随机变量的特征函数
- 格式:doc
- 大小:403.50 KB
- 文档页数:10
第1章 高阶统计量的定义与性质1.1 准备知识1. 随机变量的特征函数若随机变量x 的分布函数为)(x F ,则称⎰⎰∞∞-∞∞-===Φdx x f e x dF e e E x j x j x j )()(][)(ωωωω为x 的特征函数。
其中)(x f 为概率密度函数。
离散情况:}{,][)(k k k kx j x j x x p p p e e E k ====Φ∑ωωω特征函数)(ωΦ是概率密度)(x f 的付里叶变换。
例:设x ~),(2σa N ,则特征函数为dx e e x j a x ⎰∞∞---=Φωσσπω222/)(21)(令σ2/)(a x z -=,则dz e aj z j z⎰∞∞-++-=Φωσωπω221)(根据公式:AB AC CxBx AxeAdx e 222--∞∞--±-=⎰π,则 2221)(σωωω-=Φa j e若0=a ,则2221)(σωω-=Φe。
2. 多维随机变量的特征函数设随机变量n x x x ,,,21 联合概率分布函数为),,,(21n x x x F ,则联合特征函数为),,,(][),,,(21)()(2122112211n x x x j x x x j n x x x dF e eE n n n n ⎰⎰∞∞-+++∞∞-+++==Φωωωωωωωωω令T n x x x ],,,[21 =x ,T n ],,,[21ωωω =ω,则⎰=ΦdX f e Tj )()(x ωx ω 矩阵形式或 n n x jn dx dx x x f eknk k ,,),,(),,,(11211⎰⎰∞∞-∞∞-∑=Φ=ωωωω 标量形式其中,),,,()(21n x x x f f =x 为联合概率密度函数。
例:设n 维高斯随机变量为T n x x x ],,,[21 =x ,T n a a a ],,,[21 =a⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=nn n n n c c c c c c2111211c )])([(],cov[k k i i k i ik a x a x E x x c --== x 的概率密度为⎭⎬⎫⎩⎨⎧---=)()(21exp )2(1)(2/12/a x c a x cx T n P π x 的特征函数为⎭⎬⎫⎩⎨⎧-=Φc ωωωa ωT T j 21ex p )( 矩阵形式其中,T n ],,,[21ωωω =ω,⎭⎬⎫⎩⎨⎧-=Φ∑∑∑===n i nj j i ij ni i i n C a j 1112121exp ),,,(ωωωωωω 标量形式 3. 随机变量的第二特征函数定义:特征函数的对数为第二特征函数为 )(ln )(ωωΦ=ψ (1) 单变量高斯随机过程的第二特征函数 22221ln )(22σωωωσωω-==ψ-a j e a j(2) 多变量情形j n i i nji ij i ni i n C a j ωωωωωω∑∑∑===-=ψ1112121),,,(1.2 高阶矩与高阶累积量定义1. 单个随机变量情形 (1) 高阶矩定义随机变量x 的k 阶矩定义为⎰∞∞-==dx x p x x E m k k k )(][ (1.1)显然10=m ,][1x E m ==η。
随机变量特征函数随机变量特征函数是概率论中的一个重要概念,它能够完全描述一个随机变量的分布特征。
在实际应用中,特征函数经常被用来求解各种概率分布的特定参数,如均值、方差等。
下面我们来详细介绍一下随机变量特征函数的定义、性质以及计算方法。
一、定义设X是一个实值随机变量,其概率密度函数为f(x),则X的特征函数φ(t)定义为:φ(t) = E(e^(itX)) = ∫e^(itx)f(x)dx其中i是虚数单位,t是任意实数。
二、性质1. φ(0) = 1显然有E(e^(i0X)) = E(1) = 1。
2. φ(-t) = φ(t)*根据定义可得:φ(-t) = E(e^(-itX)) = E((e^(itX))^(-1)) = E(conj(e^(itX))) =conj(E(e^(itX))) = conj(φ(t))其中conj表示对复数取共轭。
3. |φ(t)| ≤ 1由于e^(ix)的模长为1,故有:|φ(t)| ≤ ∫|e^(itx)f(x)|dx ≤ ∫f(x)dx = 14. 如果两个随机变量X和Y独立,则它们的特征函数的乘积等于它们特征函数的积。
设X和Y的概率密度函数分别为f(x)和g(y),则有:φ_(X+Y)(t) = E(e^(it(X+Y))) = E(e^(itX)e^(itY)) =E(e^(itX))E(e^(itY)) = φ_X(t)φ_Y(t)5. 如果随机变量X的特征函数φ(t)存在,则对于任意正整数n,其n 阶矩可以表示为:E(X^n) = (i^n)*φ^(n)(0)其中φ^(n)(0)表示φ(t)在t=0处的n阶导数。
三、计算方法1. 对于一些常见分布,其特征函数可以直接求出。
如:(1) 正态分布N(μ,σ^2)的特征函数为:e^(iμt-σ^2t^2/2)(2) 均匀分布U(a,b)的特征函数为:(e^(ibt)-e^(iat))/(it(b-a))(3) 指数分布Exp(λ)的特征函数为:λ/(λ-it)2. 对于一些复杂分布,可以利用特征函数的性质来求解。
随机变量的特征函数
随机变量的特征函数是指反映随机变量随机性程度的函数,其主要可以分为五种:均值、方差、偏度、峰度和分布函数等。
1、均值是某一随机变量的数学期望,是衡量一个随机变量的中心位置的量,即期望值,也称为期望或数学期望。
2、方差表示随机变量与它的期望值之间的偏离程度,是一种测量随机变量分布形状的统计量,也是随机变量差异性的度量,它和均值的组合可以描述一个总体的变异情况。
3、偏度是衡量数据分布的离散程度,也可称为变量分布的“非对称程度”,衡量数据分布是否偏向均值,是用来评估样本中值离均值的离散程度,如果偏度系数大于0,则表示样本数据集向右偏;如果偏度系数小于0,则表示样本数据集向左偏;如果等于0,则表示没有偏斜。
4、峰度是衡量数据分布的凸度,衡量数据集分布的紧密程度,也叫做峰度系数,正态分布的均值、标准差和峰度均为零,而非正态分布的峰度大于0。
5、分布函数用来表示某个随机变量的取值范围和概率。
第3章 特征函数:随机变量的刻画3.1 特征函数定义定义 3.1.1 假设X 是定义在概率空间),,(P F Ω上的随机变量,它的分布函数为)(x F ,称)exp(itX 的数学期望)][exp(itX E 为X 的特征函数,或者分布函数)(x F 的特征函数,记为)(t X ϕ或)(t ϕ;此处12-=i 。
对复随机变量的数学期望定义如下:如福随机变量为iY X Z +=,其中Y X ,均为实随机变量,则Z 的数学期望定义为)()()(Y iE X E Z E += (3.1.1)由于)sin()cos()exp(tX i tX itX += (3.1.2)因此,⎰⎰∞∞-∞∞-+=+==)()sin()()cos( )][sin()][cos( )][exp()(x dF tx i x dF tx tX iE tX E itX E t X ϕ⎰∞∞-=)()exp(x dF itx (3.1.3)于是,X 的特征函数也可以称为对分布函数)(x F 的富立埃-斯蒂阶变换。
因为对任意R t ∈, )cos(tX 和)sin(tX 均为有界连续函数,故)][cos(tX E 和)][sin(tX E 均为有限,因此,任意随机变量的特征函数总是存在的。
随机向量的特征函数:如果),,,(21m X X X X =是m 维随机向量,则其特征函数定义为)]}({exp[)(2211n n X X t X t X t i E t +++= ϕ⎰⎰∞∞-∞∞-+++=),,,()](exp[ 212211n n n x x x dF x t x t x t i (3.1.4)● 当X 为离散随机变量时,其特征函数为∑==kk kX p itxitX E t )exp()][exp()(ϕ (3.1.5)此处)(k k x X P p ==。
● 当X 为连续随机变量时,其特征函数为⎰∞∞-== )()exp()][exp()(dx x f itx itX E t X ϕ (3.1.6)显然,随机变量特征函数的计算需要进行复数运算(复数求和)或者进行实变复值函数的积分。
随机变量的基本概念随机变量是概率论与数理统计中的重要概念,它是对随机试验结果的数值化描述。
在实际问题中,我们常常需要研究某个随机试验的结果与某个数值之间的关系,这时就需要引入随机变量来描述试验结果的数值特征。
一、随机变量的定义随机变量是定义在样本空间上的实值函数,它的取值是由随机试验的结果决定的。
随机变量可以是离散的,也可以是连续的。
离散随机变量:如果随机变量的取值是有限个或可列无限个,那么它就是离散随机变量。
例如,掷一枚骰子,随机变量X表示出现的点数,X的取值为1、2、3、4、5、6。
连续随机变量:如果随机变量的取值是一个区间上的任意实数,那么它就是连续随机变量。
例如,某地一天的降雨量,随机变量X表示降雨量的大小,X的取值范围是[0, +∞)。
二、随机变量的分布函数随机变量的分布函数是描述随机变量取值概率的函数。
对于离散随机变量,分布函数可以用概率质量函数来表示;对于连续随机变量,分布函数可以用概率密度函数来表示。
离散随机变量的分布函数:设X是一个离散随机变量,其取值为x1、x2、x3、...,对应的概率为p1、p2、p3、...,则X的分布函数F(x)定义为F(x)=P(X≤x)=p1+p2+...+pk,其中k为使得xk≤x的最大整数。
连续随机变量的分布函数:设X是一个连续随机变量,其概率密度函数为f(x),则X的分布函数F(x)定义为F(x)=∫f(t)dt,其中积分区间为(-∞, x)。
三、随机变量的概率密度函数和概率质量函数概率密度函数和概率质量函数是描述随机变量取值概率的函数。
离散随机变量的概率质量函数:设X是一个离散随机变量,其取值为x1、x2、x3、...,对应的概率为p1、p2、p3、...,则X的概率质量函数p(x)定义为p(x)=P(X=x),其中x为X的取值。
连续随机变量的概率密度函数:设X是一个连续随机变量,其概率密度函数为f(x),则X的概率密度函数f(x)满足以下两个条件:1. f(x)≥0,对于任意的x∈(-∞, +∞);2. ∫f(x)dx=1,其中积分区间为(-∞, +∞)。
求特征函数的公式特征函数是概率论中的一个重要概念,它是随机变量的一种表现形式。
特征函数能够描述随机变量不同的特性和属性,同时也是各种数学方法和统计学方法的基础。
在进行随机变量的分析和求解时,往往需要先求出其特征函数,根据特征函数来推导随机变量的概率分布函数、矩等基本性质。
因此,本文将详细介绍求特征函数的公式和相关知识。
一、什么是特征函数?特征函数是一种与随机变量(或者随机向量)相关的函数,它能够完整地描述该随机变量的全部性质和特征。
特征函数是唯一的,具有一致性、可加性、正定性、连续性等性质。
特别是对于连续性随机变量,它的特征函数具有很好的解析性质。
因此,特征函数被广泛应用于概率论、数学统计、信号处理、图像处理等领域。
特征函数是一个复值函数,定义为:$$\varphi_X(t)=\mathrm{E}\left(e^{itX}\right)$$ 其中,$t$是实数、$i$是虚数单位(即$i^2=-1)$,$X$是一个随机变量。
特征函数的实部和虚部分别对应着随机变量的余弦变换和正弦变换的性质。
如果随机变量$X$的概率密度函数为$f_X(x)$,那么特征函数可以用$f_X(x)$来表示:$$\varphi_X(t)=\int_{-\infty}^{+\infty}e^{itx}f_X(x)dx$$二、特征函数的性质1、一致性如果两个随机变量$X$和$Y$有相同的分布,则它们的特征函数是相同的,即$\varphi_X(t)=\varphi_Y(t)$。
2、可加性如果$X$和$Y$是两个独立的随机变量,则它们的和$Z=X+Y$的特征函数等于它们各自特征函数的乘积,即$\varphi_Z(t)=\varphi_X(t)\varphi_Y(t)$。
3、正定性对于特征函数$\varphi(t)$的任何一个复数系数$c_1,c_2,...,c_n$和任意实数$t_1,t_2,...,t_n$,有:$$\sum_{k,l=1}^nc_k\overline{c_l}\varphi(t_k-t_l)\geq0$$其中,$\overline{c_l}$表示$c_l$的共轭复数。
第四章 大数定律与中心极限定理4.1特征函数内容提要1. 特征函数的定义 设X 是一个随机变量,称)()(itX e E t =ϕ为X 的特征函数,其表达式如下(),()().(), 在离散场合, 在连续场合,itx i iitX itxx e P X x t E e t e p x dx ϕ+∞-∞⎧=⎪==-∞<<+∞⎨⎪⎩∑⎰由于1sin cos 22=+=tx tx e itx ,所以随机变量X 的特征函数)(t ϕ总是存在的.2. 特征函数的性质 (1) 1)0()(=≤ϕϕt ;(2) ),()(t t ϕϕ=-其中)(t ϕ表示)(t ϕ的共 轭;(3) 若Y =aX +b ,其中a ,b 是常数.则);()(at e t X ibt Y ϕϕ=(4) 若X 与Y 是相互独立的随机变量,则);()()(t t t Y X Y X ϕϕϕ⋅=+(5) 若()l E X 存在,则)(t X ϕ可l 次求导,且对l k ≤≤1,有);()0()(k k k X E i =ϕ (6) 一致连续性 特征函数)(t ϕ在),(+∞-∞上一致连续(7) 非负定性 特征函数)(t ϕ是非负定的,即对任意正整数n ,及n 个实数n t t t ,,,21 和n 个复数n z z z ,,21,有 ;0)(11≥-∑∑==j k j nk nj k z z t t ϕ(8) 逆转公式 设F (x )和)(t ϕ分别为X 的分布函数和特征函数,则对F (x )的任意两个点21x x <,有=-+--+2)0()(2)0()(1122x F x F x F x F ;)(21lim21dt t it e e TT itx itx T ϕπ⎰-+∞→-特别对F (x )的任意两个连续点21x x <,有;)(21lim)()(2112dt t it e e x F x F TT itx itx T ϕπ⎰-+∞→-=-(9) 唯一性定理 随机变量的分布函数有其特征函数唯一决定; (10) 若连续随机变量X 的密度函数为p (x ),特征函数为).(t ϕ如果+∞<⎰+∞∞-dt t )(ϕ,则dt t e x p itx )(21)(ϕπ⎰∞+∞--=3. 常用的分布函数特征表习题与解答4.11. 设离散随机变量X 的分布列如下,试求X 的特征函数.解 t i t i it x e e e t 321.02.03.04.0)(+++=ϕ2. 设离散变量X 服从几何分布 .,2,1,)1()(1 =-===-k p p k X P k 试求X 的特征函数,并以此求E(X )和V a r(x ).解 记q =1-p , 则ititK itit k k itk itxqe pe q e pe p qe e E t -====∑∑+∞=+∞=-1)()()(111ϕ, ()2'1)(it itqe ipe t -=ϕ,42'')1()1(2)1()(it itit it it it qe qe qe pe qe pe t -=----=ϕ, p q p i X E 1)1()0(1)(2'=-==ϕ, 242''21)1()1(2)1()0(1)(pqq q pq q p i X E +=--+-==ϕ,22222)1(1)]([)()(pqp p q X E X E X Var =-+=-= 3.设离散随机变量X 服从巴斯卡分布 ,)1(11)(rk r p p r k k X P --⎪⎪⎭⎫ ⎝⎛--==,1,k r r =+试求X 的特征函数.解 设r X X X ,,,21 是相互独立同分布的随机变量,且都服从参数为p 的几何分布Ge(p ),则由上一题知j X 的特征函数为,1)(X ititqepe t j -=ϕ 其中q =1-p . 又因为r X X X X +++= 21,所以X 的特征函数为∏=-==rj ritit x X qe pe t t j 1)1()()(ϕϕ. 4.求下列分布函数的特征函数,并由特征函数求其数学期望和方差.(1)dt e a x F x t a ⎰∞--=2)(1 (a >0); (2) dt a t a x F x⎰∞-+=2221)(π (a >0). 解 (1)因为此分布的密度函数为 ,2)(1xa e a x p -= .+∞<<∞-x 所以此分布的特征函数为010()22itx ax itx axa at e e dx e e dx ϕ+∞--∞=⋅+⋅⎰⎰ 0(cos sin )(cos sin )22ax axa atx i tx e dx tx i tx e dx +∞--∞=+⋅++⋅⎰⎰ =.cos 222ta a dx txea ax+=⎰+∞-又因为,)(2)(2222'1t a ta t +-=ϕ ,0)0('1=ϕ ,)()3(2)(322222''1t a a t a t +-=ϕ ,2)0(2''1a -=ϕ 所以 0,(0)1)('1==ϕi X E V a r(X )= .a2(0)1)(2''122==ϕi X E(2) 因为此分布的密度函数为 ,1)(222a x ax p +⋅=π .+∞<<∞-x 所以此分布的特征函数为,cos 2)(022222⎰⎰+∞+∞∞-+=+=dx a x txadx a x e ax itx ππϕ又因为当t >0时,有(见菲赫金哥尔茨《微积分学教程》第二卷第三分册或查积分表).2cos 022⎰+∞-=+ate a dx ax tx π 所以当t >0时,有 .22)(2at ate e aa t --=⋅=ππϕ 而当t <0时,有 ,)()(22t a e t t -=-=ϕϕ所以.22)(2ta at e e aa t --=⋅=ππϕ 又因为)(2t ϕ在t =0处不可导,故此分布(柯西积分)的数学期望不存在.注:⎰+∞∞-+=dx ax e ax itx222)(πϕ也可利用复变函数中的留数理论来计算,方法如下:t >0时,⎪⎪⎭⎫ ⎝⎛=+⋅=+=⎰+∞∞-ai z a z e i adx a x e ax itz itx ,Res 2)(22222πππϕ ta taitz ai z e ai e ai ai z e i a--→==+⋅=22lim 2ππ5. 设),,(~2σμN X 试用特征函数的方法求X 的3阶及4阶中心矩. 解 因为正态分布),(2σμN 的特征函数为,)(2/22t t i et σμϕ-=所以,)0('μϕi = ,)0()('μϕ==iX E ,)0(22''σμϕ--= ,)0()(222''2σμϕ+==iX E ,3)0(23'''μσμϕi i --= ,3)0()(333'''3μσμϕ+==i X E,36)0(4224''''σσμμϕ++= .36)0()(42244''''4σσμμϕ++==i X E由此得X 的3阶及4阶中心矩为,0)(3)(3)())((2233=+-=-μμX E X E X E X E X E.3)(4)(6)(4)())((44343344σμμμμ=+-+-=-X E X E X E X E X E X E6. 试用特征函数的方法证明二项分布的可加性:若X ~ b (n , p),Y ~ b(m ,p),且 X 与Y 独立,则X+Y ~ b(n + m, p).证 记q=1-p, 因为 n it X q pe t )()(+=ϕ, m it Y q pe t )()(+=ϕ, 所以由 X 与Y 的独立性得()()()()it n m X Y X Y t t t pe q ϕϕϕ++==+,这正是二项分布b(n + m, p)的特征函数,由唯一性定理知X+Y~b(n+m,P ).7. 试用特征函数的方法证明泊松分布的可加性:若X ~P (λ1),Y ~ P (λ2),且X与Y 独立,则X +Y ~P (λ1+λ2).证:因为 ,)(,)()1()1(21====ititeY eX e t e t λλϕϕ 所以由X 与Y 独立性得,)()()()1)2(-+==+it e et t t Y X Y X λλϕϕϕ这正是泊松分布 P (λ1+λ2).的特征函数,由唯一性定理知X +Y ~ P (λ1+λ2). .8. 试用特征函数的方法证明伽玛分布的可加性:若),,(~1λa Ga X),(~2λa Ga Y ,且X 与Y 独立,则),(~21λa a Ga Y X ++.证 因为 1)1()(a X it t --=λϕ,2)1()(a Y itt --=λϕ,所以由X 与Y 的独立性得)(21)1()()()(a a Y X Y X itt t t +-+-==λϕϕϕ,这正是伽玛分布),(21λa a Ga +的特征函数,由唯一性定理知),(~21λa a Ga Y X ++.9.试用特征函数的方法证明2χ分布的可加性:若)(~2n X χ,)(~2m Y χ,且X 与Y 独立,则).(~2m n Y X ++χ证 因为2)21()(n X it t --=ϕ,2)21()(mY it t --=ϕ,所以由X 与Y 的独立性得2)()21()()()(m n Y X Y X it t t t +-+-=+=ϕϕϕ,这正是2χ分布2χ(n+m)的特征函数,由唯一性定理知).(~2m n Y X ++χ10. 设i X 独立同分布,且n i Exp X i ,,2,1),(~ =λ.试用特征函数的方法证明:∑==ni i n n Ga X Y 1),(~λ.证 因为1)1()(--=λϕitt i X ,所以由诸i X 的相互独立性得n Y 的特征函数为n Y itt n--=)1()(λϕ,这正是伽玛分布),(λn Ga 的特征函数,由唯一性定理知),(~λn Ga Y n .11. 设连续随机变量X 服从柯西分布,其密度函数如下:+∞<<-∞-+⋅=x x x p ,)(1)(22μλλπ,其中参数+∞<<-∞>μλ,0,常记为),(~μλCh X ,(1) 试证X 的特征函数为{}t t i λμ-exp ,且利用此结果证明柯西分布的可加性;(2) 当1,0==λμ时,记Y =X,试证)()()(t t t Y X Y X ϕϕϕ=+,但是X 与不独立; (3) 若n X X X ,,,21 相互独立,且服从同一柯西分布,试证:)(121n X X X n+++ 与X i 同分布.证 (1) 因为μ-=X Y 的密度函数为+∞<<-∞+⋅=x yx p ,1)(22λλπ,由本节第4题(2)知Y 的特征函数为{}()exp ||Y t t φλ=-.由此得μ+=Y X 的特征函数{}{}t t i t t i t t Y Y X λμϕμϕϕμ-===+exp )(exp )()(.下证柯西分布的可加性: 设)2,1(=i X i 服从参数为i i λμ,的柯西分布,其密度函数为: 2,1,,)(1)(22=+∞<<-∞-+⋅=i x x x p i i μλλπ.若1X 与2X 相互独立,则(){}t t i t t t X X X X )(exp )()()(21212121λλμμϕϕϕ+-+==+,这正是参数为2121,λλμμ++柯西分布的特征函数.所以由唯一性定理知,21X X +服从参数为2121,λλμμ++的柯西分布.(2) 当1,0==λμ时有 {}t t X -=exp )(ϕ,{}t t Y -=exp )(ϕ,所以 )2()()(2t t t X X Y X ϕϕϕ==+{}{}{}t t t --=-=exp exp 2exp )()(t t Y X ϕϕ=. 由于Y=X,当然X 与Y 不独立.此题说明,由)()()(t t t Y X Y X ϕϕϕ=+不能推得X 与Y 独立.(3) 设i X 都服从参数为λμ,的柯西分布,则特征函数为{}t t i t λμϕ-=exp )(.由相互独立性得, ∑=n i i X n 11 的特征函数为 []{}t t i n t nλμϕ-=e x p )/(,即 ∑=n i i X n 11与X 1具有相同的特征函数,由唯一性定理知它们具有相同的分布.12.设连续随机变量X 的密度函数为p (x ),试证:p (x )关于原点对称的充要条件是它的特征函数是实的偶函数.证:记X 的特征函数为)(t X ϕ.先证充分性,若)(t X ϕ是实的偶函数,则)()(t t X X ϕϕ=-或)()(t t X X -=-ϕϕ,这表明X 与-X 有相同的特征函数,从而X 与-X有相同的密度函数,而-X 的密度函数为p (-x ),所以得p (x )=p (-x ),即p (x )关于原点是对称的.。