率为0.6.【分析】设这种动物有x只,根据概率的定义,用活到25岁的只数除以活到20岁的只数可得到现年20岁的这种动物活到25岁的概率;用活到30岁的只数除以活到25岁的只数可得到现年25岁的这种动物活到30岁的概率【详解】解:设这种动物有x只,则活到20岁的只数为0.8x,活到25岁的只数为0.5x,活到30岁的只数为0.3x.(1)现年20岁的这种动物活到25岁的概率为0.50.8xx=0.625.(2)现年25岁的这种动物活到30岁的概率为0.30.5xx=0.6.本题考查了概率的计算,正确理解概率的含义是解决本题的关键.概率等于所求情况数与总情况数之比.5、(1)113;(2)113;(3)313;(4)413;(5)1【分析】从13张黑桃牌中任意抽取一张,有13种结果,并且每种结果的可能性都相等.(1)根据点数为6的只有1张即可得出结论;(2)根据点数为10的只有1张即可得出结论;(3)根据有人头像的共3张可得出结论;(4)由点数小于5的有4张可得出结论;(5)根据共有13张黑桃可得出结论.【详解】解:从13张黑桃牌中任意抽取一张,有13种结果,并且每种结果的可能性都相等.(1)P(抽出的牌是黑桃6)=113.(2)P(抽出的牌是黑桃10)=113.(3)P(抽出的牌带有人像)=313.(4)P(抽出的牌上的数小于5)=413.(5)P(抽出的牌的花色是黑桃)=1.【点睛】本题考查的是概率公式,熟记概率=所求情况数与总情况数之比是解答此题的关键.。
北师大版七年级下册数学第六章概率初步含答案一、单选题(共15题,共计45分)1、在一个不透明的袋子里装着9个完全相同的乒乓球,把它们分别标记上数字1,2,3,4,5,6,7,8,9,从中随机摸出一个小球,标号为奇数的概率为( )A. B. C. D.2、某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0B.C.D.13、如果关于x的一元二次方程x2﹣kx+2=0中,k是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率为()A. B. C. D.4、一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是()A. B. C. D.5、如图,将正方形各边三等分,在正方形ABCD内随机取一点,则这点落在阴影部分的概率是()A. B. C. D.6、如图,衣橱中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同.若从衣橱里各任取一件上衣和一条裤子,它们取自同一套的概率是( )A. B. C. D.7、一张圆桌旁有四个座位,A先坐下(如图),B选择其它三个座位中的一个坐下,则A与B相邻的概率是( )A. B. C. D.8、四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A. B. C. D.19、下列说法中错误的是()A.某种彩票的中奖率为1%,买100张彩票一定有1张中奖B.从装有10个红球的袋子中,摸出1个白球是不可能事件C.为了解一批日光灯的使用寿命,可采用抽样调查的方式D.掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是10、中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米,50×2米,100米中随机抽一项,恰好抽中实心球和50米的概率是()A. B. C. D.11、在数据1,-1,4,-4中任选两个数据,均是一元二次方程x-3x-4=0的根的概率是( )A. B. C. D.12、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、等腰梯形四个图案,卡片背面完全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是()A. B. C. D.113、一个不透明的盒子中,放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀,从中随机的抽出一张卡片,则“该卡片上的数字大于”的概率是()A. B. C. D.14、对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大15、在一个不透明的袋子里装有6个颜色不同的球(除颜色不同外,质地、大小均相同),其中个球为红球,个球为白球,若从该袋子里任意摸出1个球,则摸出的球是白球的概率为( )A. B. C. D.二、填空题(共10题,共计30分)16、一个密码箱的密码,每个数位上的数都是从0到9的自然数.父亲忘记了最后二个数字,想要尝试拨对,那么父亲第一次就拨对这二位数字的概率是________.17、袋子里装有5个红球、3个白球、1个黑球,每个球除颜色之外其余都相同,伸手进袋子里任摸一个球,则摸到________球可能性最小.18、如图,将3枚相同的硬币放入一个3×4的长方形格子中(每个小正方形格子只能放1枚硬币).则所放的3枚硬币中,任意两枚都不同行且不同列的概率为________.19、袋子中装有除颜色外完全相同的n个黄色乒乓球和3个白色乒乓球,从中随机抽取1个,若选中白色乒乓球的概率是,则n的值是________.20、在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有20个红球,且摸出白球的概率是,则估计袋子中大概有球的个数________ .21、盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意摸出一支笔芯,则摸出黑色笔芯的概率是________.22、如图,平行四边形ABCD的对角线交于点O,过点O的直线EF分别交边AB,CD于E,F两点,在这个平行四边形上做随机投掷图钉试验,针头落在阴影区域内的概率是________.23、在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到白色乒乓球的概率为,那么盒子内白色乒乓球的个数为________.24、在一个不透明的布袋中装有个蓝球和个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是,则________.25、一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为________.三、解答题(共6题,共计25分)26、如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.27、2月中旬,沿海各地再次出现用工荒,甲乙两人是技术熟练的工人,他们参加一次招聘会,听说有三家企业需要他们这类人才,虽然对三家企业的待遇状况不了解,但是他们一定会在这三家企业中的一家工作.三家企业在招聘中有相同的规定:技术熟练的工人只要愿意来,一定招,但是不招在招聘会中放弃过本企业的工人.甲乙两人采用了不同的求职方案:甲无论如何选位置靠前的第一家企业;而乙则喜欢先观察比较后选择,位置靠前的第一家企业,他总是仔细了解企业的待遇和状况后,选择放弃;如果第二家企业的待遇状况比第一家好,他就选择第二家企业;如果第二家企业不比第一家好,他就只能选择第三家企业.如果把这三家企业的待遇状况分为好、中、差三个等级,请尝试解决下列问题:(1)好、中、差三家企业按出现的先后顺序共有几种不同的可能?(2)你认为甲、乙两人采用的方案,哪一种方案使自己找到待遇状况好的企业的可能性大?请说明理由?28、在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a的值;(2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).29、袋中有大小相同的红球和白球共5个,任意摸出一红球的概率是.求:(1)袋中红球、白球各有几个?(2)任意摸出两个球(不放回)均为红球的概率是多少?30、现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为、,图案为“保卫和平”的卡片记为B)参考答案一、单选题(共15题,共计45分)1、C2、C3、A4、C5、A6、D7、C8、B9、A11、A12、B13、A14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)28、29、。
北师大版七年级下册数学第六章概率初步含答案一、单选题(共15题,共计45分)1、在一只不透明的口袋中放入红球5个,黑球1个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n是()A.3B.4C.5D.62、分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A. B. C. D.3、如图所示,电路图上有A,B,C三个开关和一个小灯泡,闭合开关C或者同时闭合开关A、B,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于()A. B. C. D.4、一个密码箱的密码,每个数位上的数都是从0到9的自然数.若要使不知道密码的人一次就拨对密码的概率小于,则密码的位数至少是( )A.3位B.4位C.5位D.6位5、甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是()A.1B.C.D.6、一个不透明的袋子里装有6个只有颜色可以不同的球,其中4个红球,2个白球.从袋中任意摸出1个球,则摸出的球是红球的概率为()A. B. C. D.7、同时抛掷两枚硬币,正面都朝上的概率为()A. B. C. D.8、从1~9这九个自然数中任取一个,是2的倍数的概率是( )A. B. C. D.9、甲盒子中有编号为1、2、3的3个白色乒乓球,乙盒子中有编号为4、5、6的3个黄色乒乓球.现分别从每个盒子中随机地取出1个乒乓球,则取出乒乓球的编号之和大于6的概率为().A. B. C. D.10、在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是()A. B. C. D.11、从长为10cm、7cm、5cm、3cm的四条线段中任选三条能够组成三角形的概率是()A. B. C. D.12、从连续正整数10-99中选出一个数,其中每个数被选出的机会相等,求选出的数其十位数字与个位数字的和为9的概率是()A. B. C. D.13、从-2、-1、0、1、2 、3这六个数中,随机抽取一个数,记作a,关于x的方程的解是正数,那么这 6 个数中所有满足条件的 a 的值有()个.A.1B.2C.3D.414、有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是,将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是随的增大而增大的概率是()A. B. C. D.115、小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是________.17、以下事件:①明天要下雨;②打开电视机,正在直播足球比赛;③拋掷一枚正方体骰子,掷得的点数不会小于1;④花2元钱买彩票,中500万元大奖;⑤守株待兔;⑥生老病死;⑦长生不老.其中是必然事件的有________,是不可能事件的有________(填序号)18、在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,则摸出绿球的概率是________.19、在数学课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示:种子数(粒) 100 200 300 400发芽种子数(粒) 94 187 282 376由此估计这种作物种子发芽率约为________(精确到0.01).20、判断下面的说法:如果一件事发生的可能性为百万分之一,那么它就不可能发生________(填“正确”或“错误”)21、已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y= 图象上的概率是________.22、我们规定把同一副扑g牌中的红桃,黑桃,梅花三张牌背面朝上放在桌子上,将扑g牌洗匀后从中随机抽取一张,记下扑g牌的花色后放回,洗匀后再随机抽取一张,则两次抽取的扑g牌为同一张的概率为________.23、在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是________。
北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)一、选择题(30分)1.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50 2.下列事件中,属于必然事件的是( )A .随意抛掷一枚骰子,掷得偶数点B .从一副扑克牌中抽出一张,抽得红桃牌C .任意选择电视的某一频道,正在播放动画片D .在同一年出生的367名学生中,至少有两个人同月同日生3.在相同条件下重复试验,若事件A 发生的概率是7100,则下列说法中正确的是( )A .事件A 发生的频率是7100 B .反复大量做这种试验,事件A 只发生了7次C .做100次这种试验,事件A 一定发生了7次D .做100次这种试验,事件A 可能发生了7次4.(2019·东营)从1,2,3,4中任取两个不同的数,分别记为a 和b ,则a 2+b 2>19的概率是( ) A .12 B .512 C .712 D .135.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( )A .16B .13C .12D .236.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是( )A .110B .19C .16D .157.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是( )A .16B .13C .12D .238.如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为( )A .15B .4115C .49D .139.下列说法正确的是( )A .“明天降雨的概率是60%”表示明天有60%的时间都在降雨B .“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在16附近10.某学习小组在做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的试验最有可能的是( )试验 次数 100 200 300 500 800 1000 2000 频率0.3650.3280.3300.3340.3360.3320.333B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .抛一个质地均匀的正六面体骰子,向上的面点数是5D .抛一枚硬币,出现反面的概率 二、填空题(16分)11.抛掷一枚质地均匀的硬币,落地后正面朝上的概率是______.12.从分别标有1,2,3,4的四张卡片中任意抽取1张,抽到奇数的概率是______. 13.一个不透明的盒子中装有10个黑球和若干个白球,它们除了颜色不同外,其余均相同,从盒子中随机摸出一球并记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球有________个.14.若将分别写有“生活”“城市”的2张卡片,随机放入“ 让 更美好”中的两个 内(每个 只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是________.15.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,朝上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)16.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向的数大于6的概率为________.17.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为________.18.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是________.三、简答题(54分)19.(9分)一个口袋中有10个红球和若干个白球,请通过以下试验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中.不断重复上述过程,试验中总共摸了200次,其中有50次摸到红球.20.(9分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值(2)于45,求m的值.21.(12分)(2018·苏州期末)暑假将至,某商场为了吸引顾客,设计了可以自由转动的转盘(如图所示,转盘被均匀地分为20份),并规定:顾客每买够200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.若某顾客购物300元.(1)求他此时获得购物券的概率是多少;(2)他获得哪种购物券的概率最大?请说明理由.22.(12分)有一个质地均匀的小正方体,正方体的六个面上分别标有1,2,3,4,5,6这六个数字.现在有甲、乙两位同学做游戏,游戏规则是:任意掷出正方体后,如果朝上的数字是6,甲是胜利者;如果朝上的数字不是6,乙是胜利者.你认为这个游戏规则对甲、乙双方公平吗?为什么?如果不公平,你打算怎样修改才能使游戏规则对甲、乙双方公平?23.(12分)一个小球分别在如图①②所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球停留在白色区域的概率分别是多少?参考答案1~10:ADDDB AACDB 11.1/2 12. 1/2 13. 15 14. 1/2 15. ①③ 16. 1/4 17. 2/3 18. 1/3 19.解:试验中总共摸了200次,其中50次摸到红球,则摸出一球是红球的概率估计值是50200=14,因为红球有10个,则袋中共有球10÷14=40(个),故口袋中白球的个数为40-10=30(个).20. (1)4 2,3(2)解:根据题意得6+m 10=45,解得m =2,所以m 的值为2.21.(1)解:因为转盘被均匀地分为20份,转动转盘获得购物券的有10种情况,所以他此时获得购物券的概率是1020=12.(2)解:他获得50元购物券的概率最大.理由:因为P (获得200元购物券)=120,P (获得100元购物券)=320,P (获得50元购物券)=620=310,所以他获得50元购物券的概率最大.22.解:这个游戏不公平.因为正方体的六个面上分别标有1,2,3,4,5,6这六个数字,其中数字6只有1个,也就是说甲胜利的概率是16;不是6的数字有5个,也就是说乙胜利的概率是56,双方胜利的机会不是均等的,所以说这个游戏不公平.可以把游戏规则改为:任意掷出正方体后,如果朝上的数字是奇数(1,3,5),甲是胜利者;如果朝上的数字是偶数(2,4,6),乙是胜利者,按这样的游戏规则对甲、乙双方是公平的.(答案不唯一) 23.解:图①:P =34;图②:P =23.。
七年级下册数学第六章 概率初步 测试题(时间60分钟 满分100分)一、选择题(每小题3分,共24分)1、成语“瓮中捉鳖”所描述的事件是( )A.不可能事件B.不确定事件C.必然事件D. 随机事件 2、任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是 ( ) A.21 B.31 C.32 D.61 3、一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则P (摸到红球)= ( )A.21 B. 32 C.51 D.101 4、如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为1P ,在乙种地板上最终停留在黑色区域的概率为2P ,则 ( ) A.21P P > B. 21P P < C. 21P P = D.以上都有可能5、天气台预报明天下雨的概率为70%,则下列理解正确的是( )A .明天30%的地区会下雨B .明天30%的时间会下雨C .明天出行不带雨伞一定会被淋湿D .明天出行不带雨伞被淋湿的可能性很大 6、100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的是5的倍数编号的球的概率是 ( )A.201 B. 10019 C.51 D.以上都不对 7、下列事件是必然事件的是( )A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球是红球D.农历十五的晚上一定能看到圆月 8 、如图,一圆盘上画有三个同心圆,由里向外半径依次是5cm ,10cm ,15cm ,将圆盘分成三部分,飞镖可落在任何一部分内,则飞镖落在最里面的圆内的概率是( )A.13 B.19 C.16 D.14二、填空题(每小题4分,共32分) 9、一副扑克牌去掉大王、小王后随意抽取一张,P(抽到方块)=_____; P(抽到3)=_____. 10、下列事件中:①太阳从西边出来;②树上的苹果飞到月球上;③普通玻璃从三楼摔到一楼的水泥地面上碎了;④小颖的数学测试得了100分.随机事件为 ; 必然事件为 .(只填序号)11、随机掷一枚均匀的硬币,前三次中一次正面朝上,两次反面朝上,那么第四次正面朝上的概率是____ . 12、给出以下结论:①试验的次数越多,频率越接近概率;②二战时期美国某公司生产的降落伞合格率达99.9%,使用该公司的降落伞不会发生危险;③如果一件事不是必然发生的,那么它就不可能发生;④从1、2、3、4、5中任取一个数是奇数的可能性要大于偶数的可能性. 其中不正确的结论是_______________.13、某路口南北方向红绿灯的设置时间为:红灯40s ,绿灯60s ,黄灯3s . 小刚的爸爸随机地由南往北开车经过该路口时遇到红灯的概率是_________. 14、口袋里有红、绿、黄三种颜色的球,其中有红球4个,绿球5个,任意摸出1 个绿球的概率是,摸出一个黄球的概率是______. 15、如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .16.一箱灯泡为24个, 灯泡的合格率是92.5%, 则从中抽取一个是次品的概率是________. 三、解答题17、(8分)右图是两个可以自由转动的转盘,转动转盘,分别计算转盘停止后,指针落在红色区域的概率.(1) (2)1318. (9分)一个不透明的袋子里有60个除颜色外都相同的红色、蓝色和白色的球.随机摸出一个球,拿出红色球的概率是35%,拿出蓝色球的概率是25%.袋子里每种颜色的球各有多少个?19.(9分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共80只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复。
第六章概率初步一、选择题(共18小题;共54分)1. 一条信息可以通过如图的网络线由上(点)往下向各站点传送,例如:信息到点可由经的站点送达,也可由经的站点送达,共有两条途径传送,则信息由点到达的不同途径共有A. 条B. 条C. 条D. 条2. 从件不同款式的衬衣和条不同款式的裙子中分别取一件衬衣和一条裙子搭配,可能的情况有A. 种B. 种C. 种D. 种3. 从标号分别为,,,,的张卡片中,随机抽取张.下列事件中,必然事件是A. 标号小于B. 标号大于C. 标号是奇数D. 标号是4. 一个暗箱里装有个黑球,个白球,个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是C. D.5. 盒子中装有个红球和个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是A. B. C. D.6. 太阳绕地球转,这是的.A. 可能B. 不可能C. 一定7. 下列事件中,是必然事件的是A. 打开电视机,正在播放新闻B. 父亲年龄比儿子年龄大C. 通过长期努力学习,你会成为数学家D. 下雨天,每个人都打着雨伞8. 某篮球运动员在同一条件下,进行投篮训练,共投次,其中投中次,据此估计,这名球员投篮一次投中的概率约是A. B. C. D.9. 下列成语所描述的事件概率为的是A. 水中捞月B. 守株待兔C. 瓮中捉鳖D. 十拿九稳10. 下列说法正确的是A. 某种彩票的中奖率为千分之一,一次买一千张彩票一定中奖B. 一批零件的合格率为百分之九十九,任意抽查一个一定合格C. 下雨天走在路上不太可能被雷电击倒D. 抛掷两枚一元的硬币,出现一正一反的可能性比出现两个正面的可能性小11. 小明训练上楼梯赛跑,他每步可上阶或者阶(不上阶),那么小明上阶楼梯的不同方法共有(注:两种上楼梯的方法只要一步所踏楼梯的阶数不同,便认为是不同的方法)A. 种B. 种C. 种D. 种12. 在投掷一枚硬币的游戏过程中,已知“正面朝上”的概率为,那么下列说法正确的是A. 投掷次必有次“正面朝上”B. 投掷很多次的时候,极有可能出现“正面朝上”C. 投掷次可能有次“正面朝上”D. 投掷很多次的时候,极少出现“正面朝上”13. 下列事件中最有可能发生的是A. 刚买回来的新手机不能打电话B. 足球比赛比分为C. 北方的冬天下雪D. 买彩票中了一等奖14. 下列事件中,属于随机事件的是A. 在十进制中B. 从长度分别为厘米,厘米,厘米,厘米的根小木棒中,取根为边拼成一个三角形C. 方程在实数范围内有解D. 在装有个红球的口袋内,摸出一个白球15. 如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是A. B. C. D.16. 某班学生中随机选取一名学生是男生的概率是,那么该班男女生的人数比是17. 现有,,,,共五个数,从中取若干个数分给A,B两组,两组都不能放空,要使得B组中最小的数比A组中最大的数都大,则有分配方法A. 种B. 种C. 种D. 种18. 小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是D.二、填空题(共7小题;共31分)19. 现有张扑克牌,牌面分别是方块,,和草花,,,小红从草花和方块里各摸张牌,摸到张牌上的数之和是的概率是.20. 三条任意长的线段可以组成一个三角形,这一事件是事件.21. 某班要选名同学代表参加班级间的交流活动.现在按下面的办法选取:把全班同学的姓名分别写在没有明显差别的纸片上,把纸片混放在一个盒子里,充分搅拌后,随机抽取张,按照纸片上所写的名字选取名同学.你觉得上面的选取过程是简单随机抽样吗? (填“是”或“不是”).22. 甲、乙、丙、丁、戊五位同学参加一次活动,很幸运的是他们都得到了一件精美的礼品(如图),他们每人只能从其中一串的最下端取一件礼品,直到礼物取完为止,甲第一个取得礼物,然后乙,丙,丁,戊依次取得第到第件礼物,当然取法各种各样,那么他们共有种不同的取法.23. 一道选择题有A,B,C,D 个选项,只有个选项是正确的.若两位同学随意任选个答案,则同时选对的概率为.24. 若一事件发生的概率是,则它发生(填“必然”、“可能”或“不可能”).25. 从学校任选一位同学,事件:该同学是八年级的,事件:该同学是九年级()班的,事件:该同学是男的,用,,分别表示事件,,发生的可能性大小,按从小到大的顺序排列是.三、解答题(共5小题;共65分)26. 如图,圆盘分成大小相等的扇形,分别写有数字,任意转动圆盘,比较下列事件的可能性大小,并按照从大到小的顺序排列(当指针落在扇形边界时,统计在逆时针方向相邻的扇形区域内).()指针落在数字区域内,可能性记为;()指针落在奇数区域内,可能性记为;()指针落在的倍数区域内,可能性记为.27. 请你设计一个游戏,其中包括“不太可能”发生的事件、“很有可能”发生的事件、“不可能发生”的事件.28. 有一个质地均匀的正方体,一面涂上红色,两面涂上黄色,三面涂上绿色.用依次表示抛掷出“红”“黄”“绿”“红或黄或绿”“蓝”的可能性大小,请你将它们的可能性大小按照从小到大的顺序排列.29. 小明有双黑袜子和双白袜子,假设袜子不分左右,那么从中随机抽取只恰好配成一双的概率是多少?如果袜子分左右呢?30. 在袋中装有大小、形状、质量完全相同的个白球和个红球,甲、乙两人从中进行摸球游戏,在游戏之前两人就各有分,然后从中轮番摸球,每次摸三个球,然后放回袋中搅匀,再由另一个人摸球,得分规则如下:最后以得分高者为胜者,请问这个游戏对甲、乙双方公平吗?如果不公平,谁更有利;如果公平,请说明理由.答案第一部分1. C 【解析】经的只有条,经的有条,经的只有条,经的有条,所以总共有条.2. D3. A4. C5. C6. B7. B8. B9. A10. C11. C 【解析】根据题意可知,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,,上阶楼梯的方法数为.12. B13. C14. B15. C【解析】在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有种等可能的结果,与图中阴影部分构成轴对称图形的有②④⑤,共种情况,所以与图中阴影部分构成轴对称图形的概率是.16. A17. B18. B 【解析】如图,基本事件是,颜色都对号了的事件是,所以答案是第二部分【解析】摸到张牌上的数之和是的情况有:,;,;,.故摸到张牌上的数之和是的概率是.20. 随机21. 是22.【解析】甲、乙、丙、丁、戊取礼物的顺序有种,为:①A,B,C,D,E;②A,C,D,E,B;③A,C,D,B,E;④A,C,B,D,E;⑤C,D,E,A,B;⑥C,D,A,B,E;⑦C,D,A,E,B;⑧C,A,B,D,E;⑨C,A,D,B,E;⑩C,A,D,E,B.23.【解析】一个同学任取一个的概率为个答案同时选对的概率为.24. 可能25.第三部分26. .27. 略28. .29. 共有种等可能的结果数,若袜子不分左右,从中随机抽取只恰好配成一双的结果数为,所以袜子不分左右,那么从中随机抽取只恰好配成一双的概率;若袜子分左右,从中随机抽取只恰好配成一双的结果数为,所以袜子分左右,那么从中随机抽取只恰好配成一双的概率.30. 这个游戏对双方公平.理由:在三红三白六个球中,任意摸出三个球,是三红的概率为,同理三个球都为白球的概率也为,若摸出的球是二红一白,则有三种情况:红,红,白;红,白,红;白,红,红,摸出球为二红一白概率为,同理二白一红的概率也为,所以(分),(分),所以,所以摸一次球甲、乙两人所得的平均分相等,因此这个游戏公平.。
第6章概率初步一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.14.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A .B .C.D.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子个数187 282 435 624 718 814 901发芽种子频率0.935 0.940 0.870 0.891 0.898 0.904 0.901下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:日期次数教室星期一星期二星期三星期四星期五A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期的下午找到空教室的可能性最大.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:五星四星三星及三星以下合计评价条数等级酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34根据以上信息,回答下列问题:(1)m的值为,n的值为;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为;若乙企业生产的某批产品共5万件,估计质量优秀的有万件;(3)根据图表数据,你认为企业生产的产品质量较好,理由为.(从某个角度说明推断的合理性)19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40 求“厨余垃圾”投放正确的概率.参考答案与试题解析一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、直角三角形的两个锐角互余是必然事件,符合题意;B、买一张电影票座位号是偶数号,是随机事件,不合题意;C、投掷一个骰子正面朝上的点数是7,是随机事件,不合题意;D、打开“学习强国APP”,正在播放歌曲《我和我的祖国》是随机事件,不合题意.故选:A.2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖【分析】事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.依据概率的意义进行判断即可.【解答】解:A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次不一定抛掷出5点,本选项错误;B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等,本选项正确;C.明天降雨的概率是80%,表示明天不一定有80%的时间降雨,本选项错误;D.某种彩票中奖的概率是1%,因此买100张该种彩票不一定会中奖,本选项错误;故选:B.3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.1【分析】根据概率=所求情况数与总情况数之比解答即可.【解答】解:∵共3个素数,分别是5,7,11,∴抽到的数是7的概率是;故选:C.4.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生【分析】根据不可能事件、随机事件、必然事件的有关概念和题意分别对每一项进行判断即可.【解答】解:A、可能性很大的事件在一次试验中不一定会发生,故本选项错误;B、可能性很大的事件在一次试验中不一定会发生,正确;C、必然事件在一次实验中一定会发生,故本选项错误;D、不可能事件在一次实验中不可能发生,故本选项错误;故选:B.5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,【分析】利用概率公式求得概率后即可解得本题.【解答】解:∵白色的有30颗,橘色的有10颗,∴摇匀后倒出一颗,是白色的可能性为,橘色的可能性为,故选:B.7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A.B.C.D.【分析】首先设设正方形的面积,再表示出阴影部分面积,然后可得概率.【解答】解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为,则点取自黑色部分的概率为:=,故选:C.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子187 282 435 624 718 814 901 个数0.935 0.940 0.870 0.891 0.898 0.904 0.901发芽种子频率下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.9左右,于是得到种子发芽的概率约为0.9,据此求出1000kg种子中大约有100kg种子是不能发芽的即可.【解答】解:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率大约是0.891;故错误;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);故正确;③实验的种子个数最多的那次实验得到的发芽种子的频率不一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽,故正确;其中合理的是②④,故选:D.9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.【分析】分别求出背面印有“改革”字样的卡片数和总的卡片数,再根据概率公式计算即可.【解答】解:∵背面印有“改革”字样的卡片有2张,共有6张卡片,∴从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是=.故选:A.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2【分析】设袋中绿球的个数有x个,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设袋中绿球的个数有x个,根据题意得:=,解得:x=5,答:袋中绿球的个数有5个;故选:B.二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.【分析】根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.【解答】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:=;故答案为:.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:星期一星期二星期三星期四星期五日期次数教室A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期三的下午找到空教室的可能性最大.【分析】找到使用次数最少的一天下午即可得到答案.【解答】解:观察表格发现星期三下午使用1+0+1=2次,最少,∴本次彩排安排在星期三的下午找到空教室的可能性最大,故答案为:三.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵有6张质地、大小、背面完全相同的卡片,在它们正面分别写着:“我”“参”“与”“我”“快”“乐”这6个汉字,∴抽出的卡片正面写着“我”字的可能性是:=.故答案为:.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.【分析】根据题意分析可得:摇奖箱内装有20个小球,所以随机抽取一个小球共20种情况,其中有5种情况是小球中奖,故其概率是=.【解答】解:P(中奖)==.故本题答案为:.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是.故答案为:16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:④①③②.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:∵有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,∴①取到凉白开的概率是=,②取到白糖水的概率是,③取到矿泉水的概率是=,④没有取到矿泉水的概率是=,∴按事件发生的可能性从大到小排列:④①③②;故答案为:④①③②.三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:评价条数等级五星四星三星及三星以下合计酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?【分析】(1)用1000减去五星和四星的条数,即可得出x的值;(2)①根据概率公式先求出A、B、C获得良好用餐体验的可能性,再进行比较即可得出答案;②根据概率的意义分析即可.【解答】解:(1)x=1000﹣412﹣388=200(条);(2)①选择A酒店获得良好用餐体验的可能性为=0.8,选择B酒店获得良好用餐体验的可能性为=0.81,选择C酒店获得良好用餐体验的可能性为=0.7,∵0.81>0.8>0.78,∴选择B酒店获得良好用餐体验的可能性最大.②不一定,根据可能性只能说明享受到良好用餐体验可能性大,但不一定能够享受到良好用餐体验.18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34 根据以上信息,回答下列问题:(1)m的值为10 ,n的值为0.64 ;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为0.96 ;若乙企业生产的某批产品共5万件,估计质量优秀的有 3.5 万件;(3)根据图表数据,你认为甲企业生产的产品质量较好,理由为甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.(从某个角度说明推断的合理性)【分析】(1)根据题意和频数分布表中的数据,可以先求的n的值,然后再求m的值;(2)根据频数分布表可以求得从甲企业生产的产品中任取一件,估计该产品质量合格的概率,根据频数分布直方图可以求得乙企业生产的某批产品共5万件,质量优秀的有的件数;(3)根据频数分布直方图和分布表可以解答本题,注意本题答案不唯一,只要合理即可.【解答】解:(1)n=32÷50=0.64,m=50×(1﹣0.04﹣0.64﹣0.12﹣0.00)=10,故答案为:10,0.64;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为:1﹣0.04=0.96,乙企业生产的某批产品共5万件,估计质量优秀的有:5×=3.5(万件),故答案为:0.96,3.5;(3)我认为甲企业生产的产品质量较好,理由:甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好,故答案为:甲,甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40求“厨余垃圾”投放正确的概率.【分析】(1)根据题意画出树状图得出所有情况数,再求出垃圾投放正确的情况数,最后根据概率公式计算即可.(2)用厨余垃圾数量除以总的数量即可.【解答】解:(1)四类垃圾随机投入四类垃圾箱的所有结果用树状图表示如下:。
北师大版初中数学七年级下册第六单元《概率初步》单元测试卷(较易)(含答案解析)考试范围:第六单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. “明天是晴天”这个事件是( )A. 确定事件B. 不可能事件C. 必然事件D. 随机事件2. 一枚质地均匀的骰子,它的六个面上分别有1到6的点数.下列事件中,是不可能事件的是( )A. 掷一次这枚骰子,向上一面的点数小于5B. 掷一次这枚骰子,向上一面的点数等于5C. 掷一次这枚骰子,向上一面的点数等于6D. 掷一次这枚骰子,向上一面的点数大于63. 一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是( )A. 摸到红球是必然事件B. 摸到黄球是不可能事件C. 摸到白球与摸到黄球的可能性相等D. 摸到红球比摸到黄球的可能性小4. 一枚质地均匀的骰子,它的六个面上分别有1到6的点数.下列事件中,是不可能事件的是( )A. 掷一次这枚骰子,向上一面的点数小于5B. 掷一次这枚骰子,向上一面的点数等于5C. 掷一次这枚骰子,向上一面的点数等于6D. 掷一次这枚骰子,向上一面的点数大于65. 如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果,下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是( )A. ①B. ②C. ①②D. ①③6. 口袋中有9个球,其中4个红球,3个蓝球,2个白球,在下列事件中,发生的可能性为1的是( )A. 从口袋中拿一个球恰为红球B. 从口袋中拿出2个球都是白球C. 拿出6个球中至少有一个球是红球D. 从口袋中拿出的球恰为3红2白7. 为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是( )A. 0.85B. 0.57C. 0.42D. 0.158. 一个不透明的袋子中只装有1个黄球和3个红球,它们除颜色外完全相同,从中随机摸出一个球.下列说法正确的是( )A. 摸到黄球是不可能事件B. 摸到黄球的概率是34C. 摸到红球是随机事件D. 摸到红球是必然事件9. 一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸1个球,摸到红球的概率是( )A. 13B. 23C. 25D. 3510. 不透明袋中装有除颜色外完全相同的a个白球、b个红球,则任意摸出一个球是红球的概率是( )A. ba+b B. baC. aa+bD. ab11. 一副扑克牌有54张,(黑桃、红桃、方片、草花各13张,大小王各一张)从牌中任意摸出一张牌是红桃的概率是( )A. 1352B. 1354C. 12D. 132712. 如图,小颖有一个卡片藏在9块瓷砖中的某一块下面(每块瓷砖除图案外其它均相同),那么卡片藏在瓷砖下的概率为( )A. 59B. 16C. 13D. 12第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 一副52张的扑克牌(无大王、小王),从中任意取出一张,抽到“K”的可能性的大小是______.14. 下列事件:①太阳从东方升起;②三条线段能组成一个三角形;③a是实数,|a|<0;④购买一张大乐透彩票,中大奖500万.其中确定事件是______ (填写序号).15. 林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n10001500250040008000150002000030000成活的棵数m8651356222035007056131701758026430成活的频率mn0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为.16. 在一个不透明的袋子中装有4个白球,a个红球.这些球除颜色外都相同.若从袋子中随,则a=.机摸出1个球,摸到红球的概率为23三、解答题(本大题共9小题,共72.0分。
北师大版七年级下学期数学第六章 概率初步 单元测试题(时间:120分钟 满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)1.下列事件中,是必然事件的为(C )A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩 2.对“某市明天下雨的概率是75%”这句话,理解正确的是(D )A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3.有两个事件,事件A :掷一次骰子,向上的一面是3;事件B :篮球队员在罚球线上投篮一次,投中,则(C ) A .只有事件A 是随机事件 B .只有事件B 是随机事件 C .事件A 和B 都是随机事件 D .事件A 和B 都不是随机事件4.某市举办了首届中学生汉字听写大赛,从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是(C ) A.32 B.13 C.14 D .15.掷一枚质地均匀的硬币10次,下列说法正确的是(A )A .可能有5次正面朝上B .必有5次正面朝上C .掷2次必有1次正面朝上D .不可能10次正面朝上6.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是(D )A .3个B .不足3个C .4个D .5个或5个以上7.为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是(C )A.110B.15C.310D.258.有5张大小、背面都相同的扑克牌,正面上的数字分别是4,5,6,7,8.若将这5张牌背面朝上洗匀后,从中任意抽取1张,那么这张牌正面上的数字为偶数的概率是(B ) A.45 B.35 C.25 D.159.小狗在如图所示的方砖上走来走去,最终停在黑色方砖上的概率为(C )A.18B.79C.29D.71610.如图,让圆形转盘自由转动一次,指针落在灰色区域的概率是(B ) A.12 B.13 C.23 D.3411.一次抽奖活动中,印发奖券1 000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的机会是(D )A.150B.225C.15D.31012.如果小王将镖随意投中如图所示的正方形木板,那么镖落在阴影部分的概率为(C ) A.16 B.18 C.19 D.11213.图中有四个可以自由转动的转盘,每个转盘被分成若干等份,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是(D )A .转盘2与转盘3B .转盘2与转盘4C .转盘3与转盘4D .转盘1与转盘414.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于(A )A .1B .2C .3D .415.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,它们的形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球试验后,小新发现其中摸出红球的频率稳定于0.2,摸出黑球的频率稳定于0.5.对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率应稳定于0.3;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球. 其中说法正确的是(B )A .①②③B .①②C .①③D .②③ 二、填空题(本大题共5小题,每小题5分,共25分)16.七年级(1)班共有学生54人,其中有男生30人,女生24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性大(填“大”或“小”).17.抛掷一枚质地均匀的硬币15次,有6次出现正面朝上,则出现正面朝上的频率是0.4.18.把标有号码1,2,3,…,10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是310.19.在一个暗箱里放有a 个除颜色外其他完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在0.25,那么可以推算出a 大约是12.20.如图所示是一条线段,AB 的长为10厘米,MN 的长为2厘米,假设可以随意在这条线段上取一个点,那么这个点取在线段MN 上的概率为15.三、解答题(本大题共7小题,共80分)21.(8分)下列事件中,哪些是确定事件?哪些是不确定事件?确定事件中,哪些是必然事件?哪些是不可能事件?(1)打开电视机,正在播动画片;(2)任意掷一枚质地均匀的骰子,朝上的点数是6; (3)在一个平面内,三角形三个内角的和是190度; (4)线段垂直平分线上的点到线段两端的距离相等. 解:(1)(2)是不确定事件;(3)是确定事件,也是不可能事件;(4)是确定事件,也是必然事件.22.(10分)如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据.(1)计算并完成表格;(2)请估计,当n 很大时,频率将会接近多少? (3)假如你去转动转盘一次,你获得铅笔的概率是多少? 解:(1)如表. (2)接近0.7. (3)0.7.23.(10分)用10个球设计一个摸球游戏: (1)使摸到红球的概率为15;(2)使摸到红球和白球的概率都是25.解:(1)10个球中,有2个红球,8个其他颜色球.(2)10个球中,有4个红球,4个白球,2个其他颜色球.24.(12分)如图1,2,3,三个相同的盒子里各放有一个塑料制成的圆环,这三个大小不同的圆环恰好可以按左图所示那样较紧密地套在一起,我们随意从三个盒子中拿出两个,则这两个圆环可以比较紧密地套在一起的概率有多大?图1 图2 图3解:根据题意分析可得:从三个盒子中拿出两个共3种情况,即(1,2;2,3;1,3),其中有2种情况即(1,2;2,3)可使这两个圆环可以比较紧密地套在一起,故其概率是23.25.(12分)研究“掷一枚图钉,钉尖朝上”的概率,两个小组用同一个图钉做试验进行比较,他们的统计数据如下:(1)请你估计第一小组和第二小组所得的概率分别是多少? (2)你认为哪一个小组的结果更准确?为什么? 解:(1)根据题意,因为次数越多,就越精确,所以选取试验次数最多的进行计算可得:第一小组所得的概率估计是160400=0.4;第二小组所得的概率估计是164400=0.41. (2)不知道哪一个更准确.因为试验数据可能有误差,不能准确说明.26.(14分)米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求: (1)P (在客厅捉到小猫); (2)P (在小卧室捉到小猫); (3)P (在卫生间捉到小猫); (4)P (不在卧室捉到小猫). 解:(1)P (在客厅捉到小猫)=3090=13. (2)P (在小卧室捉到小猫)=1590=16.(3)P (在卫生间捉到小猫)=9+490=1390.(4)P (不在卧室捉到小猫)=90-18-1590=5790=1930.27.(16分)有一组互不全等的三角形,它们的三边长均为整数,每个三角形有两条边的长分别为5和7. (1)请写出其中一个三角形的第三边的长; (2)设组中最多有n 个三角形,求n 的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率. 解:(1)第三边长取3(2到12之间的任意整数均可,不包括2,12). (2)设第三边长为x ,则7-5<x <7+5,即2<x <12.又因为x 为整数,所以x =3,4,5,6,7,8,9,10,11.所以n =9.(3)因为5+7=12,为偶数,所以只需第三边长为偶数,所以此时x=4,6,8,10.所以P(三角形周长为偶数)=4 9.。
北师大版七年级下册数学第六章概率初步含答案一、单选题(共15题,共计45分)1、从正方形的四个顶点中,任取三个顶点连成三角形.把“这个三角形是等边三角形”记作事件M,下列判断正确的是()A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为D.事件M发生的概概率为2、小烈和小伟玩一种扑g版的游戏,若小烈手里有3张牌是K,小伟从小烈手中抽到K的概率为,则小烈手里共有扑g牌()A.4张B.9张C.12张D.15张3、如图,桌上摆放着写有号码的“♥”卡片,它们的背面都完全相同,现将它们背面朝上,从中任意摸出一张,摸到“♥”卡片上写有数字5的概率是()A. B. C. D.4、某学校为了解学生大课间体育活动情况,随机抽取本校部分学生进行调查.整理收集到的数据,绘制成如图所示的统计图.小明随机调查一名学生,他喜欢“踢毽子”的概率是()A. B. C. D.5、现有A,B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为、小明掷B立方体朝上的数字为来确定点P(),那么它们各掷一次所确定的点P落在已知抛物线上的概率为()A. B. C. D.6、一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A. B. C. D.7、甲工厂生产的5件产品中有4件正品,1件次品;乙工厂生产的5件产品中有3件正品,2件次品。
从这两个工厂生产的产品各任取1件,2件都是次品的概率为()A. B. C. D.8、有五张卡片的正面分别写有“我”“的”“中”“国”“梦”,五张卡片洗匀后将其反面放在桌面上,小明从中任意抽取两张卡片,恰好是“中国”的概率是( )A. B. C. D.9、有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为A. B. C. D.10、小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是()A. B. C. D.11、在围棋盒中有4颗黑色棋子和a颗白色棋子,随机地取出一颗棋子,如果它是白色棋子的概率是,则a的值为()A.1B.2C.3D.412、下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖13、从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0B.C.D.114、某运动员投篮5次,投中4次,则该运动员下一次投篮投中的概率为()A. B. C. D.不能确定15、从一副扑g牌中任意抽取1张,下列事件:①抽到“K”;②抽到“黑桃”;③抽到“大王”;④抽到“黑色的,其中,发生可能性最大的事件是()A.①B.②C.③D.④二、填空题(共10题,共计30分)16、如图,一次函数的图象与x轴交于点A,与y轴交于点B,若向的外接圆内随机抛掷一枚小针,则针尖落在阴影部分的概率是________.17、一个不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇均后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒子大约有白球________个.18、从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是________.19、某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:抽取瓷砖数n 100 300 400 600 1000 2000 3000合格品数m 96 282 382 570 949 1906 28500.960 0.940 0.955 0.950 0.949 0.953 0.950合格品频率则这个厂生产的瓷砖是合格品的概率估计值是________.(精确到0.01)20、一个不透明的盒子中装有1个红球,2个黄球和1个绿球,这些球除了新色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为________.21、在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是________.22、抛掷一枚分别标有1,2,3,4,5,6的正方体骰子1次,骰子落地时朝上的数为偶数的概率是________.23、现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是________.24、从-1,,,1.6中随机取两个数,取到的两个数都是无理数的概率是________.25、同时掷两枚标有数字1~6的正方形骰子,数字和为1的概率是________。
七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)一、选择题(共10小题,每小题3分,共30分) 1. 下列事件中,是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为415,买10 000张该种彩票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2. 在一个布袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2个、红球6个、黑球4个.将布袋中的球搅匀,闭上眼睛随机从布袋中取出1个球,则取出黑球的概率是( ) A .12 B .14 C .13 D .163. 一个布袋中有10个球,其中6个红球、4个黑球,每个球除颜色不同外其余均相同.现在甲、乙进行摸球游戏,从中随机摸出一球,摸到红球,乙胜;摸到黑球,甲胜,则下列说法你认为正确的是( ) A .甲获胜的可能性大B .乙获胜的可能性大C .甲、乙获胜的可能性相等D .以上说法都不对4. 如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动转盘,当转盘停止时,指针落在有阴影的区域内的概率为a(若指针落在分界线上,则重转);如果投掷一枚质地均匀的硬币,正面向上的概率为b.关于a ,b 大小的判断正确的是( )A .a >bB .a =bC .a <bD .不能判断5. 有4张正面分别写有1、3、4、6的卡片,除数字外其他完全相同.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率为( ) A.14B.12C.34D .16. 某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C .一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D .用2,3,4三个数字随机排成一个三位数,排成的数是偶数7. 在下列四个转盘中,若让转盘自由转动一次,转盘停止后,指针落在阴影区域内的概率最大的转盘是( )8. 一个不透明的口袋中有红球和黑球若干个,这些球除颜色外都相同,每次摸出1个球,记下颜色后放回,进行大量的摸球试验后,发现摸到黑球的频率在0.4附近摆动,据此估计摸到红球的概率约为( ) A .0.4 B .0.5 C .0.6 D .0.79. 在边长为1的小正方形组成的网格中,有如图所示的A ,B 两点,在格点上任意放置点C ,恰好能使△ABC 的面积为1的概率为( )A.316B.38C.14D.51610. 在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数分布表:试验种子数n(粒) 5 50 100 200 500 1000 2000 3000 发芽频数m 4 45 92 188 476 951 1900 2850 发芽频率mn0.800.900.920.940.9520.9510.950.95A .2700B .2800C .3000D .4000二.填空题(共8小题,每小题3分,共24分)11. “一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是_____________.(填“必然事件”、“不可能事件”或“随机事件”)12. 将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为______.13. 某足球运动员在同一条件下进行射门,结果如下表所示:射门次数n2050100200500800踢进球门频数m133558104255400踢进球门频率0.650.70.580.520.520.514. 如图,质地均匀的小立方体的一个面上标有数字1,两个面上标有数字2,三个面上标有数字3,抛掷这个小立方体一次,则向上一面的数字是________的可能性最大.15. 一个袋子中装有5个白球和3个红球,甲摸到白球胜,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入________个________球(只能再放入同一颜色的球).16. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片约有________张.17. 小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方形木框中,那么投中阴影部分的概率为________.18. 若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,任意抽取一个数,抽到偶数的概率为________ .三.解答题(共7小题,66分)19.(8分) 下列事件中,哪个是必然事件?哪个是不可能事件?哪个是随机事件?(1)打开电视机,正在播放新闻;(2)种瓜得瓜;(3)三角形三边之长为4 cm,5 cm,10 cm.20.(8分) 手机微信抢红包有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以随机生成不等金额的红包.现有一用户设定“拼手气红包”的红包个数为4,且随机被甲、乙、丙、丁四人抢到.(1)以下说法正确是__________. A .甲抢到的红包金额一定最多 B .乙抢到的红包金额一定最多 C .丙抢到的红包金额一定最多 D .丁不一定抢到金额最少的红包(2)若这四个红包的金额分别为35元、33元、20元、12元,则甲抢到红包的金额超过30元的概率是多少?21.(8分) 如图,在一个大的圆形区域内包含一个小的圆形区域,大圆的半径为2,小圆的半径为1.一只在天空自由飞翔的小鸟要落在它的上面,那么小鸟落在小圆区域外大圆区域内(阴影部分)的概率是多少?22.(8分) 在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.试验种子n(粒) 1 5 50 100 200 500 1 000 2 000 3 000 发芽频数m 1 4 45 92 188 476 951 1 900 2 850 发芽频率mn10.800.900.920.940.9520.951ab(1)(2)估计该小麦种子的发芽概率;(3)如果该小麦种子发芽后,只有87%的麦芽可以成活,现有100 kg 小麦种子,则有多少千克的小麦种子可以成活为秧苗?23.(10分) 将一副扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中任意抽取1张,给出下列事件:(1)抽出的牌的点数是8; (2)抽出的牌的点数是0; (3)抽出的牌是“人像”; (4)抽出的牌的点数小于6; (5)抽出的牌是“红色的”.上述事件发生的可能性哪个最大?哪个最小?将这些事件的序号按发生的可能性从大到小的顺序排列.24.(10分) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在该十字路口向右转的频率为25,向左转和直行的频率都为310.(1)假设平均每天通过路口的汽车为5000辆,求汽车在此左转、右转、直行的车辆是多少辆;(2)目前在此路口,汽车左转、右转、直行的绿灯的时间分别为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的路灯亮的时间做出合理的调整.25.(14分) 综合与探究: 问题再现:(1)图①是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少? 类比设计:(2)请在图②中设计一个转盘:自由转动这个转盘,当它停止转动时,三等奖:指针落在红色区域的概率为38,二等奖:指针落在白色区域的概率为38,一等奖:指针落在黄色区域的概率为14.拓展运用:(3)某书城为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:顾客每购买100元的图书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域(若指针恰好指在分割线上,则重转一次,直到指针指向某一扇形区域为止),那么顾客就可以分别获得50元、30元、20元的购书券,凭购书券可以在书城继续购书.若甲顾客购书130元,转动一次转盘,求他获得购书券的概率.参考答案1-5DCBBB 6-10BACDA 11. 不可能事件 12. 2713. 0.52 14. 3 15. 2;红 16. 15 17. 518 18.71119. 解:(2)是必然事件,(3)是不可能事件,(1)是随机事件.20.解:(1)D(2)一共有4种可能出现的结果,其中红包的金额超过30元的有2种,所以甲抢到红包的金额超过30元的概率是24=12.21. 解:小圆的面积为π,大圆的面积为4π,所以阴影部分的面积为3π.所以小鸟落在小圆区域外大圆区域内的概率为3π4π=34.22. 解:(1)a =1 900÷2 000=0.95,b =2 850÷3 000=0.95.(2)观察发现:随着大量重复试验,发芽频率逐渐稳定到常数0.95附近,所以该小麦种子的发芽概率约为0.95. (3)100×0.95×87%=82.65(kg),所以约有82.65千克的小麦种子可以成活为秧苗. 23. 解:(1)抽出的牌的点数是8;发生的概率为113(2)抽出的牌的点数是0;发生的概率为0 (3)抽出的牌是“人像”;发生的概率为313(4)抽出的牌的点数小于6;发生的概率是513(5)抽出的牌是“红色的”,发生的概率为100%.由此可知:事件(5)可能性最大,事件(2)可能性最小;发生的可能性从大到小的顺序为(5)(4)(3)(1)(2) 24. 解:(1)汽车在此左转的车辆数为5000×310=1500(辆),在此右转的车辆数为5000×25=2000(辆),在此直行的车辆数为5000×310=1500(辆).(2)根据频率估计概率的知识,得P(汽车向左转绿灯时间)=30×310=9秒,P(汽车向右转绿灯时间)=30×25=12秒,P(汽车直行绿灯时间)=30×310=9秒.25. 解:(1)P(红色)=120360=13;P(白色)=240360=23.(2)(答案不唯一)如图.(3)因为转盘被平均分成12份,共有12种等可能的情况,其中红色占1份,黄色占2份,绿色占3份,所以任意转动一次转盘获得购书券的概率是1+2+312=12.。