北航12年12月课程考试《概率统计》答案
- 格式:doc
- 大小:784.00 KB
- 文档页数:5
哈工大 2012年秋季学期概率论与数理统计 试题一、填空题(每小题3分,共5小题,满分15分)1.设事件A 、B 相互独立,事件B 、C 互不相容,事件A 与C 不能同时发生,且()()0.5P A P B ==,()0.2P C =,则事件A ,B 和C 中仅C 发生或仅C 不发生的概率为__________ .2.设随机变量X 服从参数为2的指数分布, 则21e X Y-=-的概率密度为()Y f y =______ ____.3.设随机变量X 的概率密度为21e ,0()20, 0xx x f x x -⎧>⎪=⎨⎪≤⎩,利用契比雪夫不等式估计概率≥<<)51(X P ______.4.已知铝的概率密度2~(,)X N μσ,测量了9次,得 2.705x =,0.029s =,在置信度0.95下,μ的置信区间为______ ____.5.设二维随机变量(,)X Y 服从区域{(,)|01,02}G x y x y =≤≤≤≤上的均匀分布,令),min(Y X Z =,),max(Y X W =, 则)1(≥+W Z P = .(0.0250.050.050.025(8)23060,(8)18595,(9) 1.8331,(9) 2.2622t t t t =⋅=⋅==()1.960.975Φ=,()1.6450.95Φ=)二、选择题(每小题3分,共5小题,满分15分)(每小题给出的四个选项中,只有一个是符合题目要求的,把所选项的字母填在题后的括号内)1.设0()1, 0()1, ()()P A P B P B A P B <<<<=,则与上式不等价的是(A )A 与B 不相容. (B )()()P B A P B A =.(C ))()(A P B A P =. (D ))()(A P B A P =. 【 】2.设总体X 服从参数为λ的泊松分布,12,,,n X X X 是来自X 的样本,X 为样本均值,则 (A )1EX λ=,21DX n λ=. (B ),λ=X E n X D λ=. (C ),nX E λ=2n X D λ=. (D ),λ=X E λn X D 1=. 【 】 3.设随机变量X 的概率密度为2, 01()0, x x f x <<⎧=⎨⎩其他,则)2(DX EX X P ≥-等于(A)99-. (B)69+. (C )928-6. (D)69-. 【 】 4.如下四个函数,能作为随机变量X 概率密度函数的是(A )⎪⎩⎪⎨⎧≤>+=0,00,11)(2x x x x f . (B )0,157(),1116160, 1x f x x x x <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩.(C )1()e ,.2xf x x -=∈R . (D )1e ,0()0,0x x f x x -⎧->=⎨≤⎩ . 【 】5.设12,,,n X X X 为来自总体2~(,)X N μσ的一个样本,统计量2)(1μ-=X Sn Y 其中X 为样本均值,2S 为样本方差,则 【 】 (A )2~(1)Y x n -(B )~(1)Y t n -(C )~(1,1)Y F n - (D )~(1,1)Y F n -.三、(8分)假设某段时间内来到百货公司的顾客数服从参数为λ的Poisson 分布,而在百货公司里每个顾客购买电视机的概率均为p ,且顾客之间是否购买电视机相互独立,试求=A “该段时间内百货公司售出k 台电视机”的概率(假设每顾客至多购买一台电视机)。
<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
则P(B )A =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7, 则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅则A=______________7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。
北航考试《概率统计》考核要求一、 单项选择题(本大题共5小题,每小题2分,共10分)1.设A 、B 、C 是三个随机事件,则事件“A 、B 、C 不多于一个发生”的对立事件是( B )。
A .A 、B 、C 至少有一个发生 B. A 、B 、C 至少有两个发生 B .A 、B 、C 都发生 D. A 、B 、C 不都发生2.设事件A 与B 互不相容,()01B <P <,则一定有( D )。
A .()()A B A P =P B. ()()A B A P =PC .()1A B P = D. ()1A B P =3.设随机变量X 在[0,2]上服从均匀分布,事件{}01A X =≤≤,{}12B X =≤≤。
则( D )。
A .A 、B 互不相容 B. A 、B 互相对立 C .A 、B 相互独立 D. A 、B 不独立4.十个球中有三个红球七个绿球,随机地分给10个小朋友,每人一个球。
则最后三个分到球的小朋友中只有一个分到红球的概率p 为( C )。
A .13310C ⎛⎫ ⎪⎝⎭ B.2371010⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭C .213371010C ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭D.1237310C C C5.设随机变量X 服从正态分布()2,N μσ,Y ax b =+服从标准正态分布,则( C )。
A .1,a b μσσ==B.,a b σσμ==C. 1,a b μσσ=-=D. 1,a b μσσ=-=-二、填空题(本大题共5小题,每小题4分,共20分)6.设A 、B 是两个随机事件,()0.4A P =,()0.8B P =,()0.9A B P ⋃=。
则()A B P =38.7.将D ,G ,O ,O 四个字母随机地排成一行,则恰好排成英文单词GOOD 的概率为112. 8.将一枚硬币重复抛掷五次,则正、反面都至少出现两次的概率是1316. 9.已知{}{}10,00,14X Y X Y P ===P ===,{}11,12X Y P ===。
第1章 随机事件的概率一、事件关系:1、设B A ,为任意两事件,则下列关系成立的是( C ).(A) A B B A =-+)( ; (B) ()A B AB A +-= ;(C) ()()A B AB B A A B -++-=+ ; (D) A B B A =+-)(.1、 设A 、B 为试验E 的两个事件,且1)(0<<B P ,则下列各式中成立的是( D )。
(A) )(1)|(A P B A P -=; (B) )|()|(B A P B A P =;(C) )()()(B P A P AB P =; (D) )|()()(B A P B P B A P = 。
二、古典概率:2、一盒内装有5个红球和15个白球,从中不放回取10次,每次取一个球,则第5次取球时得到的是红球的概率是( B )。
(A )15; (B )14; (C )13 ;(D )12。
三、(9分)从9~0这十个数码中任意取出4个排成一行数码,求: (1) 所取4个数码恰排成四位偶数的概率;(2) 所取4个数码恰排成四位奇数的概率;(3)没排成四位数的概率.解(1) 设=A 排成四位偶数, (末尾是2,4,6,8之一,或末尾是0), 9041)(4101139142818=+=A C A C A C A P ; (2) 设=B 排成四位奇数, 9040)(410152818==A C A C B P ; (3)设=C 没排成四位数, 101909)(4103911===A A A C P 6、从9~0这十个数码中任意取出4个排成一串数码,则数码恰成四位偶数的概率为:(A)(A )4190 ;(B )12;(C )4090;(D )3290 。
1、设有n 个球,每个球都能以同样的概率N1落到N 个格子)(n N ≥的每一个格子中, 则恰有n 个格子中各有一个球的概率为 !!()()!n n N N n n n C n A N P B N N N N n ===- 。
2011-2012学年第2学期课程:《概率统计A》1——16周,学时:64,学分:4周一下午7-8节(15:30—17:20),沙河校区J3-410 ;周五上午1-2节(8:10—10:00),沙河校区J3-310 。
100321,22,23,24,100325,26,27,28 。
240人。
主讲教师:邢家省办公地点:主楼主南311E-mail: xjsh@通信地址:北京航空航天大学数学与系统科学学院邮编100191同学们好!这学期由我给同学们讲授《概率统计A》《概率统计与随机过程A》这门课程,希望我和同学们共同努力, 完成这门课的讲授和学习任务。
通过课堂讲解,同学们听课学习,为同学们的知识掌握能力提高打下必要的数学基础;为专业知识的学习和运用,提供数学工具.先说一下要求和学习方法:(1)要求我自己每次上课提前十分钟到达教室,准备好上课;(2)要求同学们按时来上课、听课,遵守课堂纪律,保持安静,不影响大家听讲;(3)课前适当预习,上课时认真听课,课后及时复习,必要时,要经常复习用到的高等数学有关知识原理;(4)要及时完成作业,保证数量质量,按时交作业;作业要求独立完成,交作业的数量和质量算平时成绩,占总成绩的10%.(5)每周一上课时交作业,作业由各班课代表或学习委员收齐,交到讲台上,由我带回主校区交给助教批改。
(6)答疑方式周一下午下课后,教师留下四十分钟,解答同学们的提问。
(7)学习中遇到问题解决方法:善于提问题,自我思考,或者向教师提问,或者同学们之间互相交流。
向教师发邮件。
可搜索登录如下的网站:数学博士论坛,免费考研论坛。
这两个网站,对人们很有用,希望常去逛逛,看别人的贴子与回贴,回别人的贴子,发掘有用的东西,发自己的贴子,看别人给的解答,通过发贴回贴留下自己对社会有贡献的东西。
《概率统计与随机过程A》本课程分三个部分:一、概率论(第一章—第六章)二、数理统计(第七章—第九章)三、随机过程(第十一章—第十三章)本课程的研究对象和用处: 自然界的所有现象可分为两类:一、确定性现象:在一定条件下,某种结果是否发生,事先完全可以预言;二、不确定现象(随机现象):在一定条件下,某种结果是否发生,事先是不可能预言的.随机现象是大量客观存在的.举例:明天早上是否下雨;国庆节或春运期间去火车站买去上海的某一趟火车票能否买到;两支足球队比赛,那一个队将胜;某一河流是否暴发洪水,某一山区是否发生泥石流,某一地区是否发生地震,台风,海啸等。
北京航空航天大学2021 学年概率论与数理统计第一学期期末一、单项选择题〔每题3分,总分值18分〕1、从9~0这十个数码中任意取出4个排成一串数字码,则所排成的数字码恰是四位奇数的概率为〔 〕。
〔A 〕4190 ; 〔B 〕19; 〔C 〕49; 〔D 〕110 。
2、离散型随机变量X 的分布函数为0,10.1,13()0.6,341,4x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩ ,则{4|1}P X X <≠=〔 〕。
〔A 〕59 ; 〔B 〕29; 〔C 〕39; 〔D 〕12 。
3、设随机变量),(~2σμN X ,则6||E X μ-=〔 〕.(A) 63σ; (B) 65σ; (C) 615σ ; 〔D 〕648σ 。
4、设随机变量),0(~2i i N X σ,2,1=i,则以下说法中正确的选项是〔 〕。
〔A 〕12(,)X X 必服从二维正态分布; 〔B 〕221212[()()]2X X E σσ+=;〔C 〕120XX ρ=; 〔D 〕221212()D X X σσ+=+。
5、设随机变量X 存在数学期望EX 和方差0DX ≠,则对任意正数ε,以下不等式恒成立的是〔 〕。
〔A 〕2{||}DXP X EX εε-≥>; 〔B 〕2{||}1DXP X EX εε-<<-〔C〕21{||P X ε≥≤; 〔D 〕||{||}kkE X P X εε≥≤,(0)k >。
6、设12,,,n X X X 是来自正态总体2(,)N μσ的样本,当c =〔 〕时,222ˆX cQ μ=+是2μ的无偏估计量, 其中∑==n i i X n X 11,221()n i i Q X X ==-∑ 。
〔A 〕1(1)n n -- , 〔B 〕11n -- , 〔 C 〕 21n- , 〔 D 〕21(1)n -- 。
二、填空题〔每题3分,总分值18分〕1、设每人的生日是一年中的任何一天的可能性相同,则某学院的400名学生中至少有一人的生日是元旦这一天的概率为 。
习 题 一写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次;(3) 掷一枚硬币,直到首次出现正面为止;(4) 一个库房在某一个时刻的库存量(假定最大容量为M ).解 (1) Ω={正面,反面} △ {正,反}(2) Ω={(正、正),(正、反),(反、正),(反、反)} (3) Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0 ≤x ≤ m }掷一颗骰子的试验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数小于5”,D =“小于5的偶数点”,讨论上述各事件间的关系. 解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A Ω A 与B 为对立事件,即B =A ;B 与D 互不相容;⊃,⊃.3. 事件表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用(i =1,2,3)表示出来. 解 B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++=B -C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++= 321A A A C B =- 4. 如图1-1,事件A 、B 、C 都相容,即≠Φ,把事件A +B ,A +B +C ,+B ,C -用一些互不相容事件的和表示出来. 解 B A A B A +=+C B A B A A C B A ++=++C B A B B AC +=+BC A C B A C B A AB C ++=-5.两个事件互不相容与两个事件对立的区别何在,举例说明.解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件.6.三个事件A 、B 、C 的积是不可能事件,即=Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件=Φ,但是A 与B 相容.7. 事件A 与B 相容,记C =,D =,F =A -B. 说明事件A 、C 、D 、F 的关系.解 由于⊂⊂,A -⊂⊂,与A -B 互不相容,且A =+(A -B). 因此有 A =,C 与F 互不相容, ⊃⊃,⊃.8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率.解 记事件A 表示“取到的两个球颜色不同”. 则有利于事件A 的样本点数目#A =1315C C .而组成试验的样本点总数为#Ω=235+C ,由古典概率公式有P (A )==Ω##A 2815281315=C C C图1-1图1-2(其中#A ,#Ω分别表示有利于A 的样本点数目与样本空间的样本点总数,余下同) 9. 计算上题中取到的两个球中有黑球的概率.解 设事件B 表示“取到的两个球中有黑球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P -10. 抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率.解 设事件A 表示“三次中既有正面又有反面出现”, 则A 表示三次均为正面或三次均为反面出现. 而抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此43821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开一个门锁,今任取两把,求能打开门锁的概率.解 设事件A 表示“门锁能被打开”. 则事件A 发生就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=C C A A P A P -##从9题-11题解中可以看到,有些时候计算所求事件的对立事件概率比较方便.12. 一副扑克牌有52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异;(2)四张中只有两种花色.解 设事件A 表示“四张花色各异”;B 表示“四张中只有两种花色”.,113113113113452##C C C C A , C Ω==) +#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P ===30006048+74366##)(452 )(.C ΩB B P ===13. 口袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率.解 设事件A 表示“取出的5枚硬币总值超过壹角”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##=14. 袋中有红、黄、黑色球各一个,每次任取一球,有放回地抽取三次,求下列事件的概率:A =“三次都是红球” △ “全红”,B =“全白”, C =“全黑”,D =“无红”,E =“无白”, F =“无黑”,G =“三次颜色全相同”, H =“颜色全不相同”,I =“颜色不全相同”.解 #Ω=33=27,#A =#B =#C =1, #D =#E =#F =23=8, #G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =24271)()()(===C P B P A P278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. 一间宿舍内住有6位同学,求他们中有4个人的生日在同一个月份的概率.解 设事件A 表示“有4个人的生日在同一个月份”.#Ω=126,#A =21124611C C 0073.01221780##)(6==ΩA A P =16. 事件A 与B 互不相容,计算P )(B A +.解 由于A 与B 互不相容,有=Φ,P ()=0.1)(1)()(=-==+AB P AB P B A P 17. 设事件⊃,求证P (B )≥P (A ). 证 ∵⊃∴P ()=P (B ) - P (A ) ∵P ()≥0 ∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,≠0 (b >0.3a ),P (A -B )=0.7a ,求P (),P (),P (B +A ). 解 由于A -B 与互不相容,且A =()+,因此有P ()=P (A )()=0.3aP (A +B )=P (A )+P (B )-P ()=0.7a +b P ()=P (B )()=0.3aP(B +A )=1()=1-0.3a19. 50个产品中有46个合格品与4个废品,从中一次抽取三个,计算取到废品的概率.解 设事件A 表示“取到废品”,则A 表示没有取到废品,有利于事件A 的样本点数目为#A =346C ,因此P (A )=1(A )=1-3503461C C ΩA-=## =0.225520. 已知事件⊃,P (A )= ≠ 0,P (B )=,求a 的取值范围.解 因⊃,故P (B )≥P (A ),即≥⇒≥b ,又因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都大于0,比较概率P (A ),P (),P (),P (A )(B )的大小(用不等号把它们连接起来). 解 由于对任何事件A ,B ,均有⊂⊂且P ()=P (A )+P (B )(),P ()≥0,因此有 P ()≤P (A )≤P ()≤P (A )+P (B )22. 一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算). 解 设事件A 表示“100名学生的生日都不在元旦”,则有利于A 的样本点数目为#A =364100,而样本空间中样本点总数为 #Ω=365100,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P= 0.239923. 从5副不同手套中任取4只手套,求其中至少有两只手套配成一副的概率.解 设事件A 表示“取出的四只手套至少有两只配成一副”,则A 表示“四只手套中任何两只均不能配成一副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职工订阅报纸,93%的人订阅杂志,在不订阅报纸的人中仍有85%的职工订阅杂志,从单位中任找一名职工求下列事件的概率: (1)该职工至少订阅一种报纸或期刊; (2)该职工不订阅杂志,但是订阅报纸.解 设事件A 表示“任找的一名职工订阅报纸”,B 表示“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )(B )=0.988-0.93=0.05825. 分析学生们的数学与外语两科考试成绩,抽查一名学生,记事件A 表示数学成绩优秀,B 表示外语成绩优秀,若P (A )=P (B )=0.4,P ()=0.28,求P(A |B ),P (B |A ),P (A +B ).解 P (A |B )=7.04.028.0)()(==B P AB PP (B |A)=7.0)()(=A P AB PP (A +B )=P (A )+P (B )()=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P ()=P (A )P (B ). 证 ∵P ( A |B )+P (A |B )=1且P ( A |B )+P (A |B )=1∴P ( A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --== P ()[1(B )]=P ( B )[P ( A )( )]整理可得P ()=P ( A ) P ( B )27. 设A 与B 独立,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ). 解 P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B )⇒ 0.7=0.4+0.6P ( B ) ⇒ P ( B )=0.528. 设事件A 与B 的概率都大于0,如果A 与B 独立,问它们是否互不相容,为什么?解 因P ( A ),P ( B )均大于0,又因A 与B 独立,因此P ( )=P ( A ) P ( B )>0,故A 与B 不可能互不相容.29. 某种电子元件的寿命在1000小时以上的概率为0.8,求3个这种元件使用1000小时后,最多只坏了一个的概率.解 设事件表示“使用1000小时后第i 个元件没有坏”, i =1,2,3,显然A 1,A 2,A 3相互独立,事件A 表示“三个元件中最多只坏了一个”,则A =A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上面等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P + =0.83+3×0.82×0.2 =0.89630. 加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别为0.3,0.2,0.2,并且任何一道工序是否出现废品与其他各道工序无关,求零件的合格率.解 设事件A 表示“任取一个零件为合格品”,依题意A 表示三道工序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定二者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数). 解 设事件表示“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42 P (A 2)=0.58 × 0.42=0.2436P ()=0.58m -1 × 0.4232. 一间宿舍中有4位同学的眼镜都放在书架上,去上课时,每人任取一副眼镜,求每个人都没有拿到自己眼镜的概率.解 设表示“第i 人拿到自己眼镜”,i =1,2,3,4. P ( )=41,设事件B 表示“每个人都没有拿到自己的眼镜”.显然B 则表示“至少有一人拿到自己的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4) =∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P ()=P ()P (|)=)41(1213141≤≤=⨯j i < P ()()P (|)P (|)=41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4) (A 1)P (A 21)P (A 31A 2)×P (A 4|A 1A 2A 3) =2411213141=⨯⨯⨯ 85241241121414)(3424=-⨯+⨯-⨯=C C B P83)(1)(=-=B P B P33. 在1,2,…,3000这3000个数中任取一个数,设=“该数可以被m 整除”,m =2,3,求概率P (A 2A 3),P (A 2+A 3),P (A 2-A 3).解 依题意P (A 2)=21,P (A 3)=31P (A 2A 3)=P (A 6)=61P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3)=32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=-34. 甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1)只有一人投中; (2)最多有一人投中; (3)最少有一人投中.解 设事件A 、B 、C 分别表示“甲投中”、“乙投中”、“丙投中”,显然A 、B 、C 相互独立.设表示“三人中有i 人投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P == =0.2×0.3×0.4×=0.024P ( A 3 ) ( ) ( A ) P ( B ) P ( C ) =0.8×0.7×0.6=0.336P (A 2)(C )+P (B )+P (A )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452 (1) P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2) P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212 (3) P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、乙二人轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较大,为什么?解 设事件A 21B 2n 分别表示“甲在第2n -1次投中”与“乙在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独立.设事件A 表示“甲先投中”.⋯+++=)()()()(543213211A B A B A P A B A P A P A P⋯⨯⨯⨯⨯=+++0.40.5)(0.60.40.50.60.42 743.014.0=-=计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较大.36. 某高校新生中,北京考生占30%,京外其他各地考生占70%,已知在北京学生中,以英语为第一外语的占80%,而京外学生以英语为第一外语的占95%,今从全校新生中任选一名学生,求该生以英语为第一外语的概率.解 设事件A 表示“任选一名学生为北京考生”,B 表示“任选一名学生,以英语为第一外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个行政小区,其人口比为9 : 7 : 4,据统计资料,甲种疾病在该地三个小区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解 设事件A 1,A 2,A 3分别表示从A 地任选一名居民其为南、北、中行政小区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表示“任选一名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P= 0.45 × 0.004 + 0.35 × 0.002 + 0.2 × 0.005 =0.003538. 一个机床有三分之一的时间加工零件A ,其余时间加工零件B ,加工零件A 时,停机的概率为0.3,加工零件B 时停机的概率为0.4,求这个机床停机的概率. 解 设事件A 表示“机床加工零件A ”,则A 表示“机床加工零件B ”,设事件B 表示“机床停工”.)|()()|()()(A B P A P A B P A P B P +=37.0324.0313.0=⨯+⨯=39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个口袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取一个球,放入与球上号数相同的口袋中,第二次从该口袋中任取一个球,计算第二次取到几号球的概率最大,为什么?解 设事件表示“第一次取到i 号球”,表示第二次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成一个完全事件组.41)()(,21)(321===A P A P A P41)|()|(,21)|(131211===A B P A B P A B P41)|()|(,21)|(232221===A B P A B P A B P61)|(,31)|(,21)|(333231===A B P A B P A B P应用全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第二次取到1号球的概率最大.40. 接37题,用一种检验方法,其效果是:对甲种疾病的漏查率为5%(即一个甲种疾病患者,经此检验法未查出的概率为5%);对无甲种疾病的人用此检验法误诊为甲种疾病患者的概率为1%,在一次健康普查中,某人经此检验法查为患有甲种疾病,计算该人确实患有此病的概率. 解 设事件A 表示“受检人患有甲种疾病”,B 表示“受检人被查有甲种疾病”,由37题计算可知P (A )=0.0035,应用贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +=01.09965.095.00035.095.00035.0⨯⨯⨯=+25.0=41. 甲、乙、丙三个机床加工一批同一种零件,其各机床加工的零件数量之比为5 : 3 : 2,各机床所加工的零件合格率,依次为94%,90%,95%,现在从加工好的整批零件中检查出一个废品,判断它不是甲机床加工的概率.解 设事件A 1,A 2,A 3分别表示“受检零件为甲机床加工”,“乙机床加工”,“丙机床加工”,B 表示“废品”,应用贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P7305020+1030+06.05.006.05.0=⨯⨯⨯⨯=....74)|(1)|(11=-=B A P B A P42. 某人外出可以乘坐飞机、火车、轮船、汽车4种交通工具,其概率分别为5%,15%,30%,50%,乘坐这几种交通工具能如期到达的概率依次为100%,70%,60%与90%,已知该旅行者误期到达,求他是乘坐火车的概率.解 设事件A 1,A 2,A 3,A 4分别表示外出人“乘坐飞机”,“乘坐火车”,“乘坐轮船”,“乘坐汽车”,B 表示“外出人如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P1.05.04.03.03.015.0005.03.015.0⨯+⨯+⨯+⨯⨯==0.20943. 接39题,若第二次取到的是1号球,计算它恰好取自Ⅰ号袋的概率.解 39题计算知P (B 1)=21,应用贝叶斯公式21212121)()|()()|(111111=⨯==B P A B P A P B A P44. 一箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率. 解 设事件表示一箱中有i 件次品,i =0, 1, 2. B 表示“抽取的10件中无次品”,先计算P ( B )∑++⨯===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P37.0)(31)|(0==B P B A P45. 设一条昆虫生产n 个卵的概率为λλ-=e !n p n n 0, 1, 2, …其中λ>0,又设一个虫卵能孵化为昆虫的概率等于p (0<p <1). 如果卵的孵化是相互独立的,问此虫的下一代有k 条虫的概率是多少? 解 设事件=“一个虫产下几个卵”,n =0,1,2…=“该虫下一代有k 条虫”,k =0,1,….依题意λλ-==e !)(n p A P n n n⎩⎨⎧≤≤=-n k q p C n k A B P k n k k nn k 00)|(>其中1-p . 应用全概率公式有∑∑∞=∞===kn n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=l n k n k nq p k n k n n !)(!!e !∑∞=-λ--λλk n k n k k n q k p !)()(e !)(由于q k n k n k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有 ,2,1,0e)(e e !)()(===--k kp k p B P pp q k k λλλλλ习 题 二1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解 X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8.2. 一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X 的概率分布.解 X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P mm 依次计算得X 的概率分布如下表所示:3. 上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解 X 的取值仍是0, 1, 2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有{}1694302=⎪⎭⎫⎝⎛==X P{}1664341112=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C X P {}1614122=⎪⎭⎫⎝⎛==X P4. 第2题中若改为重复抽取,每次一件,直到取得优质品为止,求抽取次数X 的概率分布.解 X 可以取1, 2, …可列个值. 且事件{X = n }表示抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431⋅⎪⎭⎫ ⎝⎛-n . 因此X 的概率分布为{}⋯=⎪⎭⎫⎝⎛==-,2,143411n n X P n5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布. (1)抽取次数X ;(2)取到的旧球个数Y .解 (1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=⨯====X P X P {}22091091121233=⨯⨯==X P {}2201991011121234=⨯⨯⨯==X P (2) Y 可以取0, 1, 2, 3各值 .{}{}4310====X P Y P{}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若一次取出3个,求取到的新球数目X 的概率分布. 解 X 可以取0, 1, 2, 3各值.{}2201031233===C C X P {}2202713122319===C C C X P {}22010823121329===C C C X P {}22084331239===C C X P 7. 已知P {X =n }=,n =1, 2, 3, …, 求p 的值.解 根据{}∑=∞=11n n X P =, 有 ∑-==∞=111n n pp P 解上面关于p 的方程,得p =0.5.8. 已知P {X =n }, n =2, 4, 6, …,求p 的值.解 1122642=-=⋯+++p p p p p解方程,得2± 29. 已知P {X =n }, 1, 2, …, 100, 求c 的值. 解 ∑=+⋯++==10015050)10021(1n cc cn =解得 c =1/5050 .10. 如果=_2,1, 2, …, 问它是否能成为一个离散型概率分布,为什么?解 ,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n ,只要取ac 1=, 则有∑∞=1n n p =1, 且>0. 所以它可以是一个离散型概率分布.11. 随机变量X 只取1, 2, 3共三个值,其取各个值的概率均大于零且不相等并又组成等差数列,求X 的概率分布.解 设P {X =2}=a ,P {X =1}=a -d , P {3}. 由概率函数的和为1,可知31, 但是a -d 与均需大于零,因此|d |<31, X 的概率分布为其中d 应满足条件:0<|d |<312. 已知{}λ-==e !m c λm X P m =1, 2, …, 且λ>0, 求常数c . 解 {}∑∑∞=-∞====11e !1m m m m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm m m m λλλ, 所以有∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ 解得 λ--=e 11c13. 甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为0.4及0.5,求:(1)二人投篮总次数Z 的概率分布; (2)甲投篮次数X 的概率分布; (3)乙投篮次数Y 的概率分布.解 设事件表示在第i 次投篮中甲投中,j 表示在第j 次投篮中乙投中,1, 3, 5, …, 2, 4, 6,…,且A 1, B 2, A 3, B 4,…相互独立.(1){}{}1222321112---=-=k k k A B A B A p k Z P= (0.6×0.5)1-k ·0.4 = 0.4(0.3)1-k 1, 2, … {})(2212223211k k k k B A B A B A p k Z P ---== =0.5×0.6×(0.6×0.5)1-k =0.3k 1, 2, …(2) {}{}12223211---==n n n A B A B A p n X P{}n n n n B A B A B A p 212223211---+ )5.06.04.0()5.06.0(1⨯+⨯=-n,2,13.07.01=⨯=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P )4.05.05.0(6.0)5.06.0(1⨯+⨯⨯⨯=-n,2,13.042.01=⨯=-n n 14. 一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X 的概率分布(不计其他因素停车). 解 X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4 P { X =1 }=0.6×0.4=0.24P { X =2 } =0.62×0.4=0.144 P { X =3 } =0.63×0.4=0.0864 P { X =4 } =0.64=0.129615. ⎩⎨⎧∈=.,0],[,sin )(其他,b a x x x f问f (x )是否为一个概率密度函数,为什么?如果(1).π23,)3( ;π,0)2( ;2π,0======b a b a b a π解 在[0, 2π]与[0, π]上,≥0,但是,1d sin π≠⎰x x ,1d sin 2π0=⎰x x 而在⎥⎦⎤⎢⎣⎡π23,π上 ≤0.因此只有(1)中的a , b 可以使f (x )是一个概率密度函数.16. ⎪⎩⎪⎨⎧≤=-.0,00e )(,22x x cx x f cx ,> 其中c >0,问f (x )是否为密度函数,为什么? 解 易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,又1d e 202=⎰-∞+x cx cx f (x )是一个密度函数 .17. ⎩⎨⎧+=.0.2<<,2)(其他,a x a x x f问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由. 解 如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==⎰⨯++a x x a a a a由于x x f d )(⎰+∞∞-不是1,因此f ( x )不是密度函数.18. 设随机变量X ~f ( x )⎪⎩⎪⎨⎧∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解 )arctan 2π(2arctan π2d )1(π22a x x x a a -π==+⎰⎰+∞+∞ 解方程 π2⎪⎭⎫⎝⎛a arctan - 2π=1得 a = 0{}b x x x f b x P b barctan π2|arctan π2d )(000==⎰=<< 解关于b 的方程:π20.5 得 1.19. 某种电子元件的寿命X 是随机变量,概率密度为⎪⎩⎪⎨⎧≥=.100,0,100100)(2<x x x x f 3个这种元件串联在一个线路中,计算这3个元件使用了150小时后仍能使线路正常工作的概率.解 串联线路正常工作的充分必要条件是3个元件都能正常工作. 而三个元件的寿命是三个相互独立同分布的随机变量,因此若用事件A 表示“线路正常工作”,则3])150([)(>X P A P ={}32d 1001502150=⎰∞+x x X P =>278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=-,确定系数A ;计算P { | ≤1 }.解 A x A x A x x 2d e 2d e 10||=⎰=⎰=∞+-∞+∞-- 解得 A =21 {}⎰⎰---==≤10||11d e d e 211||x x X P x x632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的二次方程4x 2+42=0有实数根的概率. 解 4x 2+42=0. 有实根的充分必要条件是△=b 2-4 =16Y 2-16(2)=16Y 2-16Y -32≥0 设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P =0.622. 设随机变量X ~ f ( x ),⎪⎩⎪⎨⎧-=.,01||,1)(2其他,<x xcx f 确定常数c ,计算.21||⎭⎬⎫⎩⎨⎧≤X P解 π|arcsin d 1111211c x c x x c ==-⎰=-- c =π131arcsin 2d 1121||0212121 2=π=-π=⎭⎬⎫⎩⎨⎧≤⎰-xx x X P 23. 设随机变量X 的分布函数F ( x )为⎪⎩⎪⎨⎧≥=.1,1,10,0,0)(x x x A x x F <<,<确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ).解 连续型随机变量X 的分布函数是连续函数,F (1)= F (1-0),有A =1.⎪⎩⎪⎨⎧=.,0,10,21)(其他<<x xx f {}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) .解 {}t x X P x F t xd e 21)(||-∞-⎰=≤= 当t ≤ 0时,x t x t x F e 21d e 21)(=⎰=∞-当t >0时,t t t x F t x t t x d e 21d e 21d e 21)(-00||⎰+⎰=⎰=-∞--∞-x x ---=-+=e 211)e 1(212125. 函数(12)-1可否为连续型随机变量的分布函数,为什么? 解 不能是分布函数,因F (-∞)= 1 ≠ 0.26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P .解 a x a x x a ==⎰+=∞+∞-∞+∞-arctan πd )1(π12因此a =1x xt t t x F ∞-∞-=⎰+=arctan π1d )1(π1)(2x arctan π121+= {}⎰+=⎰+=-12112d )1(π12d )1(π11||x x x x X P < 21arctan π210==x27. 随机变量X 的分布函数F ( x ) 为:⎪⎩⎪⎨⎧≤-=.2,02,1)(2x x xA x F ,> 确定常数A 的值,计算{}40≤≤X P . 解 由F ( 2+0 )=F ( 2 ),可得4,041==-A A{}{})0()4(4X 040F F P X P -=≤=≤≤<=0.7528. 随机变量X ~f ( x ),f ( x )=,e e x x A-+确定A 的值;求分布函数F ( x ) .解 ⎰+=⎰+=∞∞-∞∞--x A x A xxx x d e 1e d e e 12 A A x 2πe a r c t a n ==∞∞- 因此 A =π2,xtxt t t x F ∞-∞--=+=⎰e arctan π2d )e e (π2)(x e arctan π2=29. 随机变量X ~f ( x ),⎪⎩⎪⎨⎧=.,00,π2)(2其他<<a x x x f确定a 的值并求分布函数F ( x ) .解 2202202ππd π21a x x x a a==⎰=因此,a = π 当0<x <π时,⎰=x x t tx F 0222πd π2)(其他⎪⎪⎩⎪⎪⎨⎧≥≤=π1,π0,π0,0)(22x x xx x F << 30. 随机变量X 的分布函数为 )0(0,e 22210,0)(22>>a x ax x a x x F ax⎪⎩⎪⎨⎧++-≤=-求X 的概率密度并计算⎭⎬⎫⎩⎨⎧a X P 10<<.解 当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )⎪⎩⎪⎨⎧≤=-.0,e 2,0,0)(23> x x a x x f ax)0()1(1010F a F a x P a x P -=⎭⎬⎫⎩⎨⎧≤=⎭⎬⎫⎩⎨⎧<<<08.0e 2511≈-=-31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解 X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X =1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0} =P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n } =P { X =10 }=,,2,1,31=n n,求Y 的概率分布. 解 Y 的取值为±1, ±2 , …P { } { } { 10n } =31P { -n } { -n } { 10 } =31n =1 , 2 , …33. X 服从[a , b ]上的均匀分布, (a ≠0),求证Y 也服从均匀分布. 证 设Y 的概率密度为 ( y ) ,X 的概率密度为 ( x ),只要a ≠ 0,y = + b 都是x 的单调函数. 当a > 0时,Y 的取值为[a 2 , ],ax y h b y a y h x y1)(,)(1)(='='-== ],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时, ( y ) =0.类似地,若a <0,则Y 的取值为[ , a 2 ]⎪⎩⎪⎨⎧+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,无论a >0还是a <0,均服从均匀分布. 34. 随机变量X 服从[0 , 2π]上的均匀分布 , 求Y 的概率密度 ( y ). 解 在[0,2π]上单调,在(0 , 1)上,h ( y ) = x h′ ( y ) = 211y -- , ( x ) = π2 , 0 ≤ x ≤ 2π. 因此⎪⎩⎪⎨⎧-=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布, , Z =||,分别求随机变量Y 与Z 的概率密度 ( y ) 及 ( z ) .解 y = 在(0 , 1)内单调 , 可导,且x′y = y1, ( x ) =10 < x < 1 , 因此有⎪⎩⎪⎨⎧.,0,e 1,1)(其他 <<y y y f Y在(0 , 1)内 < 0||单调,且x = e z -,x′z =-e z -,因此有⎩⎨⎧∞+=-.,0,0e )(其他<<,z z f z z36. 随机变量X ~f ( x ) , ⎩⎨⎧≤=-0,00,e )(x x x f x >Y = X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度 ( y ) 与 ( z ) .解 当x > 0时,y =x 单调,其反函数为x = y 2 , x′y = 2y⎪⎩⎪⎨⎧≤=-.0,0,0,e 2)(2y y y y f y Y >当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z21⎪⎩⎪⎨⎧≤=-.0,00e 21)(z ,z zz f zz > 37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, ,Z =X1,分别计算随机变量Y 与Z 的概率密度 ( y ) 与 ( z ) . 解 由于y = 是单调函数,其反函数 , x′ 2y 在⎪⎭⎫⎝⎛-2π,0内恒不为零,因此,当0 < y <π2时,π2)tan 1(π2sec )(22=+=y y y f Y即Y 服从区间(0 , 2π)上的均匀分布.z =x 1在x >0时也是x 的单调函数,其反函数z 1, x′ z =21z-. 因此当z >0时,)1(π2])1(1[π21)(222z zz z fz +=+-=⎪⎩⎪⎨⎧≤+=0,00,)1(π2)(2z z z z f z > 即Z =X1与X 同分布. 38. 一个质点在半径为R ,圆心在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数 ( x ) . 解 如图,设质点在圆周位置为M ,弧错误!未指定书签。
北京航空航天大学概率统计2012-2013(1)期末考卷A及AB 卷答案北京航空航天大学BEIHANG UNIVERSITY2012-2013学年第一学期期末考试统一用答题册考试课程概率统计A (A09B204A)概率统计B(A09B204B)A(试卷共6页,五道题)班级_____________ 学号 _____________姓名______________ 成绩 _________考场教室_________ 任课教师_________2013年元月18日10:30--12:30一、单项选择题(每小题4分,满分36分)1、设随机变量X 存在数学期望EX 和方差0DX ≠,则对任意正数ε,下列不等式恒成立的是 。
(A )2{||}DXP X EX εε-≥>; (B )2{||}1DXP X EX εε-<<-;(C )21{||}P X DX ε≥≤; (D )22||{||}E X P X εε≥≤。
2、设事件A 、B 同时发生时,事件C 必然发生,则下列结论成立的是 。
(A) 1)()()(-+≥B P A P C P ; (B) )()(B A P C P +=;(C) )()(AB P C P =; (D) ()()()()P C P A P B P A B ≤+-+ 。
3、对随机事件B A ,,下列命题正确的是 。
(A )如果B A ,互不相容,则B A ,也互不相容; (B )如果B A ,互逆,则B A ,也互逆 ;(C )如果B A ,互不相容,且0)(,0)(>>B P A P ,则B A ,相互独立; (D )如果B A ,相容,则B A ,也相容。
4、设随机变量),(Y X 的分布函数为(,)F x y ,对任意实数z ,则有{max{,}}P X Y z ≤= 。
(A )1{,}P Xz Y z ->> , (B) {}{}P X z P Y z ≤+≤,(C) (,)F z z , (D) 1(,)F z z -。
习题一1(1) 抛一枚硬币两次,观察出现的面,事件}{两次出现的面相同=A ;(2) 记录某电话总机一分钟内接到的呼叫次数,事件{=A 一分钟内呼叫次数不超过3次}; (3) 从一批灯泡中随机抽取一只,测试其寿命,事件{=A 寿命在2000到2500小时之间}。
解 (1) )},(),,(),,(),,{(--+--+++=Ω, )},(),,{(--++=A . (2) 记X 为一分钟内接到的呼叫次数,则},2,1,0|{ ===Ωk k X , }3,2,1,0|{===k k X A .(3) 记X 为抽到的灯泡的寿命(单位:小时),则)},0({∞+∈=ΩX , )}2500,2000({∈=X A .2. 袋中有10个球,分别编有号码1至10,从中任取1球,设=A {取得球的号码是偶数},=B {取得球的号码是奇数},=C {取得球的号码小于5},问下列运算表示什么事件:(1)B A ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)C B ;(7)C A -. 解 (1) Ω=B A 是必然事件; (2) φ=AB 是不可能事件; (3) =AC {取得球的号码是2,4};(4) =AC {取得球的号码是1,3,5,6,7,8,9,10};(5) =C A {取得球的号码为奇数,且不小于5}={取得球的号码为5,7,9};(6) ==C B C B {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}; (7) ==-C A C A {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}3. 在区间]2,0[上任取一数,记⎭⎬⎫⎩⎨⎧≤<=121x x A ,⎭⎬⎫⎩⎨⎧≤≤=2341x x B ,求下列事件的表达式:(1)B A ;(2)B A ;(3)B A ;(4)B A .解 (1) ⎭⎬⎫⎩⎨⎧≤≤=2341x x B A ;(2) =⎭⎬⎫⎩⎨⎧≤<≤≤=B x x x B A 21210或⎭⎬⎫⎩⎨⎧≤<⎭⎬⎫⎩⎨⎧≤≤2312141x x x x ; (3) 因为B A ⊂,所以φ=B A ;(4)=⎭⎬⎫⎩⎨⎧≤<<≤=223410x x x A B A 或 ⎭⎬⎫⎩⎨⎧≤<≤<<≤223121410x x x x 或或 4. 用事件CB A ,,的运算关系式表示下列事件:(1) A 出现,C B ,都不出现(记为1E ); (2) B A ,都出现,C 不出现(记为2E ); (3) 所有三个事件都出现(记为3E ); (4) 三个事件中至少有一个出现(记为4E ); (5) 三个事件都不出现(记为5E ); (6) 不多于一个事件出现(记为6E );(7) 不多于两个事件出现(记为7E ); (8) 三个事件中至少有两个出现(记为8E )。
北航12年12月课程考试《概率统计》考核要求
一、 单项选择题(本大题共5小题,每小题2分,共10分)
1.设A 、B 、C 是三个随机事件,则事件“A 、B 、C 不多于一个发生”的对立事件是( B )。
A .A 、B 、C 至少有一个发生 B. A 、B 、C 至少有两个发生 B .A 、B 、C 都发生 D. A 、B 、C 不都发生
2.设事件A 与B 互不相容,()01B <P <,则一定有( D )。
A .()()
A B A P =P B. ()()A B A P =P
C .()1A B P = D. ()1A B P =
3.设随机变量X 在[0,2]上服从均匀分布,事件{}01A X =≤≤,{}12B X =≤≤。
则( D )。
A .A 、B 互不相容 B. A 、B 互相对立 C .A 、B 相互独立 D. A 、B 不独立
4.十个球中有三个红球七个绿球,随机地分给10个小朋友,每人一个球。
则最后三个分到球的小朋友中只有一个分到红球的概率p 为( C )。
A .13
310C ⎛⎫ ⎪⎝⎭ B.2
371010⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭
C .2
13371010C ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭
D.1237310C C C 5.设随机变量X 服从正态分布()2,N μσ,Y ax b =+服从标准正态分布,则( C )。
A .1,a b μ
σσ=
=
B.,a b σσμ==
C. 1,a b μσσ=-=
D. 1,a b μ
σσ
=-=-
二、填空题(本大题共5小题,每小题4分,共20分) 6.设A 、B 是两个随机事件,()0.4A P =,()0.8B P =,()0.9A B P ⋃=。
则()A B P =___1/2________. 7.将D ,G ,O ,O 四个字母随机地排成一行,则恰好排成英文单词GOOD 的概率为_____1/12______. 8.将一枚硬币重复抛掷五次,则正、反面都至少出现两次的概率是____13/16_______. 9.已知{}{}10,00,14X Y X Y P ===P ===
,{}1
1,12
X Y P ===。
则{}00X Y P =≠=__1/3_________,1,12X Y ⎧⎫
P ≤≤=⎨⎬⎩⎭
_____1/2______.
10.设12,,,n x x x 是取自在[],2a a +上服从均匀分布总体的一组样本观测值,则未知参数a 的矩估计值为___
________.
三、简答题(本大题共7小题,每小题10分,共70分)
11.设某人射击一次中8环、9环、10环的概率分别为0.15、0.25与0.20.该射手连续进行三次射击,求得到不少于28环的概率。
答:表示i 次射击中环术,则
P{
}=P{X 1=9,X 2=9,X 3=10}+ P{X 1=9,X 2=10,X 3=10}+ P{X 1=10,X 2=9,X 3=9}+ P{X 1=9,X 2=10,X 3=9}+ P{X 1=10,X 2=10,X 3=9}+ P{X 1=X 2=X 3=10}+ P{X 1=10,X 2=9,X 3=10}
=3X0.252X0.2+3X0.22X0.25+0.23=0.413
12.设(),X Y 在区域(){},:13,13D x y x y =≤≤≤≤上服从二维均匀分布,令Z X Y =+,求Z 的数学
期望与方差。
答:
E(Z)=E(X)+E(Y)=
=2+2=4
D(Z)=D(x)+D(y)+Cov(x,y),其中D(x)=
D(y)=
Cov(x,y)=E(xy)-E(x)*E(y) =
=4-4=0
所以D(z)=
13.在天平上重复称量一件重为a 的物品,假设各次称量结果相互独立且同服从正态分布
()2,0.2N a ,X 为n 次称量结果的算术平均值,求为使{}
0.10.95X a P -<≥,称量次数n 的最小
值。
答:
要使P{||
只须P{||}
即2Φ()-1 Φ()=Φ(1.96)
n
n 最小值取16.
14.设某项试验的成功率为0.8,连续进行独立重复试验,求直到第n 次才取得k 次成功()1k n ≤≤的概率。
答:P=
15.设随机变量i X 的数学期望和方差相等,且()()3i i E X D X ==,1,2,3i =。
求出i X 的分布参数并写出其概率密度或概率函数。
(1)1X 服从泊松分布;
(2)连续型随机变量2X 服从均匀分布; (3)3X 服从正态分布。
答:E (X 1)=D (X 1)=λ
P{X
1
=K}=K=0,1,2,3……(λ=3)
E(X
2
)=
a=0,b=6
E(a
3
)-a=3 D(x
3
)-σ=3
X
3
~N(3,3) f(x)= ,x
16.设随机向量()
,
X Y在区域()
{}
,:01,0
D x y x y x
=<<<<上服从二维均匀分布,求随机变量Z XY
=的期望与方差。
答:f(x,y)=
E(x,y)==
D(z
1
=E(x2y2)-E2(xy)=2
= - =
17.设
12
,,,
n
x x x
是取自连续型总体X的样本观察值,X的概率密度为
()
5
4,0
;24
0,0
x
x e x
f x
x
β
β
β
-
⎧
>
⎪
=⎨
⎪≤
⎩
其中参数0
β>未知,求β的最大似然估计值。
答:X i>0 L(β)=
=()x()4
LnL( )=5nlnβnln24+4
令:==0 β==
是的最大似然估计值。