苷类的结构与分类共52页文档
- 格式:ppt
- 大小:6.17 MB
- 文档页数:52
2)按苷元的化学结构:蒽醌苷、黄酮苷、吲哚苷、香豆素苷3)苷在植物体内的存在状况分:原生苷—原存在于植物体内的苷(杏仁苷)次生苷—原生苷水解失去一部分糖后生成的苷(野樱苷)4)根据糖的名称分:葡萄糖苷、去氧糖苷、木糖苷5)连接单糖基的数目分:单糖苷、双糖苷、三糖苷6)按照糖连接的糖链数:单糖链苷、双糖链苷7)按照理化性质或生理活性分类:皂苷、强心苷等3、苷类的性状:多数固体(糖基少完好晶型、糖基多吸湿性无定形粉末)、无色、无味,个别有色、有味4、旋光性:多为左旋,水解后生成糖呈右旋(水解前后旋光度的对比-检识苷类存在)5、苷类的溶解性:苷-亲水性(随糖基数目的增加而增大),苷元-亲脂性6、苷键的裂解:酸水解、酶水解、碱水解、氧化开环(1)酸催化水解:试剂――稀酸(盐酸、硫酸、乙酸、甲酸)、溶剂――水或稀醇机理:苷键原子首先发生质子化。
然后苷键断裂生成苷元和糖的阳碳离子中间体,在水中溶剂化,再脱去氢离子而形成糖分子。
水解易难的规律:aN-苷>O-苷>S-苷>C-苷b呋喃糖苷>吡喃糖苷c酮糖(呋喃结构)>醛糖 d五碳糖苷>甲基五碳糖苷>六碳糖苷>七碳糖苷>糖醛酸苷e 2、3-去氧糖苷 > 2-去氧糖苷 > 3-去氧糖苷> 2-羟基糖苷> 2-氨基糖苷f 芳香族苷>脂肪族苷避免苷元脱水-难水解、对酸不稳定:①两相酸水解法(在反应混合溶液中加入与水不相混溶的有机溶剂,苷元一旦生成即刻进入有机相,避免与酸长时间接触,获得真正的苷元)②改变水解条件(2)碱催化水解:(β-消除反应)具酯性质苷可发生碱水解:酯苷、酚苷、烯醇苷、β吸电子取代的苷(羰基、羧基)。
这些苷键有酯的性质,遇碱可以发生水解,β-位有吸电子基使α-氢活化,碱液中易与苷键起消除反应使苷键裂解。
脂肪族苷元和糖形成的苷对碱稳定。
(3)酶催化水解:专属性很强:特定酶只水解糖的特定构型的苷键条件温和:①保护糖和苷元结构②保留部分苷键得次级苷常用的酶:麦芽糖酶α─选择性地水解α-葡萄糖苷键苦杏仁苷酶β─水解一般的β-葡萄糖苷键和六碳醛糖苷转化糖酶─水解β-果糖苷键纤维素酶──水解β-葡萄糖苷键芥子苷酶──水解芥子苷(4)乙酰解反应:特点:开裂一部分苷键,保留另一部分苷键试剂:乙酸酐与不同酸的混合液用途:确定糖与糖之间的连接位置易难顺序:1→6﹥ 1→4﹥ 1→3 ﹥ 1→2(5)氧化开裂法:最常用Smith降解法(邻二醇结构)反应过程:①试剂 NaIO4 --- (邻二羟基)→二元醛+甲酸②试剂 NaBH4 --- (二元醛) →二元醇③室温下稀酸水解——苷元+多元醇+羟基乙醛(碳苷:醛基苷元)。
苷类的结构1. 引言苷类(glycosides)是一类广泛存在于天然产物中的化合物,它们由糖基和一个非糖部分组成。
苷类化合物在生物体内起到了重要的生理功能和药理活性,因此对苷类的结构进行深入研究具有重要意义。
2. 苷类的分类苷类可以根据非糖部分的性质进行分类,常见的分类包括:2.1 醇苷(Alcohol glycosides)醇苷是一种非糖部分为醇基的苷类化合物。
常见的醇苷包括葡萄糖苷、果糖苷等。
这些化合物在植物中广泛存在,具有抗氧化、抗癌等生理活性。
2.2 酚苷(Phenol glycosides)酚苷是一种非糖部分为酚基的苷类化合物。
常见的酚苷包括儿茶素苷、花青素等。
这些化合物在植物中起到了保护机体免受氧化损伤的作用。
2.3 酮/醛苷(Ketone/Aldehyde glycosides)酮/醛苷是一种非糖部分为酮基或醛基的苷类化合物。
常见的酮/醛苷包括激素类苷、生物碱类苷等。
这些化合物在生物体内具有重要的药理活性,如激素的调节作用。
2.4 酸/脂质苷(Acid/Lipid glycosides)酸/脂质苷是一种非糖部分为酸基或脂质基的苷类化合物。
常见的酸/脂质苷包括脂肪族和芳香族羧酸类苷、磷脂类苷等。
这些化合物在生物体内参与了多种代谢过程,如脂肪代谢和信号传导等。
3. 苷类的结构苷类化合物由糖基和非糖部分组成。
糖基可以是单糖或多糖,而非糖部分则决定了化合物的特性和功能。
3.1 糖基(Sugar moiety)糖基是苷类中不可或缺的一部分,它通常由单糖或多糖组成。
常见的单糖包括葡萄糖、果糖、半乳糖等,而多糖则由多个单糖单元连接而成。
糖基可以通过不同的连接方式与非糖部分结合,形成不同的苷类化合物。
3.2 非糖部分(Aglycone)非糖部分是苷类中与糖基相连的部分,它决定了苷类化合物的特性和功能。
非糖部分可以是醇基、酚基、酮基、醛基、酸基或脂质基等。
不同的非糖部分赋予了苷类化合物不同的生理活性和药理作用。
一、苷的结构与分类★★★苷类亦称配糖体,是由糖或糖的衍生物,如氨基酸、糖醛酸等与另一非糖物质通过糖的端基碳原子连接而成的化合物。
其中糖部分称为苷元或配基,连接的键称为苷键。
由于单糖有α及β两种端基异构体,因此形成的苷分为α-苷及β-苷。
由D型糖衍生的苷为β-苷(如β-D-葡萄糖苷),由L型糖衍生的苷,多为α-苷(如α-L-鼠礼糖苷)医学教育网收集整理。
1.根据苷元化学结构的类型可将苷分为黄酮苷、蒽醌苷、苯丙素苷、生物碱苷、三萜苷等。
医学教育网2.根据苷在生物体内是原生的还是次生的可将苷分为原生苷和次生苷3.根据苷键原子又可将苷分为氧苷、氮苷、硫苷、碳苷等。
二、苷类化合物的一般性状、溶解度和旋光性★★★1.一般性状苷类多是固体,其中糖基少的可结晶,糖基多的如皂苷,则多呈具有吸湿性的无定形粉末。
苷类一般是无味的,但也有很苦的和有甜味的。
2.溶解性苷类的亲水性和糖基的数目有密切的关系,其亲水性往往随糖基的增多而增多大,大分子苷元如甾醇等的单糖常可溶于低级极性有机溶剂,如果糖基增多,则苷元所占比例相应变小,亲水性增加,在水中的溶解度也就相应增加。
因此用不同极性的溶剂依次提取时,在各提取部位都有发现苷的可能性。
C-苷与O-苷不同,无论在水中或其他溶剂中的溶解度一般都较小。
3.旋光性多数苷类呈左旋光性,但水解后,由于生成的糖常是右旋的,因而使混合物呈右旋光性,比较水解前后旋光性的变化,可以检识苷类的存在。
医学教育网三、苷的理化性质及提取★★★1.苷键的裂解(1)酸催化裂解: 酸催化水解常用的试剂是水或稀醇,常用的催化剂是稀盐酸、稀硫酸、乙酸、甲酸等。
其反应机理是苷键原子先被质子化,然后苷键断裂形成糖基正离子或半椅型的中间体,该中间体再与水结合形成糖,并释放催化剂质子。
凡有利于苷键原子质子化和中间体形成的一切因素均有利于苷键的水解。
通常苷水解的难易程度有以下规律:医学教育网收集整理①在形成苷键的N、O、S、C四个原子中,水解的难易程度是C-苷>S-苷>O-苷>N-苷。
第三章苷类化合物课次:8、9课题:第三章苷类一、目的要求:1.说出苷的含义和结构特点、结构分类。
2.简述苷类的一般理化性状。
3.详述苷的水解作用及其水解前后结构、性质的变化规律。
4.简述苷和苷元的提取原理和提取方法。
5.详述氰苷结构、水解产物的结构特点及与药效、毒性的关系。
6.了解氰苷、硫苷、吲哚苷类中药的研究情况。
二、内容摘要:1.苷的含义、结构和分类。
2.苷的理化性质:一般形态、溶解性、旋光性、水解性、苷的非特征检识等。
3.苷类的一般提取方法。
4.氰苷、硫苷、吲哚苷的结构、性质和检识方法。
5.苦杏仁苷。
三、重点:1.苷的含义、结构和分类。
2.苷的水解作用及其水解前后结构、性质的变化规律。
3.苷类的一般提取方法。
四、难点:1.苷的水解作用及水解前后物质结构、溶液性质的变化规律。
2.氰苷、硫苷、吲哚苷的结构性质。
五、育人目标:通过典型氰苷-苦杏仁苷的结构、性质的学习,进一步认识毒性和药性的辩证关系及其在中药炮制和临床应用中的意义。
六、教学内容分析及教法设计:(一)教学过程:组织教学:检查学生出勤,填写教学日志,随机应变,组织好课堂纪律。
课程引入:以甜叶菊苷为例,说明苷在植物体中的广泛存在,再以苦杏仁为例,说明苷的水解与药物炮制的关系。
引出学习苷类的重要性。
展示目标:略进行新课:第三章苷类苷类,又称配糖体。
是糖或糖的衍生物如氨基糖、糖醛酸等与另一类非糖物质通过糖的端基碳原子连接而成的化合物。
其中非糖部分称为苷元或配基,其连接的键则称为苷键。
1.单糖苷:由于单糖有α及β两种端基异构体。
因此形成的苷也有α-苷和β-苷之分。
在天然的苷类中,由D型糖衍生而成的苷;多为β-苷(例如β-D-葡萄糖苷),而由L型糖衍生的苷,多为α-苷(例如α-L-鼠李糖苷),但必须注意β-D-糖苷与a-L-糖苷的端基碳原子的绝对构型是相同的,例如:β-D-葡萄糖苷α-L-鼠李糖苷苷中与苷元连接的单糖最常见的有D一葡萄糖,此外,还有D-芹糖、L-阿拉伯糖、D-木糖、D-核糖、D-鸡纳糖、L-鼠李糖、D-夫糖、D-甘露糖、D-半乳糖、D-果糖、D-葡萄糖醛酸及D-半乳糖醛酸。