广东省汕头市2013届高三上学期期末统一质量检测数学(理)试题(WORD版)
- 格式:doc
- 大小:961.50 KB
- 文档页数:13
广东省汕头市高三上学期期末教学质量监测理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合)}21ln(|{x y x A -==,}|{2x x x B <=,全集B A U =,则=)(B A C U ( ) A .)0,(-∞ B .]1,21[ C . )0,(-∞]1,21[ D .]0,21(-2.设复数i z 21231+=,i z 432+=,其中i 为虚数单位,则=||||220161z z ( ) A .20152 B .20161 C .251 D .51 3.圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a ( ) A .34-B .43- C .3 D .2 4.函数)0)(6sin(>+=ωπωx y 的图象与34-轴正半轴交点的横坐标构成一个公差为34-的等差数列,若要得到函数34-的图象,只要将34-的图象( )个单位 A .向左平移6π B .向左平移6π C. 向左平移6π D .向左平移6π 5.函数)0)(6sin(>+=ωπωx y 的图象大致是( )6.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s ( )A .7B .12 C. 17 D .347.假设你家订了一份牛奶,奶哥在早上6:00~7:00之间随机地把牛奶送到你家,而你在早上6:30~7:30之间随机第离家上学,则你在理考家前能收到牛奶的概率是( ) A .81 B .85 C.21 D .87 8.设等比数列}{n a 的前n 项和为n S ,则“01>a ”是“23S S >”的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件9.将二项式6)2(xx +展开式各项重新排列,则其中无理项互不相邻的概率是( ) A .72 B .351 C. 358 D .247 10.已知定义在R 上的函数)(x f 满足)()(x f x f -=,且当)0,(-∞∈x 时,0)(')(<+x xf x f 成立,若)2()2(1.01.0f a ⋅=,)2(ln )2(ln f b ⋅=,)81log )81(log 22f c ⋅=,则c b a ,,的大小关系是( )A .c b a >>B .a b c >> C. b a c >> D .b c a >> 11.设)2,0(,πβα∈,且ββαcos 1tan tan =-,则( ) A .23πβα=+ B .22πβα=+ C. 23πβα=- D .22πβα=- 12.在平面内,定点D C B A ,,,满足||||||DC DB DA ==,2-=⋅=⋅=⋅,动点M P ,满足1||=,=,则2||的最大值是( ) A .443 B .449 C. 43637+ D .433237+第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题“若81log 2,则81log 2”的否命题为 . 14.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .15.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测,如图所示,C B A ,,三地位于同一水平面上,这种仪器在C地进行弹射实验,观测点B A ,两地相距100米,60=∠BAC ,在A 地听到弹射声音比B 地晚172秒(已知声音传播速度为340米/秒),在A 地测得该仪器至高点H 处的仰角为30,则这种仪器的垂直弹射高度=HC .16.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,且y a x a z )1(3)1(22+-+=的最小值是20-,则实数=a .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)数列}{n a 的前n 项和n S 满足12a a S n n -=,且321,1,a a a +成等差数列.(1)求数列}{n a 的通项公式; (2)设11++=n n n n S S a b ,求数列}{n b 的前n 项和n T .18. (本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 为菱形,⊥PA 底面ABCD ,22=AC ,2=PA ,E 是PC 上的一点,EC PE 2=.(1)证明:⊥PC 平面BED ;(2)设二面角C PB A --为90,求直线PD 与平面PBC 所成角的大小.19.(本小题满分12分)为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:经计算,样本的平均值65=μ,标准差2.2=σ,以频率值作为概率的估计值.(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率);①6826.0)(≥+≤<-σμσμX P ; ②9544.0)22(≥+≤<-σμσμX P ;③9974.0)33(≥+≤<-σμσμX P .评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级.(2)将直径小于等于σμ2-或直径大于σμ2+的零件认为是次品.(ⅰ)从设备M 的生产流水线上随意抽取2件零件,计算其中次品个数Y 的数学期望)(Y E ; (ⅱ)从样本中随意抽取2件零件,计算其中次品个数Z 的数学期望)(Z E . 20.(本小题满分12分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程; (3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.21.(本小题满分12分)已知2)(ax e x f x-=,曲线)(x f y =在))1(,1(f 处的切线方程为1+=bx y .(1)求b a ,的值;(2)求)(x f 在]1,0[上的最大值;(3)证明:当0>x 时,01ln )1(≥---+x a x e e x.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.23. (本小题满分10分)选修4-5:不等式选讲已知0>a ,0>b ,函数||||)(b x a x x f ++-=的最小值为2. (1)求b a +的值;(2)证明:22>+a a 与22>+b b 不可能同时成立.试卷答案一、选择题1-5 CDADD 6-10CDCAB 11、12:DB二、填空题13.若1<x ,则1242-<+-x x 14.3315.3140米 16.2±三、解答题17.(1)由题意,当2≥n 时,1112a a S n n -=--,又因为12a a S n n -=,且1--=n n n S S a ,则)2(21≥=-n a a n n ,所以1231242,2a a a a a ===,又321,1,a a a +成等差数列,则312)1(2a a a +=+,所以1114)12(2a a a +=+,解得21=a ,所以数列}{n a 是以2为首项,2为公比的等比数列,所以nn a 2=. (2)由(1)知221-=+n n S ,∴221221)22)(22(221211---=--=+++++n n n n n n b , ∴)221221()221221()221221(214332---++---+---=++n n n T 22121221221222--=---=++n n .18.(1)解法一:因为底面ABCD 为菱形,所以AC BD ⊥,又⊥PA 底面ABCD ,所以BD PC ⊥. 设F BD AC = ,连结EF ,因为EC PE PA AC 2,2,22===,故2,332,32===FC EC PC ,解法二:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系xyz A -,设)0,,2(),0,0,22(b D C ,其中0>b ,则)0,,2(),32,0,324(),2,0,0(b B E P -,于是)32,,32(),32,,32(),2,0,22(b b -==-=,从而0,0=⋅=⋅DE PC BE PC ,故DE PC BE PC ⊥⊥,,又E DE BE = ,所以⊥PC 平面BDE .(2))0,,2(),2,0,0(b -==,设),,(z y x =为平面PAB 的法向量,则0,0=⋅=⋅,即02=z 且02=-by x ,令b x =,则)0,2,(b =,设),,(r q p =为平面PBC 的法向量,则0,0=⋅=⋅,即0222=-r p 且03232=+-r bq p ,令1=p ,则bq r 2,2-==,所以)2,2,1(b -=,因为面⊥PAB 面PBC ,故0=⋅n m ,即02=-bb ,故2=b ,于是)2,1,1(-=,)2,2,2(--=,21||||,cos =<DP n ,所以 60,>=<,因为PD 与平面PBC 所成角和><,互余,故PD 与平面PBC 所成角的角为30.19.(1)由题意知道:6.713,4.583,4.692,6.602,2.67,8.62=+=-=+=-=+=-σμσμσμσμσμσμ,所以由图表知道:6826.080.010080)(>==+≤<-σμσμX P 9544.094.010094)22(<==+≤<-σμσμX P 9974.098.010098)33(<==+≤<-σμσμX P 所以该设备M 的性能为丙级别.(2)由图表知道:直径小于或等于σμ2-的零件有2件,大于σμ2+的零件有4件共计6件 (i )从设备M 的生产流水线上任取一件,取到次品的概率为5031006=, 依题意)503,2(~B Y ,故2535032)(=⨯=Y E . (ii )从100件样品中任意抽取2件,次品数Z 的可能取值为0,1,2,16505)2(,1650188)1(,16501457)0(210009426210019416210029406=========C C C Z P C C C Z P C C C Z P故253165019816505216501881165014570)(==⨯+⨯+⨯=Z E . 20.解:圆M 的标准方程为25)7()6(22=-+-y x ,所以圆心)7,6(M ,半径为5.(1)由圆心在直线6=x 上,可设),6(0y N ,因为N 与x 轴相切,与圆M 外切,所以700<<y ,于是圆N 的半径为0y ,从而0057y y +=-,解得10=y .因此,圆N 的标准方程为1)1()6(22=-+-y x .(2)因为直线OA l //,所以直线l 的斜率为40220-=-. 设直线l 的方程为m x y +=2,即02=+-m y x ,则圆心M 到直线l 的距离5d ==因为BC OA === 而222,2BC MC d ⎛⎫=+ ⎪⎝⎭所以()252555m +=+,解得5=m 或15-=m .故直线l 的方程为052=+-y x 或0152=--y x . (3)设),(,),(2211y x Q y x P .因为TQ TP TA t T A =+),0,(),4,2(,所以⎩⎨⎧+=-+=421212y y tx x ……①因为点Q 在圆M 上,所以25)7()6(2222=-+-y x ,将①代入②,得25)3()4(2121=-+--y t x .于是点),(11y x P 既在圆M 上,又在圆25)3()]4([22=-++-y t x 上,从而圆25)7()6(22=-+-y x 与圆25)3()]4([22=-++-y t x 有公共点,所以55)73(]6)4[(5522+≤-+-+≤-t ,解得21222122+≤≤-t .因此,实数t 的取值范围是]2122,2122[+-.21.(1)ax e x f x2)('-=,由题设得b a e f =-=2)1(',1)1(+=-=b a e f ,解得2,1-==e b a .(2)由(1)知2)(x e x f x-=,∴x e x f x2)('-=,2)(''-=xe xf ,∴)('x f 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增,所以02ln 22)2(ln ')('>-=≥f x f ,所以)(x f 在]1,0[上单调递增,所以1)1()(max -==e f x f .(3)因为)('x f ,又由(2)知,)(x f 过点)1,1(-e ,且)(x f y =在1=x 处的切线方程为1)2(+-=x e y ,故可猜测:当1,0≠>x x 时,)(x f 的图象恒在切线1)2(+-=x e y 的上方.下证:当当0>x 时,1)2()(+-≥x e x f设0,1)2()()(>+--=x x e x f x g ,则2)(''),2(2)('-=---=xxe x g e x e x g , 由(2)知,)('x g 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增, 又12ln 0,0)1(',03)('<<=>-=g e x g ,∴0)2(ln '<g , 所以,存在)1,0(0∈x ,使得0)('=x g ,所以,当),1(),0(0+∞∈ x x 时,0)('>x g ;当)1,(0x x ∈时,0)('<x g ,故)(x g 在),0(0x 上单调递增,在)1,(0x 上单调递减,在),1(+∞上单调递增,又0)1()0(==g g ,∴01)2()(2≥----=x e x e x g x,当且仅当1=x 时取等号,故0,1)2(>≥--+x x xx e e x .由(2)知,1ln 1)2(+≥≥--+x x x x e e x ,即1ln 1)2(+≥--+x xx e e x , 所以x x x x e e x+≥--+ln 1)2(,即0ln 1)1(≥---+x x x e e x成立,当1=x 时,等号成立. 22.解:(1)由题意知:θρcos 2=,]2,0[πθ∈,所以θρρcos 22=,]2,0[πθ∈,即0222=-+x y x ,可化为1)1(22=+-y x ,]1,0[∈y ,可得C 的参数方程为⎩⎨⎧=+=t y t x sin cos 1(t 为参数,π≤≤t 0).(2)设)si n ,cos 1(t t D +,由(1)知C 是以)0,1(G 为圆心,1为半径的上半圆,因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同, ∴31)cos 1(0sin =-+-t t ,解得3tan =t ,即3π=t ,故D 的直角坐标为)3sin ,3cos 1(ππ+,即)23,23(.23.(1)∵0,0>>b a ,∴2|||||)()(|||||)(=+=+=--=---≥++-=b a b a b a b x a x b x a x x f .(2)∵0,0>>b a 且2=+b a ,由基本不等式知道:22=+≤b a ab ,∴1≤ab 假设22>+a a 与22>+b b 同时成立,则由22>+a a 及0>a ,得1>a同理1>b ,∴1>ab ,这与1≤ab 矛盾,故22>+a a 与22>+b b 不可能同时成立.。
绝密★启用前试卷类型:A 汕头市2013届高三上学期期末统一检测理科综合本试卷共12页,36小题,满分300分。
考试用时150分钟。
注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B铅笔在答题卡上的相应位置填涂考生号。
用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选择其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、单项选择题:本题包括16小题,每小题4分,共64分。
每小题给出的四个选项中,只有一个选项符合题目要求。
选对的得4分,选错或不答的得0分。
1.在分泌蛋白的合成加工、运输和分泌过程中,用35S标记的氨基酸作为原料,则35S存在于右图中的A.①B.②C.③D.④2.对下列四幅图的描述正确的是A.图1 a阶段染色体复制数目加倍,b阶段会发生同源染色体分离现象B.图2表明温度在b时酶分子活性最强C.图3中阴影部分面积代表一昼夜有机物的积累量D.图4中cd段下降应该发生在有丝分裂后期和减数分裂第二次分裂的后期3.囊性纤维病的病因如图所示,该实例可以说明A.基因能通过控制酶的合成来控制生物体的性状B.基因能通过控制激素的合成,控制生物体的性状C.基因能通过控制蛋白质的结构直接控制生物体的性状D.DNA 中部分某个碱基发生改变,相应的蛋白质结构必然改变4.下列各图所表示的生物学意义,哪一项是正确的:A .甲图中生物自交后代产生AaBBDD 的生物体的概率为1/8B .乙图中黑方框图表示男性患者,该病可能为常染色体隐性遗传病C .丙图所示的一对夫妇,如产生的后代是一个男孩,该男孩是患者的概率为 1/4D .丁图细胞表示高等动物的生物有丝分裂后期5. 下列关于细胞的叙述正确的是①T 淋巴细胞属于干细胞;②同一个体的不同种类细胞中mRNA 不同;③细胞间的信息传递大多与细胞膜有关;④骨骼肌细胞膜上不存在神经递质受体;⑤不是分泌细胞则不含高尔基体A .①②③④B .②④⑤C .①②③D .②③④6.下列关于酒精的描述不正确...的是 A .无水乙醇可以作为叶绿体色素的提取液B .95%酒精和15%盐酸等体积配比后可用于洋葱根尖细胞的解离C .植物组织无氧呼吸的产物是酒精和二氧化碳D .浓硫酸酸化饱和的重铬酸钾溶液遇酒精颜色变化为灰绿色7.下列对物质用途的描述中,错误的是A.铝可用于冶炼某些熔点较高的金属B.22O Na 可用作漂白剂C.碱石灰可用于干燥22O CO 、等气体D.NaClO 可用作消毒剂8.常温时,下列各组离子能大量共存的是A.--++23S NO K Ag 、、、B.--++32443NO SO NH Fe 、、、C.--++ClO Cl Na Fe 、、、2D.---+224AlO SO Cl H 、、、9.用A N 表示阿伏加德罗常数之值,下列说法正确的是A.2.3g 金属钠与过量的氧气反应,无论加热与否转移电子数均为A N 1.0B.3211CO Na mo 晶体中含 23CO 离子数小于A N 1C.惰性电极电解食盐水,若线路中通过A N 1电子电量,则阳极产生气体11.2LD.mol 1.0的2CaO 中含阴离子数是A N 2.010.下列说法正确的是A.分子式为O CH 4和O H C 62的物质一定互为同系物B.甲烷、乙烯和苯在工业上都可通过石油分馏得到C.苯酚钠溶液中通入少量二氧化碳生成苯酚和碳酸钠D.2,3一二甲基丁烷的核磁共振氢谱中会出现两个峰11.短周期元素R 、T 、Q 、W 在元素周期表中的相对位置如右下图所示,其中T 所处的周期序数与族序数相等。
绝密*启用前试尝类型:A汕头市2013年普通高中高三教学质量测评试题理科数学本试卷共4页,21小题、满分150分。
考试用时120分钟。
注意事项:I答春前,考生务必用葱色字迹的钢笔或签字笔将自己的性名和考生号、试室号、座位号镇写在答题卡上,并拈贴好条形码。
认真核准条形码上的牲名、考生号、试室号和座位号。
2选择赶每小题选出答案后,用2B铅笔把答月卡上汁应题目选项的答案信息点涂又.如需改动,用株皮挤干净后,再选涂其他答案,答案不能答在试卷上3非选择超必须用从色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区城内相应位I上;如雷改动,先划摔原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效4作答选做题时,请先用2B铅笔填涂选做题的题号叶应的信级点,再作答。
漏涂、错涂、多涂的.答案无效5考生必须保持答超卡的整洁。
考试结未后,将试卷和答题卡一并交回一、选择题:(40分)1、设x,y∈R,则“x=0”是“复数x+yi为纯虚数”的()A充分而不必要条件B、必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2集合A={x|2012<x<2013},B={x|x>a}可满足A∩B=φ.则实数a的取值范围()A、{a|a≥2012 }B、{a|a≤2012 }C、{a|a≥2013}D、{a|a≤2013 }3采用系统抽样方法从960人中抽取32人做问卷调查为此将他们随机编号为1,2 ...960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落人区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷C的人数为()A. 15B. 10C. 9D. 74把函数y=cos2x+l的图像上所有点的横坐标伸长到原来的2倍〔纵坐标不变),然后向左平移l个单位长度.再向下平移1个单位长度.得到的图像是5.执行右面的程序框图,如果输入m=72,n=30,则输出的n 是( ) A. 0 B. 3 C. 6 D. 126.在等差数列{n a }中,首项a 1=0,公差d ≠0 若1210k a a a a =+++,则k =( )A .45 B. 46 C. 47 D. 487.设O 是空间一点,a,b,c 是空间三条直线,,αβ是空间两个平面,则下列命题中,逆命题不成立的是( )A. 当a ∩b =O 且a ⊂α,b ⊂α时,若c ⊥a ,c ⊥b ,则c ⊥αB. 当a ∩b =O 且a ⊂α,b ⊂α时,若a ∥β,b ∥β,则α∥βC. 当b ⊂α时,若b ⊥β,则α⊥βD. 当b ⊂α时,且c α⊄时,若c ∥α,则b ∥c8.给一个正方体的六个面涂上四种不同颜色(红、黄、绿、兰),要求相邻两个面涂不同的颜色,则共有涂色方法(涂色后,任意翻转正方体,能使正方体各面颜色一致,我们认为是同一种涂色方法( )A. 6种B. 12种C. 24种D. 48种 二、填空题:(30分) (一)必做题(9-13题)9.函数y =lnx 在点A(1,0)处的切线方程为_______.10.已知变量x,y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函Rz=3x -y 的取值范围是____11.若曲线y =与直线x=a ,y=0所围成封闭图形的面积为a 2.则正实数a =____12.已知动点P 在抛物线y 2=4x 上,那么使得点P 到定点Q (2,,-1)的距离与点P 到抛物线焦点的距离之和最小的点P 的坐标为___13.已知在三角形ABC 中,AB =2,AC =3,∠BAC =θ,若D 为BC 的三等分点〔靠近点B 一侧).则的取值范围为____.(二)选做题14.已知直线l 方程是22x ty t =+⎧⎨=-⎩学科网(t 为参数),以坐标原点为极点.x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=2,则圆C 上的点到直线l 的距离最小值是___15ΘO 中,AB 是直径,MN 是过点A 的圆O 的切线,AC ,BD 相交于点P ,且∠DAN =30°,CP =2, PA =6,又PD >PB ,则线段PD 的长为___三、解答题(满分80分,解答须写出文字说明,证明过程或演算步骤)16.(本小题满分12分)△ABC 中内角A,B,C 的对边分别为a ,b ,c, 向量(2sin2Am =,2(cos ,2cos 1)4An A =-,且m n 。
汕头市2012-2013学年度第二学期高三级数学综合测练题(理一)参考答案一、选择题(5分×8=40分)二、填空题(5分×6=30分)9. 1,1或3;10. 25;11. 4,(]28,57;12. ①②;13. 8; 14. 8; 部分答案提示: 3.等于圆的直径. 9.列举法;12.①图象C 关于直线24π2ππ+=+k x 对称,当k=0时,图象C 关于8π=x 对称;①正确;②x∈)8π5,8π(时,4π2+x ∈)2π3,2π(,∴函数)(x f 在区间)8π5,8π(内是减函数;②正确;③由x y 2sin 3=的图象向左平移4π个单位长度可以得到x x x f 2cos 3)4π22sin(3)(=+=,得不到图象,③错误。
三、解答题: 16.(本小题12分)解:(1)由题意可设二次函数f (x )=a (x -1)(x -3)(a <0) ………2分当x =0时,y =-3,即有-3=a (-1)(-3), 解得a =-1,f (x )= -(x -1)(x -3)=342-+-x x ,)(x f 的解析式为)(x f =342-+-x x . ………………6分(2)y =f (sin x )=3sin 4sin 2-+-x x=()12sin 2+--x . ……………………8分[0,]2x π∈ , sin [0,1]x ∴∈,则当sin x =0时,y 有最小值-3;当sin x =1时,y 有最大值0. …………………12分17.(本小题12分)解:(1)依题意,有AM -BM =1.5×8=12 (km),CM -BM =1.5×20=30 (km)∴MB =(x -12)(km ),MC =30+(x -12)=(18+x ) (km ). ……………… 2分 在△ABM 中,AB =20 kmABMA MB AB MA MAB ⋅-+=∠2cos 222x x x x x 5323202)12(20222+=⋅--+=同理,xxMAC 372cos -=∠ ……………5分∵MAC MAB ∠=∠cos cos ,∴x x x x 3725323-=+ 解得 )(7132km x = ……………8分(2)作MN ⊥AD 于N ,在△AMN 中,).(71.17532713235323cos km x x x AMN MA MN ≈+⨯=+⋅=∠= ………………11分 答:静止目标M 到海防警戒线AD 的距离约为17.71km ………………12分18.(本小题14分)解:(1)xx x e x x e x x f e x x x f )1()12()(,)1()(22++++='++=,)23(2x e x x ++= …………………………………………2分当()021,()021,f x x x f x x ''><->-<-<<-时解得或当时解得 所以函数的单调增区间为(-∞,-2),(-1,+∞);单调减区间为(-2,-1) …………………………6分(2)xxxe a x a x e a ax x e a x xf )2)2([)()2()(22'+++=++++=,0)2)((=++=x e x a x,2,-=-=∴x a x …………………………………9分列表如下:2,2-≥-∴≤a aAB C……………………………………12分由表可知,3)24()2()(2=+-=-=-ea a f x f 极大解得2342≤-=e a ,所以存在实数a ,使)(x f 的极大值为3。
广东省汕头市高三上学期期末教学质量监测理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合)}21ln(|{x y x A -==,}|{2x x x B <=,全集B A U =,则=)(B A C U ( ) A .)0,(-∞ B .]1,21[ C . )0,(-∞]1,21[ D .]0,21(-2.设复数i z 21231+=,i z 432+=,其中i 为虚数单位,则=||||220161z z ( ) A .20152 B .20161 C .251 D .51 3.圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a ( ) A .34-B .43- C .3 D .2 4.函数)0)(6sin(>+=ωπωx y 的图象与34-轴正半轴交点的横坐标构成一个公差为34-的等差数列,若要得到函数34-的图象,只要将34-的图象( )个单位 A .向左平移6π B .向左平移6π C. 向左平移6π D .向左平移6π 5.函数)0)(6sin(>+=ωπωx y 的图象大致是( )6.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s ( )A .7B .12 C. 17 D .347.假设你家订了一份牛奶,奶哥在早上6:00~7:00之间随机地把牛奶送到你家,而你在早上6:30~7:30之间随机第离家上学,则你在理考家前能收到牛奶的概率是( ) A .81 B .85 C.21 D .87 8.设等比数列}{n a 的前n 项和为n S ,则“01>a ”是“23S S >”的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件9.将二项式6)2(xx +展开式各项重新排列,则其中无理项互不相邻的概率是( ) A .72 B .351 C. 358 D .247 10.已知定义在R 上的函数)(x f 满足)()(x f x f -=,且当)0,(-∞∈x 时,0)(')(<+x xf x f 成立,若)2()2(1.01.0f a ⋅=,)2(ln )2(ln f b ⋅=,)81log )81(log 22f c ⋅=,则c b a ,,的大小关系是( )A .c b a >>B .a b c >> C. b a c >> D .b c a >> 11.设)2,0(,πβα∈,且ββαcos 1tan tan =-,则( ) A .23πβα=+ B .22πβα=+ C. 23πβα=- D .22πβα=- 12.在平面内,定点D C B A ,,,满足||||||DC DB DA ==,2-=⋅=⋅=⋅,动点M P ,满足1||=,=,则2||的最大值是( ) A .443 B .449 C. 43637+ D .433237+第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题“若81log 2,则81log 2”的否命题为 . 14.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .15.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测,如图所示,C B A ,,三地位于同一水平面上,这种仪器在C地进行弹射实验,观测点B A ,两地相距100米,60=∠BAC ,在A 地听到弹射声音比B 地晚172秒(已知声音传播速度为340米/秒),在A 地测得该仪器至高点H 处的仰角为30,则这种仪器的垂直弹射高度=HC .16.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,且y a x a z )1(3)1(22+-+=的最小值是20-,则实数=a .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)数列}{n a 的前n 项和n S 满足12a a S n n -=,且321,1,a a a +成等差数列.(1)求数列}{n a 的通项公式; (2)设11++=n n n n S S a b ,求数列}{n b 的前n 项和n T .18. (本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 为菱形,⊥PA 底面ABCD ,22=AC ,2=PA ,E 是PC 上的一点,EC PE 2=.(1)证明:⊥PC 平面BED ;(2)设二面角C PB A --为90,求直线PD 与平面PBC 所成角的大小.19.(本小题满分12分)为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:经计算,样本的平均值65=μ,标准差2.2=σ,以频率值作为概率的估计值.(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率);①6826.0)(≥+≤<-σμσμX P ; ②9544.0)22(≥+≤<-σμσμX P ;③9974.0)33(≥+≤<-σμσμX P .评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级.(2)将直径小于等于σμ2-或直径大于σμ2+的零件认为是次品.(ⅰ)从设备M 的生产流水线上随意抽取2件零件,计算其中次品个数Y 的数学期望)(Y E ; (ⅱ)从样本中随意抽取2件零件,计算其中次品个数Z 的数学期望)(Z E . 20.(本小题满分12分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程; (3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.21.(本小题满分12分)已知2)(ax e x f x-=,曲线)(x f y =在))1(,1(f 处的切线方程为1+=bx y .(1)求b a ,的值;(2)求)(x f 在]1,0[上的最大值;(3)证明:当0>x 时,01ln )1(≥---+x a x e e x.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.23. (本小题满分10分)选修4-5:不等式选讲已知0>a ,0>b ,函数||||)(b x a x x f ++-=的最小值为2. (1)求b a +的值;(2)证明:22>+a a 与22>+b b 不可能同时成立.试卷答案一、选择题1-5 CDADD 6-10CDCAB 11、12:DB二、填空题13.若1<x ,则1242-<+-x x 14.3315.3140米 16.2±三、解答题17.(1)由题意,当2≥n 时,1112a a S n n -=--,又因为12a a S n n -=,且1--=n n n S S a ,则)2(21≥=-n a a n n ,所以1231242,2a a a a a ===,又321,1,a a a +成等差数列,则312)1(2a a a +=+,所以1114)12(2a a a +=+,解得21=a ,所以数列}{n a 是以2为首项,2为公比的等比数列,所以nn a 2=. (2)由(1)知221-=+n n S ,∴221221)22)(22(221211---=--=+++++n n n n n n b , ∴)221221()221221()221221(214332---++---+---=++n n n T 22121221221222--=---=++n n .18.(1)解法一:因为底面ABCD 为菱形,所以AC BD ⊥,又⊥PA 底面ABCD ,所以BD PC ⊥. 设F BD AC = ,连结EF ,因为EC PE PA AC 2,2,22===,故2,332,32===FC EC PC ,解法二:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系xyz A -,设)0,,2(),0,0,22(b D C ,其中0>b ,则)0,,2(),32,0,324(),2,0,0(b B E P -,于是)32,,32(),32,,32(),2,0,22(b b -==-=,从而0,0=⋅=⋅DE PC BE PC ,故DE PC BE PC ⊥⊥,,又E DE BE = ,所以⊥PC 平面BDE .(2))0,,2(),2,0,0(b -==,设),,(z y x =为平面PAB 的法向量,则0,0=⋅=⋅,即02=z 且02=-by x ,令b x =,则)0,2,(b =,设),,(r q p =为平面PBC 的法向量,则0,0=⋅=⋅,即0222=-r p 且03232=+-r bq p ,令1=p ,则bq r 2,2-==,所以)2,2,1(b -=,因为面⊥PAB 面PBC ,故0=⋅n m ,即02=-bb ,故2=b ,于是)2,1,1(-=,)2,2,2(--=,21||||,cos =<DP n ,所以 60,>=<,因为PD 与平面PBC 所成角和><,互余,故PD 与平面PBC 所成角的角为30.19.(1)由题意知道:6.713,4.583,4.692,6.602,2.67,8.62=+=-=+=-=+=-σμσμσμσμσμσμ,所以由图表知道:6826.080.010080)(>==+≤<-σμσμX P 9544.094.010094)22(<==+≤<-σμσμX P 9974.098.010098)33(<==+≤<-σμσμX P 所以该设备M 的性能为丙级别.(2)由图表知道:直径小于或等于σμ2-的零件有2件,大于σμ2+的零件有4件共计6件 (i )从设备M 的生产流水线上任取一件,取到次品的概率为5031006=, 依题意)503,2(~B Y ,故2535032)(=⨯=Y E . (ii )从100件样品中任意抽取2件,次品数Z 的可能取值为0,1,2,16505)2(,1650188)1(,16501457)0(210009426210019416210029406=========C C C Z P C C C Z P C C C Z P故253165019816505216501881165014570)(==⨯+⨯+⨯=Z E . 20.解:圆M 的标准方程为25)7()6(22=-+-y x ,所以圆心)7,6(M ,半径为5.(1)由圆心在直线6=x 上,可设),6(0y N ,因为N 与x 轴相切,与圆M 外切,所以700<<y ,于是圆N 的半径为0y ,从而0057y y +=-,解得10=y .因此,圆N 的标准方程为1)1()6(22=-+-y x .(2)因为直线OA l //,所以直线l 的斜率为40220-=-. 设直线l 的方程为m x y +=2,即02=+-m y x ,则圆心M 到直线l 的距离5d ==因为BC OA === 而222,2BC MC d ⎛⎫=+ ⎪⎝⎭所以()252555m +=+,解得5=m 或15-=m .故直线l 的方程为052=+-y x 或0152=--y x . (3)设),(,),(2211y x Q y x P .因为TQ TP TA t T A =+),0,(),4,2(,所以⎩⎨⎧+=-+=421212y y tx x ……①因为点Q 在圆M 上,所以25)7()6(2222=-+-y x ,将①代入②,得25)3()4(2121=-+--y t x .于是点),(11y x P 既在圆M 上,又在圆25)3()]4([22=-++-y t x 上,从而圆25)7()6(22=-+-y x 与圆25)3()]4([22=-++-y t x 有公共点,所以55)73(]6)4[(5522+≤-+-+≤-t ,解得21222122+≤≤-t .因此,实数t 的取值范围是]2122,2122[+-.21.(1)ax e x f x2)('-=,由题设得b a e f =-=2)1(',1)1(+=-=b a e f ,解得2,1-==e b a .(2)由(1)知2)(x e x f x-=,∴x e x f x2)('-=,2)(''-=xe xf ,∴)('x f 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增,所以02ln 22)2(ln ')('>-=≥f x f ,所以)(x f 在]1,0[上单调递增,所以1)1()(max -==e f x f .(3)因为)('x f ,又由(2)知,)(x f 过点)1,1(-e ,且)(x f y =在1=x 处的切线方程为1)2(+-=x e y ,故可猜测:当1,0≠>x x 时,)(x f 的图象恒在切线1)2(+-=x e y 的上方.下证:当当0>x 时,1)2()(+-≥x e x f设0,1)2()()(>+--=x x e x f x g ,则2)(''),2(2)('-=---=xxe x g e x e x g , 由(2)知,)('x g 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增, 又12ln 0,0)1(',03)('<<=>-=g e x g ,∴0)2(ln '<g , 所以,存在)1,0(0∈x ,使得0)('=x g ,所以,当),1(),0(0+∞∈ x x 时,0)('>x g ;当)1,(0x x ∈时,0)('<x g ,故)(x g 在),0(0x 上单调递增,在)1,(0x 上单调递减,在),1(+∞上单调递增,又0)1()0(==g g ,∴01)2()(2≥----=x e x e x g x,当且仅当1=x 时取等号,故0,1)2(>≥--+x x xx e e x .由(2)知,1ln 1)2(+≥≥--+x x x x e e x ,即1ln 1)2(+≥--+x xx e e x , 所以x x x x e e x+≥--+ln 1)2(,即0ln 1)1(≥---+x x x e e x成立,当1=x 时,等号成立. 22.解:(1)由题意知:θρcos 2=,]2,0[πθ∈,所以θρρcos 22=,]2,0[πθ∈,即0222=-+x y x ,可化为1)1(22=+-y x ,]1,0[∈y ,可得C 的参数方程为⎩⎨⎧=+=t y t x sin cos 1(t 为参数,π≤≤t 0).(2)设)si n ,cos 1(t t D +,由(1)知C 是以)0,1(G 为圆心,1为半径的上半圆,因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同, ∴31)cos 1(0sin =-+-t t ,解得3tan =t ,即3π=t ,故D 的直角坐标为)3sin ,3cos 1(ππ+,即)23,23(.23.(1)∵0,0>>b a ,∴2|||||)()(|||||)(=+=+=--=---≥++-=b a b a b a b x a x b x a x x f .(2)∵0,0>>b a 且2=+b a ,由基本不等式知道:22=+≤b a ab ,∴1≤ab 假设22>+a a 与22>+b b 同时成立,则由22>+a a 及0>a ,得1>a同理1>b ,∴1>ab ,这与1≤ab 矛盾,故22>+a a 与22>+b b 不可能同时成立.。
图2侧视图俯视图正视图4x33x4广东省汕头市金山中学2013届高三数学上学期期末模拟考试试题 理本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,时间120分钟.第Ⅰ卷 (选择题 共40分)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合U={1,2,3,4,5,6}, M={1,2,4 } 则U C M =A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}2.若向量BA u u u r=(2,3),CA u u u r =(4,7),则BC uuu r =A .(-2,-4)B .(2,4)C .(6,10)D .(-6,-10) 3.下列函数中,在区间(0,+∞)上为增函数的是A .ln(2)y x =+B .1y x =+.y=12x⎛⎫ ⎪⎝⎭ D .1y x x =+ 4.一空间几何体的三视图如图所示, 该几何体的体积为8512π+,则正视图中x 的值为A. 5B. 4C. 3D. 2 5.已知实数b a ,满足11,11≤≤-≤≤-b a ,则函数53123++-=bx ax x y 有极值的概率是A. 41B. 21C. 32D. 436.△ABC 中,已知cosA=135,sinB=53,则cosC 的值为( ) A .6516 B. 6556 C. 6516或6556 D. 6516-7.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是A. 49B. 13C. 29D. 198.设0,0a b >>. A.若2223aba b +=+,则b a > B.若2223aba b +=+,则b a <C.若2223a b a b -=-,则b a >D.若2223a ba b -=-,则b a < 第Ⅱ卷 (非选择题 共110分)二、填空题:(本大题共6小题,每小题5分,共30分.)9.设平面向量a =(-2,1),b =(λ,-1),若a 与b 的夹角为钝角,则λ的取值范围是______. 10.已知某位同学五次数学成绩分别是:121,127,123,a ,125,若其平均成绩是124,则这组 数据的方差是_______. 11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =。
广东省汕头市高三上学期期末教学质量监测理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合)}21ln(|{x y x A -==,}|{2x x x B <=,全集B A U =,则=)(B A C U ( ) A .)0,(-∞ B .]1,21[ C . )0,(-∞]1,21[ D .]0,21(-2.设复数i z 21231+=,i z 432+=,其中i 为虚数单位,则=||||220161z z ( ) A .20152 B .20161 C .251 D .51 3.圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a ( ) A .34-B .43- C .3 D .2 4.函数)0)(6sin(>+=ωπωx y 的图象与34-轴正半轴交点的横坐标构成一个公差为34-的等差数列,若要得到函数34-的图象,只要将34-的图象( )个单位 A .向左平移6π B .向左平移6π C. 向左平移6π D .向左平移6π 5.函数)0)(6sin(>+=ωπωx y 的图象大致是( )6.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s ( )A .7B .12 C. 17 D .347.假设你家订了一份牛奶,奶哥在早上6:00~7:00之间随机地把牛奶送到你家,而你在早上6:30~7:30之间随机第离家上学,则你在理考家前能收到牛奶的概率是( ) A .81 B .85 C.21 D .87 8.设等比数列}{n a 的前n 项和为n S ,则“01>a ”是“23S S >”的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件 9.将二项式6)2(xx +展开式各项重新排列,则其中无理项互不相邻的概率是( )A .72 B .351 C. 358 D .247 10.已知定义在R 上的函数)(x f 满足)()(x f x f -=,且当)0,(-∞∈x 时,0)(')(<+x xf x f 成立,若)2()2(1.01.0f a ⋅=,)2(ln )2(ln f b ⋅=,)81log )81(log 22f c ⋅=,则c b a ,,的大小关系是( )A .c b a >>B .a b c >> C. b a c >> D .b c a >> 11.设)2,0(,πβα∈,且ββαcos 1tan tan =-,则( ) A .23πβα=+ B .22πβα=+ C. 23πβα=- D .22πβα=- 12.在平面内,定点D C B A ,,,满足||||||DC DB DA ==,2-=⋅=⋅=⋅DA DC DC DB DB DA ,动点M P ,满足1||=,PM =,则2||的最大值是( ) A .443 B .449 C. 43637+ D .433237+第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题“若81log 2,则81log 2”的否命题为 . 14.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .15.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测,如图所示,C B A ,,三地位于同一水平面上,这种仪器在C地进行弹射实验,观测点B A ,两地相距100米,60=∠BAC ,在A 地听到弹射声音比B 地晚172秒(已知声音传播速度为340米/秒),在A 地测得该仪器至高点H 处的仰角为30,则这种仪器的垂直弹射高度=HC .16.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,且y a x a z )1(3)1(22+-+=的最小值是20-,则实数=a .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)数列}{n a 的前n 项和n S 满足12a a S n n -=,且321,1,a a a +成等差数列.(1)求数列}{n a 的通项公式; (2)设11++=n n n n S S a b ,求数列}{n b 的前n 项和n T .18. (本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 为菱形,⊥PA 底面ABCD ,22=AC ,2=PA ,E 是PC 上的一点,EC PE 2=.(1)证明:⊥PC 平面BED ;(2)设二面角C PB A --为90,求直线PD 与平面PBC 所成角的大小.19.(本小题满分12分)为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差2.2=σ,以频率值作为概率的估计值.(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率);①6826.0)(≥+≤<-σμσμX P ; ②9544.0)22(≥+≤<-σμσμX P ;③9974.0)33(≥+≤<-σμσμX P .评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级.(2)将直径小于等于σμ2-或直径大于σμ2+的零件认为是次品.(ⅰ)从设备M 的生产流水线上随意抽取2件零件,计算其中次品个数Y 的数学期望)(Y E ; (ⅱ)从样本中随意抽取2件零件,计算其中次品个数Z 的数学期望)(Z E . 20.(本小题满分12分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程; (3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.21.(本小题满分12分)已知2)(ax e x f x-=,曲线)(x f y =在))1(,1(f 处的切线方程为1+=bx y .(1)求b a ,的值;(2)求)(x f 在]1,0[上的最大值;(3)证明:当0>x 时,01ln )1(≥---+x a x e e x.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.23. (本小题满分10分)选修4-5:不等式选讲已知0>a ,0>b ,函数||||)(b x a x x f ++-=的最小值为2. (1)求b a +的值;(2)证明:22>+a a 与22>+b b 不可能同时成立.试卷答案一、选择题1-5 CDADD 6-10CDCAB 11、12:DB二、填空题13.若1<x ,则1242-<+-x x 14.3315.3140米 16.2±三、解答题17.(1)由题意,当2≥n 时,1112a a S n n -=--,又因为12a a S n n -=,且1--=n n n S S a ,则)2(21≥=-n a a n n ,所以1231242,2a a a a a ===,又321,1,a a a +成等差数列,则312)1(2a a a +=+,所以1114)12(2a a a +=+,解得21=a ,所以数列}{n a 是以2为首项,2为公比的等比数列,所以nn a 2=. (2)由(1)知221-=+n n S ,∴221221)22)(22(221211---=--=+++++n n n n n n b , ∴)221221()221221()221221(214332---++---+---=++n n n T 22121221221222--=---=++n n . 18.(1)解法一:因为底面ABCD 为菱形,所以AC BD ⊥,又⊥PA 底面ABCD ,所以BD PC ⊥. 设F BD AC = ,连结EF ,因为EC PE PA AC 2,2,22===,故2,332,32===FC EC PC ,解法二:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系xyz A -,设)0,,2(),0,0,22(b D C ,其中0>b ,则)0,,2(),32,0,324(),2,0,0(b B E P -,于是)32,,32(),32,,32(),2,0,22(b b -==-=,从而0,0=⋅=⋅,故DE PC BE PC ⊥⊥,,又E DE BE = ,所以⊥PC 平面BDE .(2))0,,2(),2,0,0(b AB AP -==,设),,(z y x m =为平面PAB 的法向量,则0,0=⋅=⋅,即02=z 且02=-by x ,令b x =,则)0,2,(b =,设),,(r q p =为平面PBC 的法向量,则0,0=⋅=⋅BE n PC n ,即0222=-r p 且03232=+-r bq p ,令1=p ,则bq r 2,2-==,所以)2,2,1(b -=,因为面⊥PAB 面PBC ,故0=⋅,即02=-bb ,故2=b ,于是)2,1,1(-=,)2,2,2(--=,21||||,cos =>=<DP n ,所以 60,>=<DP n ,因为PD 与平面PBC 所成角和><DP n ,互余,故PD 与平面PBC 所成角的角为30.19.(1)由题意知道:6.713,4.583,4.692,6.602,2.67,8.62=+=-=+=-=+=-σμσμσμσμσμσμ,所以由图表知道:6826.080.010080)(>==+≤<-σμσμX P 9544.094.010094)22(<==+≤<-σμσμX P 9974.098.010098)33(<==+≤<-σμσμX P 所以该设备M 的性能为丙级别.(2)由图表知道:直径小于或等于σμ2-的零件有2件,大于σμ2+的零件有4件共计6件 (i )从设备M 的生产流水线上任取一件,取到次品的概率为5031006=,依题意)503,2(~B Y ,故2535032)(=⨯=Y E . (ii )从100件样品中任意抽取2件,次品数Z 的可能取值为0,1,2,16505)2(,1650188)1(,16501457)0(210009426210019416210029406=========C C C Z P C C C Z P C C C Z P故253165019816505216501881165014570)(==⨯+⨯+⨯=Z E . 20.解:圆M 的标准方程为25)7()6(22=-+-y x ,所以圆心)7,6(M ,半径为5.(1)由圆心在直线6=x 上,可设),6(0y N ,因为N 与x 轴相切,与圆M 外切,所以700<<y ,于是圆N 的半径为0y ,从而0057y y +=-,解得10=y .因此,圆N 的标准方程为1)1()6(22=-+-y x .(2)因为直线OA l //,所以直线l 的斜率为40220-=-. 设直线l 的方程为m x y +=2,即02=+-m y x ,则圆心M 到直线l 的距离d ==因为BC OA === 而222,2BC MC d ⎛⎫=+ ⎪⎝⎭所以()252555m +=+,解得5=m 或15-=m .故直线l 的方程为052=+-y x 或0152=--y x . (3)设),(,),(2211y x Q y x P .因为t T A =+),0,(),4,2(,所以⎩⎨⎧+=-+=421212y y tx x ……①因为点Q 在圆M 上,所以25)7()6(2222=-+-y x ,将①代入②,得25)3()4(2121=-+--y t x .于是点),(11y x P 既在圆M 上,又在圆25)3()]4([22=-++-y t x 上,从而圆25)7()6(22=-+-y x 与圆25)3()]4([22=-++-y t x 有公共点,所以55)73(]6)4[(5522+≤-+-+≤-t ,解得21222122+≤≤-t .因此,实数t 的取值范围是]2122,2122[+-.21.(1)ax e x f x2)('-=,由题设得b a e f =-=2)1(',1)1(+=-=b a e f ,解得2,1-==e b a .(2)由(1)知2)(x e x f x-=,∴x e x f x2)('-=,2)(''-=xe xf ,∴)('x f 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增,所以02ln 22)2(ln ')('>-=≥f x f ,所以)(x f 在]1,0[上单调递增,所以1)1()(max -==e f x f .(3)因为)('x f ,又由(2)知,)(x f 过点)1,1(-e ,且)(x f y =在1=x 处的切线方程为1)2(+-=x e y ,故可猜测:当1,0≠>x x 时,)(x f 的图象恒在切线1)2(+-=x e y 的上方.下证:当当0>x 时,1)2()(+-≥x e x f设0,1)2()()(>+--=x x e x f x g ,则2)(''),2(2)('-=---=xxe x g e x e x g , 由(2)知,)('x g 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增, 又12ln 0,0)1(',03)('<<=>-=g e x g ,∴0)2(ln '<g , 所以,存在)1,0(0∈x ,使得0)('=x g ,所以,当),1(),0(0+∞∈ x x 时,0)('>x g ;当)1,(0x x ∈时,0)('<x g ,故)(x g 在),0(0x 上单调递增,在)1,(0x 上单调递减,在),1(+∞上单调递增,又0)1()0(==g g ,∴01)2()(2≥----=x e x e x g x,当且仅当1=x 时取等号,故0,1)2(>≥--+x x xx e e x .由(2)知,1ln 1)2(+≥≥--+x x x x e e x ,即1ln 1)2(+≥--+x xx e e x , 所以x x x x e e x+≥--+ln 1)2(,即0ln 1)1(≥---+x x x e e x成立,当1=x 时,等号成立. 22.解:(1)由题意知:θρcos 2=,]2,0[πθ∈,所以θρρcos 22=,]2,0[πθ∈,即0222=-+x y x ,可化为1)1(22=+-y x ,]1,0[∈y ,可得C 的参数方程为⎩⎨⎧=+=ty tx sin cos 1(t为参数,π≤≤t 0).(2)设)si n ,cos 1(t t D +,由(1)知C 是以)0,1(G 为圆心,1为半径的上半圆,因为C 在点D处的切线与l 垂直,所以直线GD 与l 的斜率相同, ∴31)cos 1(0sin =-+-t t ,解得3tan =t ,即3π=t ,故D 的直角坐标为)3sin ,3cos 1(ππ+,即)23,23(. 23.(1)∵0,0>>b a ,∴2|||||)()(|||||)(=+=+=--=---≥++-=b a b a b a b x a x b x a x x f .(2)∵0,0>>b a 且2=+b a ,由基本不等式知道:22=+≤b a ab ,∴1≤ab 假设22>+a a 与22>+b b 同时成立,则由22>+a a 及0>a ,得1>a同理1>b ,∴1>ab ,这与1≤ab 矛盾,故22>+a a 与22>+b b 不可能同时成立.。
广东省汕头市高三上学期期末教学质量监测理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合)}21ln(|{x y x A -==,}|{2x x x B <=,全集B A U =,则=)(B A C U ( ) A .)0,(-∞ B .]1,21[ C . )0,(-∞]1,21[ D .]0,21(-2.设复数i z 21231+=,i z 432+=,其中i 为虚数单位,则=||||220161z z ( ) A .20152 B .20161 C .251 D .51 3.圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a ( ) A .34-B .43- C .3 D .2 4.函数)0)(6sin(>+=ωπωx y 的图象与34-轴正半轴交点的横坐标构成一个公差为34-的等差数列,若要得到函数34-的图象,只要将34-的图象( )个单位 A .向左平移6π B .向左平移6π C. 向左平移6π D .向左平移6π 5.函数)0)(6sin(>+=ωπωx y 的图象大致是( )6.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s ( )A .7B .12 C. 17 D .347.假设你家订了一份牛奶,奶哥在早上6:00~7:00之间随机地把牛奶送到你家,而你在早上6:30~7:30之间随机第离家上学,则你在理考家前能收到牛奶的概率是( ) A .81 B .85 C.21 D .87 8.设等比数列}{n a 的前n 项和为n S ,则“01>a ”是“23S S >”的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件 9.将二项式6)2(xx +展开式各项重新排列,则其中无理项互不相邻的概率是( )A .72 B .351 C. 358 D .247 10.已知定义在R 上的函数)(x f 满足)()(x f x f -=,且当)0,(-∞∈x 时,0)(')(<+x xf x f 成立,若)2()2(1.01.0f a ⋅=,)2(ln )2(ln f b ⋅=,)81log )81(log 22f c ⋅=,则c b a ,,的大小关系是( )A .c b a >>B .a b c >> C. b a c >> D .b c a >> 11.设)2,0(,πβα∈,且ββαcos 1tan tan =-,则( ) A .23πβα=+ B .22πβα=+ C. 23πβα=- D .22πβα=- 12.在平面内,定点D C B A ,,,满足||||||==,2-=⋅=⋅=⋅,动点M P ,满足1||=,=,则2||的最大值是( ) A .443 B .449 C. 43637+ D .433237+第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题“若81log 2,则81log 2”的否命题为 . 14.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .15.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测,如图所示,C B A ,,三地位于同一水平面上,这种仪器在C地进行弹射实验,观测点B A ,两地相距100米,60=∠BAC ,在A 地听到弹射声音比B 地晚172秒(已知声音传播速度为340米/秒),在A 地测得该仪器至高点H 处的仰角为30,则这种仪器的垂直弹射高度=HC .16.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,且y a x a z )1(3)1(22+-+=的最小值是20-,则实数=a .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)数列}{n a 的前n 项和n S 满足12a a S n n -=,且321,1,a a a +成等差数列.(1)求数列}{n a 的通项公式; (2)设11++=n n n n S S a b ,求数列}{n b 的前n 项和n T .18. (本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 为菱形,⊥PA 底面ABCD ,22=AC ,2=PA ,E 是PC 上的一点,EC PE 2=.(1)证明:⊥PC 平面BED ;(2)设二面角C PB A --为90,求直线PD 与平面PBC 所成角的大小.19.(本小题满分12分)为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差2.2=,以频率值作为概率的估计值.(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率);①6826.0)(≥+≤<-σμσμX P ; ②9544.0)22(≥+≤<-σμσμX P ;③9974.0)33(≥+≤<-σμσμX P .评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级.(2)将直径小于等于σμ2-或直径大于σμ2+的零件认为是次品.(ⅰ)从设备M 的生产流水线上随意抽取2件零件,计算其中次品个数Y 的数学期望)(Y E ; (ⅱ)从样本中随意抽取2件零件,计算其中次品个数Z 的数学期望)(Z E . 20.(本小题满分12分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程; (3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.21.(本小题满分12分)已知2)(ax e x f x-=,曲线)(x f y =在))1(,1(f 处的切线方程为1+=bx y .(1)求b a ,的值;(2)求)(x f 在]1,0[上的最大值;(3)证明:当0>x 时,01ln )1(≥---+x a x e e x.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.23. (本小题满分10分)选修4-5:不等式选讲已知0>a ,0>b ,函数||||)(b x a x x f ++-=的最小值为2. (1)求b a +的值;(2)证明:22>+a a 与22>+b b 不可能同时成立.试卷答案一、选择题1-5 CDADD 6-10CDCAB 11、12:DB二、填空题13.若1<x ,则1242-<+-x x 14.3315.3140米 16.2±三、解答题17.(1)由题意,当2≥n 时,1112a a S n n -=--,又因为12a a S n n -=,且1--=n n n S S a ,则)2(21≥=-n a a n n ,所以1231242,2a a a a a ===,又321,1,a a a +成等差数列,则312)1(2a a a +=+,所以1114)12(2a a a +=+,解得21=a ,所以数列}{n a 是以2为首项,2为公比的等比数列,所以nn a 2=. (2)由(1)知221-=+n n S ,∴221221)22)(22(221211---=--=+++++n n n n n n b , ∴)221221()221221()221221(214332---++---+---=++n n n T 22121221221222--=---=++n n .18.(1)解法一:因为底面ABCD 为菱形,所以AC BD ⊥,又⊥PA 底面ABCD ,所以BD PC ⊥. 设F BD AC = ,连结EF ,因为EC PE PA AC 2,2,22===,故2,332,32===FC EC PC ,解法二:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系xyz A -,设)0,,2(),0,0,22(b D C ,其中0>b ,则)0,,2(),32,0,324(),2,0,0(b B E P -,于是)32,,32(),32,,32(),2,0,22(b b -==-=,从而0,0=⋅=⋅DE PC BE PC ,故DE PC BE PC ⊥⊥,,又E DE BE = ,所以⊥PC 平面BDE .(2))0,,2(),2,0,0(b -==,设),,(z y x =为平面PAB 的法向量,则0,0=⋅=⋅AB m AP m ,即02=z 且02=-by x ,令b x =,则)0,2,(b m =,设),,(r q p n =为平面PBC 的法向量,则0,0=⋅=⋅,即0222=-r p 且03232=+-r bq p ,令1=p ,则bq r 2,2-==,所以)2,2,1(b -=,因为面⊥PAB 面PBC ,故0=⋅,即02=-bb ,故2=b ,于是)2,1,1(-=n ,)2,2,2(--=DP ,21||||,cos =>=<DP n DP n ,所以 60,>=<,因为PD 与平面PBC 所成角和><,互余,故PD 与平面PBC 所成角的角为30.19.(1)由题意知道:6.713,4.583,4.692,6.602,2.67,8.62=+=-=+=-=+=-σμσμσμσμσμσμ,所以由图表知道:6826.080.010080)(>==+≤<-σμσμX P 9544.094.010094)22(<==+≤<-σμσμX P 9974.098.010098)33(<==+≤<-σμσμX P 所以该设备M 的性能为丙级别.(2)由图表知道:直径小于或等于σμ2-的零件有2件,大于σμ2+的零件有4件共计6件 (i )从设备M 的生产流水线上任取一件,取到次品的概率为5031006=, 依题意)503,2(~B Y ,故2535032)(=⨯=Y E .(ii )从100件样品中任意抽取2件,次品数Z 的可能取值为0,1,2,16505)2(,1650188)1(,16501457)0(210009426210019416210029406=========C C C Z P C C C Z P C C C Z P故253165019816505216501881165014570)(==⨯+⨯+⨯=Z E . 20.解:圆M 的标准方程为25)7()6(22=-+-y x ,所以圆心)7,6(M ,半径为5.(1)由圆心在直线6=x 上,可设),6(0y N ,因为N 与x 轴相切,与圆M 外切,所以700<<y ,于是圆N 的半径为0y ,从而0057y y +=-,解得10=y .因此,圆N 的标准方程为1)1()6(22=-+-y x .(2)因为直线OA l //,所以直线l 的斜率为40220-=-. 设直线l 的方程为m x y +=2,即02=+-m y x ,则圆心M 到直线l 的距离d ==因为BC OA === 而222,2BC MC d ⎛⎫=+ ⎪⎝⎭所以()252555m +=+,解得5=m 或15-=m .故直线l 的方程为052=+-y x 或0152=--y x . (3)设),(,),(2211y x Q y x P .因为t T A =+),0,(),4,2(,所以⎩⎨⎧+=-+=421212y y tx x ……①因为点Q 在圆M 上,所以25)7()6(2222=-+-y x ,将①代入②,得25)3()4(2121=-+--y t x .于是点),(11y x P 既在圆M 上,又在圆25)3()]4([22=-++-y t x 上,从而圆25)7()6(22=-+-y x 与圆25)3()]4([22=-++-y t x 有公共点,所以55)73(]6)4[(5522+≤-+-+≤-t ,解得21222122+≤≤-t .因此,实数t 的取值范围是]2122,2122[+-.21.(1)ax e x f x2)('-=,由题设得b a e f =-=2)1(',1)1(+=-=b a e f ,解得2,1-==e b a .(2)由(1)知2)(x e x f x-=,∴x e x f x2)('-=,2)(''-=xe xf ,∴)('x f 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增,所以02ln 22)2(ln ')('>-=≥f x f ,所以)(x f 在]1,0[上单调递增,所以1)1()(max -==e f x f .(3)因为)('x f ,又由(2)知,)(x f 过点)1,1(-e ,且)(x f y =在1=x 处的切线方程为1)2(+-=x e y ,故可猜测:当1,0≠>x x 时,)(x f 的图象恒在切线1)2(+-=x e y 的上方.下证:当当0>x 时,1)2()(+-≥x e x f设0,1)2()()(>+--=x x e x f x g ,则2)(''),2(2)('-=---=xxe x g e x e x g , 由(2)知,)('x g 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增, 又12ln 0,0)1(',03)('<<=>-=g e x g ,∴0)2(ln '<g , 所以,存在)1,0(0∈x ,使得0)('=x g ,所以,当),1(),0(0+∞∈ x x 时,0)('>x g ;当)1,(0x x ∈时,0)('<x g ,故)(x g 在),0(0x 上单调递增,在)1,(0x 上单调递减,在),1(+∞上单调递增,又0)1()0(==g g ,∴01)2()(2≥----=x e x e x g x,当且仅当1=x 时取等号,故0,1)2(>≥--+x x xx e e x .由(2)知,1ln 1)2(+≥≥--+x x x x e e x ,即1ln 1)2(+≥--+x xx e e x , 所以x x x x e e x+≥--+ln 1)2(,即0ln 1)1(≥---+x x x e e x成立,当1=x 时,等号成立. 22.解:(1)由题意知:θρcos 2=,]2,0[πθ∈,所以θρρcos 22=,]2,0[πθ∈,即0222=-+x y x ,可化为1)1(22=+-y x ,]1,0[∈y ,可得C 的参数方程为⎩⎨⎧=+=t y t x sin cos 1(t 为参数,π≤≤t 0).(2)设)sin ,cos 1(t t D +,由(1)知C 是以)0,1(G 为圆心,1为半径的上半圆,因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同, ∴31)cos 1(0sin =-+-t t ,解得3tan =t ,即3π=t ,故D 的直角坐标为)3sin ,3cos 1(ππ+,即)23,23(. 23.(1)∵0,0>>b a ,∴2|||||)()(|||||)(=+=+=--=---≥++-=b a b a b a b x a x b x a x x f .(2)∵0,0>>b a 且2=+b a ,由基本不等式知道:22=+≤b a ab ,∴1≤ab 假设22>+a a 与22>+b b 同时成立,则由22>+a a 及0>a ,得1>a同理1>b ,∴1>ab ,这与1≤ab 矛盾,故22>+a a 与22>+b b 不可能同时成立.。
汕头市高三上学期期末统一检测理科数学本试卷共4页,21小题,满分150分.考试用时120分钟.第一部分(选择题 满分40分)一、选择题:本大题共10小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}5,3,1{=A ,集合},,2{b a B =,若A ∩B {1,3}=,则b a +的值是( ).A.10B.9C.4D.72.如图在复平面内,复数21,z z 对应的向量分别是OB OA ,, 则复数12z z 的值是( ). A .i 21+- B .i 22-- C .i 21+ D .i 21-3.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其 中支出在[50,60)元的同学有30人,则n 的值为( ).A.100B.1000C.90D.9004.若向量)1,1(),0,2(==b a ,则下列结论正确的是( ).A .1=⋅ B.||||b a = C .⊥-)( D .//5.如图正四棱锥(底面是正方形,顶点在底面的射影是底面的中心)P-ABCD 的底面边长为6cm ,侧棱长为5cm ,则它的侧视图的周长等于( ).A.17cmB.cm 5119+C.16cmD.14cm6.设命题p :函数y =sin2x 的最小正周期为2π; 命题q :函数y =cosx 的图象关于直线x =2π对称,则下列的判断正确的是( ) A 、p 为真 B 、⌝q 为假 C 、p ∧q 为假 D 、p q ∨为真7、若(9,a )在函数2log y x =的图象上,则有关函数()x x f x a a -=+性质的描述,正确提( )A 、它是定义域为R 的奇函数B 、它在定义域R 上有4个单调区间C 、它的值域为(0,+∞)D 、函数y =f (x -2)的图象关于直线x =2对称8、计算机中常用的十六进制是逢16进1的数制,采用数字0-9和字母A-F 共16个记数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E +D =1B ,则A×B =( )A 、6EB 、72C 、5FD 、5F D 、B0第二部分 (非选择题 满分110分)二、填空题:本大题共6小题,每小题5分,满分30分.(一)必做题:.9、已知数列{n a }的前几项为:1925,2,,8,,18222---⋅⋅⋅用观察法写出满足数列的一个通项公式n a =___10、72()x x -的展开式中,x 3的系数是____(用数字作答)11、已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,c = A +B =2C ,则sinB =____12、已知x >0,y >0,且19x y+=1,则2x +3y 的最小值为____ 13、设f (x )是R 是的奇函数,且对x R ∀∈都有f (x +2)=f (x ),又当x ∈[0,1]时,f (x )=x 2,那么x ∈[2011,2013]时,f (x )的解析式为_____(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分.14. (坐标系与参数方程)在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,则直线21x t y t=--⎧⎨=-⎩(t 为参数)截圆22cos ρρθ+-3=0的弦长为____15. (几何证明选讲)已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC ,圆心O 到AC 的距离为AB =3,则切线AD 的长为____三、解答题:本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分) 已知函数1()tan()36f x x π=-(I)求f (x )的最小正周期;(II)求3()2f π的值;(皿)设71(3)22f απ+=-,求sin()cos())4πααππα-+-+的值.17.(本小题满分12分)汕头市澄海区以塑料玩具为主要出口产品,塑料厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(I)若厂家库房中的每件产品合格的概率为0.8,从中任意取出3件进行检验.求恰有1件是合格品的概率;(H)若厂家发给商家20件产品,其中有3件不合格,按合同规定,该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收,求该商家可能检验出不合格产品数ξ的分布列及期望E ξ,并指出该商家拒收这批产品的概率。
绝密★启用前 试卷类型:A汕头市2013届高三上学期期末统一检测理科数学本试卷共4页,21小题,满分150分.考试用时120分钟.第一部分(选择题 满分40分)一、选择题:本大题共10小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}5,3,1{=A ,集合},,2{b a B =,若A ∩B {1,3}=,则b a +的值是( ).A.10B.9C.4D.7 2.如图在复平面内,复数21,z z 对应的向量分别是OB OA ,, 则复数12z z 的值是( ). A .i 21+- B .i 22-- C .i 21+ D .i 21- 3.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其 中支出在[50,60)元的同学有30人,则n 的值为( ).A.100B.1000C.90D.9004.若向量)1,1(),0,2(==b a ,则下列结论正确的是( ).A .1=⋅b a B.||||b a = C .b b a ⊥-)( D .b a // 5.如图正四棱锥(底面是正方形,顶点在底面的射影是底 面的中心)P-ABCD 的底面边长为6cm ,侧棱长为 5cm ,则它的侧视图的周长等于( ).A.17cmB.cm 5119+C.16cmD.14cm6.设命题p :函数y =sin2x 的最小正周期为2π; 命题q :函数y =cosx 的图象关于直线x =2π对称,则下列的判断正确的是( )A 、p 为真B 、⌝q 为假C 、p ∧q 为假D 、p q ∨为真7、若(9,a )在函数2log y x =的图象上,则有关函数()x xf x a a-=+性质的描述,正确提( )A 、它是定义域为R 的奇函数B 、它在定义域R 上有4个单调区间C 、它的值域为(0,+∞)D 、函数y =f (x -2)的图象关于直线x =2对称 8、计算机中常用的十六进制是逢16进1的数制,采用数字0-9和字母A-F 共16个记数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E +D =1B ,则A×B =( ) A 、6E B 、72 C 、5F D 、5F D 、B0第二部分 (非选择题 满分110分)二、填空题:本大题共6小题,每小题5分,满分30分. (一)必做题:.9、已知数列{n a }的前几项为:1925,2,,8,,18222---⋅⋅⋅用观察法写出满足数列的一个通项公式n a =___10、72()x x-的展开式中,x 3的系数是____(用数字作答)11、已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,3c =, A +B =2C ,则sinB =____ 12、已知x >0,y >0,且19x y+=1,则2x +3y 的最小值为____ 13、设f (x )是R 是的奇函数,且对x R ∀∈都有f (x +2)=f (x ),又当x ∈[0,1]时,f (x )=x 2,那么x ∈[2011,2013]时,f (x )的解析式为_____(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分.14. (坐标系与参数方程)在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,则直线21x t y t=--⎧⎨=-⎩(t 为参数)截圆22cos ρρθ+-3=0的弦长为____15. (几何证明选讲)已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC ,圆心O 到AC 的距离为22,AB =3,则切线AD 的长为____三、解答题:本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数1()tan()36f x x π=-(I)求f (x )的最小正周期; (II)求3()2f π的值; (皿)设71(3)22f απ+=-,求sin()cos()2sin()4πααππα-+-+的值.17.(本小题满分12分)汕头市澄海区以塑料玩具为主要出口产品,塑料厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(I)若厂家库房中的每件产品合格的概率为0.8,从中任意取出3件进行检验.求恰有1件是合格品的概率;(H)若厂家发给商家20件产品,其中有3件不合格,按合同规定,该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收,求该商家可能检验出不合格产品数ξ的分布列及期望E ξ,并指出该商家拒收这批产品的概率。
18.(本小题满分14分)2012年9月19日汕头日报报道:汕头市西部生态新城启动建设,由金平区招商引资共30亿元建设若干个项目。
现有某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%。
该投资人计划投资金额不超过10亿元,为确保可能的资金亏损不超过1.8亿元,问 该投资人对甲、乙两个项目各投资多少亿元,才能使可能的盈利最大?19.(本小题满分14分)已知有两个数列{n a },{n b },它们的前n 项和分别记为,n n S T ,且数列{n a }是各项均为正数的等比数列,m S =26,前m 项中数值最大的项的值,18,2m S =728,又22n T n = (I)求数列{n a },{n b }的通项公式.(II)若数列{n c }满足n n n c b a =,求数列{n c }的前n 项和P n .20.(本小题满分14分)如图,在四棱锥P-ABCD 中,AB 丄平面PAD,PD=AD, E 为PB 的中点,向量,点H 在AD 上,且(I):EF//平面PAD.(II)若PH =3,AD=2, AB=2, CD=2AB,(1)求直线AF 与平面PAB 所成角的正弦值. (2)求平面PAD 与平面PBC 所成二面角的平面角的余弦值.21.(本小题满分14分)集合A ={|lg x R y x ∈=},B ={2|22(1)(1)0x R x a x a a ∈--+->},D =A ∩B 。
(I)当a =2时,求集合D(用区间表示); (II)当102a <<时,求集合D(用区间表示); (III)在(II)的条件下,求函数32()43(12)6f x x a x ax =-++在D 内的极值点.理科数学答案一、选择题 1、C 2、A 3、A 4、C 5、D 6、C 7、D 8、A 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. 9、2)1(21n n ⋅--,或 2)1(21n n ⋅-+ (注意,本题答案有多种可能,只要学生给出的通项公式计算出的前几项满足就可以判正确)10、 84 11、 1 12、6629+ 13、{)2012,2011(,)2012()2013,2012[,)2012(22)(∈--∈-=x x x x x f14、 4 15、15 三、解答题16.(本题满分12分)解:(1)()f x 的最小正周期为T=313ππ= …………(3分)(2)33()tan()tan 32663f ππππ=-==…………(6分) (3)由711711(3)tan[(3)]tan()2232622f πππααπα+=-+-=-+=-得即……(8分)所以1tan 2α=-…………(9分)cos 0α∴≠sin()cos()sin cos sin cos 2sin()4πααπααπααα-+--=++.…………(10分)tan 1tan 1αα-=+…………(11分) 1123112--==--+…………(12分)另解:先求sin cos αα和再求得最后正确答案这步也得3分17. (本小题满分12分)解:(Ⅰ)记“厂家任取3件产品检验,恰有1件是合格品”为事件A则()1230.81-0.8=30.80.04=0.096P A C =⨯⨯⨯⨯() …………(3分) (Ⅱ)ξ可能的取值为0,1,2 ………………………………(4分)()2172201360190C P C ξ===,()11317220511190C C P C ξ===,()2322032190C P C ξ=== ……………………………(7分)………………………………(8分)136513301219019019010E ξ=⨯+⨯+⨯=………………………………(9分) 记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=………………………………(11分) 所以商家拒收这批产品的概率为2795………………………………(12分)18. (本小题满分14分)ξ2P136190511903190解:设该投资人对甲、乙两个项目分别投资x 亿元、y 亿元,可能的盈利为z 亿元,则12z x y =+. ………………………………(1分)依题意得: 1031 1.810100x y x y x y +≤⎧⎪⎪+≤⎪⎨⎪≥⎪≥⎪⎩即1031800x y x y x y +=⎧⎪+≤⎪⎨≥⎪⎪≥⎩………………………………(5分) 画出可行域如图阴影部分,………………………………(8分)作出直线1:02o l x y += 作o l 的一组平行线:22l y x z =-+当直线过直线100x y +-=与直线3180x y +-=的交点A 时直线在y 轴上的截距2z 最大,此时z 最大………………………(10分) 解方程组1003180x y x y +-=⎧⎨+-=⎩ 得46x y =⎧⎨=⎩ ()A 4,6∴…………………………12分max 14672z ∴=+⨯=()亿元………………………………(13分)答:投资人对甲项目投资4亿元、对乙项目投资6亿元,才能使可能的盈利最大。
………………………(14分)19. (本小题满分14分)1010186xyo解:(Ⅰ)设等比数列{}n a 的公比为q , 0n a > , 0q ∴>若q=1时 1m S ma = 212m S ma = 此时22m m S S = 而已知 26m S = 2728m S =22m m S S ∴≠ , 1q ∴≠………………………………(1分)由26728m m S S =⎧⎨=⎩ 得 ()()()()12112611172821m ma q q a q q⎧-⎪=-⎪⎨-⎪=⎪-⎩ ………………………(2分)()()12÷得: 128m q += 27m q ∴= ………………………………(3分)1q ∴> ∴前m 项中m a 最大 18m a ∴=………………………………(4分)即 1118m a q-= 111827m m a q q -∴= ()1233a q ∴= 即123a q =把123a q =及27m q =代入(1)式得()21273261q q -=- 解得q=3 把q=3代入123a q =得12a =,所以 123n n a -=⨯…………………(7分)由22n T n =(1) 当n=1时 112b T == (2) 当2n ≥时 ()()222212212221n n n b T T n n n n n -=-=--=--+42n =-12b = 适合上式 42n b n ∴=-………………………………(9分)(Ⅱ)由(1) 123n n a -=⨯ , 42n b n =- 113)12(432)24(--⨯-=⨯∙-=∴n n n n n c记13)12(-⨯-=n n n d ,n d 的前n 项和为n Q ,显然n n Q P 4=12103213)12(......353331.......-⨯-++⨯+⨯+⨯=++++=n n n n d d d d Q …....① n n n n d d d d Q 3)12(......353331.......3321321⨯-++⨯+⨯+⨯=++++=∴… ..②……………………………………………………(11分) ①-② 得:-2n Q =n n n 3)12(32 (32323211)321⨯--⨯+⨯+⨯+⨯+-=n n n 3)12(31)31(3211⨯----⨯+-=n n 3)22(2⨯---…………………………(13分)∴43)1(44+⨯-=n n n Q ,即43)1(4+⨯-=n n n P ……………………(14分)20. (本小题满分14分)(Ⅰ) 取PA 的中点Q ,连结EQ 、DQ ,则 E 是PB 的中点,∴1//,2EQ AB AB 且EQ=12DF AB = 又1//,2DF AB AB ∴且DF=∴DF EQ DF EQ =且,//,∴四边形EQDF 为平行四边形, ∴//EF QD ,,EF PAD PAD ⊄⊂ 又平面且DQ 平面,//EF PAD 平面………………………………(3分)(Ⅱ)⑴解法一:证明: 0PH AD ∙= ,∴PH AD ⊥∴PH ⊥AD,又 AB ⊥平面PAD ,PH ⊂平面PAD ,∴AB ⊥PH ,又 PH ⋂AD=H ,∴PH ⊥平面ABCD ; ---------------------------------(4分)连结AE ,PD AD Q PA = 为的中点DQ PA ∴⊥ 又AB PAD ⊥ 平面且DQ PAD ⊂平面AB DQ ∴⊥AB PA A = DQ PAB ∴⊥平面………………………………(5分)由(Ⅰ)知 //EF DQ EF PAB ∴⊥平面AE AF PAB ∴为在平面上的射影FAE AF PAB ∴∠为直线与平面所成的角………………………………(7分) 2PD AD == 3PH =Rt PHD ∴∆在中 ()2222231HD PD PH =-=-=H ∴为AD 中点, 又PH AD ⊥ 2PA PD AD ∴=== 3EF DQ PH ∴=== AB PAD ⊥ 平面 AB AD ∴⊥ //DF AB DF AD ∴⊥在Rt ADF ∆中 22415AF AD DF =+=+=又EF PAB ⊥ 平面 EF AE ∴⊥ Rt AEF ∴∆在中 315sin 55EF FAE AF ∠===155AF PAB ∴直线与平面所成的角的正弦值为515………………………………(9分) (2)延长DA ,CB 交于点M ,连接PM ,则PM 为平面PAD 与平面PBC 所成二面角的交线。