高中数学23个求极值和值域专题
- 格式:pdf
- 大小:612.81 KB
- 文档页数:18
23个求极值和值域专题1、求函数f x x ()=+.2、求函数f x ()=+的值域.3、求函数f x ()=.4、求函数f x ()=.5、已知函数222x bx c f x x 1()++=+(其中b 0<)的值域是13[,],求实数b c ,.6、已知:x y z ,,为正实数,且x y z xyz ++≥,求函数222x y z f x y z xyz(,,)++=的最小值.7、已知:222x 3xy 2y 1++=,求:f x y x y xy (,)=++的最小值. 8、设函数2113f x x 22()=-+在区间a b [,]的最小值为2a ,最大值为2b ,求区间a b [,].9、已知:22x y 25+=,求函数f x y (,)=的最大值.10、求函数:f x ()=.11、求函数:22x x f x x 4x 4()-=-+的值域.12、已知实数123x x x ,,满足321x x x 123++=和222321x x x 323++=,求3x 的最小值.13、求函数:222f x y 1y x y 32x y 6(,)()()()=-++-++-的最小值. 145=,求函数:f x y x y (,)=+的最小值.15、已知点P x y (,)在椭圆22x y 149+=上,求f x y 2x y (,)=-的最大值. 16、求函数:f x ()=的值域.17、求函数:x f x 12()=++.18、求函数:f x ()=的最大值. 19、设:ix i 1232003(,,,...,)=为正实数,且满足2003...+=,试求:y ...=+的最小值.20、已知x y z ,,为正实数,且满足222222x y z 21x1y1z++=+++,求:222x y z f x y z 1x1y1z(,,)=+++++的最大值.21、设α为锐角,求:11f 11()()()sin cos ααα=++的最小值. 22、设α为锐角,求证:2sin tan ααα<+.23、已知x y z ,,为正实数,求证:222xy 2yz x y z+≤++.23个求极值和值域专题解析1、求函数f x x ()=+.解析:函数f x x x ()=+=+的定义域为:12(,][,)-∞+∞.函数的导函数为:3x f x 1'()-=+⑴当x 1(,]∈-∞时,3x 02-<3x 1-<-故3x f x 10'()-=+<即:函数f x ()在x 1(,]∈-∞区间为单调递减函数,故:f x f 11()()≥=;x x f x f x f x ()lim ()lim ()→-∞→+∞≤=-22x x lim lim→+∞==x x 2333112limlim→+∞+====+ 故:函数在该区间的值域是312[,).⑵当x 2[,)∈+∞时,3x 02->,则3x f x 10'()-=+>即:函数f x ()在x 2[,)∈+∞区间为单调递增函数,故:f x f 22()()≥=;x x f x f x x ()lim ()lim )→+∞→+∞≤==+∞故:函数在该区间的值域是2[,)+∞. 综上,函数的值域是3122[,)[,)+∞.本题采用导数的正负来确定函数的增减,此法称为“单调性法”. 2、求函数f x ()=+的值域.解析:函数f x ()的定义域是:x 013[,]∈. 待定系数法用于柯西不等式来解本题.设:A B C 0,,>,则柯西不等式为:2222111f x A B C][]()++++≥ 即:2111f x A B C x 27A 13B ABC()[()()][]≤-+++++令:A B C 0-+=,即:B A C =+ ①由柯西不等式的等号成立条件,即函数取极值时条件得:=② =③由②得:22x 27C x A +=,即:22227C A x A-=,即:22227A x C A=- ④将①④代入③得:2222222227A 27A A C 13C C AC A()()+-=⋅--即:222222A C 13C 13A 27A 27A C ()()+--=即:22222A C 13C 40A 27A C ()()+-=,即:2221340A C 27AC()()+-= ⑤试解⑤,由于27333=⨯⨯,则⑤式刚好也是3项相乘,不妨试解采用各项都是3.则:A C 3+=,且2213403AC-=. 则:A 1=,C 2=,B 3= 代入④得:222227A 27x 9C A21===--,即x 9=时函数取得极大值. 函数极大值为f x 962311()===++=⑴当x 09[,]∈时,函数f x ()在本区间为单调递增函数. 故:f x f 0()()≥==即:函数f x ()在x 09[,]∈区间的值域是11[]⑵当x 913[,]∈时,函数f x ()在本区间为单调递减函数. 故:f x f 13()()≥===即:函数f x ()在x 913[,]∈区间的值域是11[]综上,函数f x ()的值域是11[].本题采用“待定系数法”、“柯西不等式”和“单调性法”.3、求函数f x ()=.解析:函数f x ()的定义域是:x 58[,]∈. 待定系数法用于柯西不等式来解本题.设:A B 0,>,则柯西不等式为:22211f x A B][]()++≥ 即:211f x A 3B x 5A 24B AB()[()()][]≤-+-++令:A 3B 0-=,即:A 3B = ①由柯西不等式的等号成立条件,即函数取极值时条件得:=②即:22A x 5B 243x ()()-=-,即:22x 53B 8x A -=-,即:222x 58x 3B A 8x A -+-+=-即:22233B A 8x A +=-,即:2223A 8x 3B A -=+,即:2223A x 83B A=-+ ③将①式代入③式得:22227B 27923x 88812443B 9B =-=-=-=+ 当23x 4=时,函数f x ()达到极大值. 极大值为:23f 4()==22==+=函数的导函数为:f x'()==⑴当23x 54[,]∈区间时,f x 0'()<,函数f x ()单调递增. 故:f x f 503()()≥=+=即:函数f x ()在本区间的值域是3[,.⑵当23x 84[,]∈区间时,f x 0'()>,函数f x ()单调递减. 故:f x f 80()()≥==即:函数f x ()在本区间的值域是.综上,函数f x ()的值域是.本题采用“待定系数法”、“柯西不等式”和“单调性法”.4、求函数f x x 1()=-的值域.解析:函数f x ()的定义域是:x 11(,)(,)∈-∞+∞. 则函数f x ()为:f x ()===(当x 1<时取负号,当x 1>时取正号)于是函数的极值在:g x 0'()= 即:222432x 1x 12x x 12g x x 1x x 10x 1x 1()()()'()[()()]()()-+--==+--=-- 即:2x 1x x 10()()+--=,即:x 1=- ⑴在x 1(,)∈-∞-区间,函数f x ()的极值为:f x 12()=-==-在区间的边界有:x x x f x 1lim ()lim (lim (→-∞→-∞→-∞===-x 1x 1f x lim ()lim(→→==-∞故:函数f x ()在该区间的值域是2(,-∞-. ⑵在x 1(,)∈+∞区间,函数f x ()==减函数.故有:x 1x 1f x f x ()lim ()→→≤==+∞;x x x f x f x 1()lim ()lim lim →+∞→+∞→+∞≥===故:函数f x ()在该区间的值域是1(,)+∞.综上,函数f x ()的值域是12(,(,)-∞-+∞. 本题方法属“单调性法” 5、已知函数222x bx c f x x 1()++=+(其中b 0<)的值域是13[,],求实数b c ,.解析:函数的定义域为x R ∈.将函数变形为:22y x 12x bx c ()+=++,即:22y x bx c y 0()()-++-= 其判别式不等式为:222b 42y c y b 8c 42c y 4y 0()()()()∆=---=-++-≥即:22b 2c 2c y y 02[()]()-++-≥ ①而函数f x ()的值域是13[,],即:y 13y 0()()--≥,即:234y y 0-+-≥ ②对比①②两式得:c 2=,2b 2c 32()-=-,即2b 12()=,因b 0<,故:b 2=-故:实数b 2=-,c 2=. 此法称为“判别式法”. 6、已知:x y z ,,为正实数,且x y z xyz ++≥,求函数222x y z f x y z xyz(,,)++=的最小值.解析:首先设x y z a ===,代入x y z xyz ++=得:33a a =,即:a =则:⑴当xyz =时,由均值不等式n nQ A ≥,即:2222x y z x y z 33++++⎛⎫≥ ⎪⎝⎭得:22222x y z xyz x y z 33()()++++≥≥则:2222x y z xyz xyzf x y z xyz 3xyz 3()(,,)++=≥==⑵当xyz <由均值不等式n n A G ≥,即:222x y z 3++≥得:222x y z ++≥则:222x y z f x y z xyz (,,)++=≥=≥=⑶当xyz >由均值不等式n n Q A ≥,即:2222x y z x y z 3()++++≥ 代入已知条件x y z xyz ++≥, 得:22222x y z xyz x y z 33()()++++≥≥则:2222x y z xyz xyz f x y z xyz 3xyz 33()(,,)++=≥=≥=故:由⑴、⑵、⑶得,222x y z f x y z xyz(,,)++=本题先确定xyz =均值,然后在xyz >均值和xyz <均值下求极值.此法称为“分别讨论法”.7、已知:222x 3xy 2y 1++=,求:f x y x y xy (,)=++的最小值. 解析:由已知条件222x 3xy 2y 1++=得: 2xy 2x y 1()=+-代入f x y x y xy (,)=++得:2f x y z x y xy x y 2x y 1(,)()==++=+++- 即:22x y x y 1z 0()()()+++-+=令:t x y =+,则方程变为:22t t 1z 0()+-+=采用判别式法得:21421z 0()∆=+⋅⋅+≥,即:11z 8()+≥-,即:9z 8≥-故:f x y x y xy (,)=++的最小值是98-. 此题采用的是“判别式法”8、设函数2113f x x 22()=-+在区间a b [,]的最小值为2a ,最大值为2b ,求区间a b [,].解析:首先,f x ()是一个偶函数,在0(,)-∞区间单调递增,在0(,)+∞区间单调递减.⑴当0a b <<时,f x ()为单调递减函数,即:f a f b ()()>. 故:f a ()是最大值为2b ,f b ()是最小值为2a . 即:22113f a a 2b 22113f b b 2a 22()()⎧=-+=⎪⎪⎨⎪=-+=⎪⎩ 即:22a 4b 130b 4a 130⎧+-=⎪⎨⎪+-=⎩ (*) (*)两式相减得:22a b 4a b 0()()---=,即: a b 4+= ① 则: 2a b 16()+=,即:22a b 162ab ()+=- ② (*)两式相加得:22a b 4a b 26()()+++= 将①②式代入后化简得:ab 3= ③ 由①③得:a 1=,b 3=. 则区间a b [,]为13[,].⑵当a 0<、b 0>时,f x ()的最大值是13f 02()=,即:13b 2=.i.若a b >,则f x ()的最小值为:2113f a a 2a 22()=-+=,即:2a 4a 130+-=,解之及a 0<可得:a 2=--,故此时区间a b [,]为1324[]--.ii.若a b <则f x ()的最小值为:2113f b b 2a 22()=-+=,即:2211311313131313339a b 14444441641664()()=-+=-+=-=⋅=, 则:a 0>. 不符合题设,即此时无解.⑶当a b 0<<时,由f x ()是一个偶函数可得:f a f b ()()<,故:f a ()是最小值为2a ,f b ()是最大值为2b ,即: 22113f a a 2a 22113f b b 2b 22()()⎧=-+=⎪⎪⎨⎪=-+=⎪⎩即:22a 4a 130b 4b 130⎧+-=⎪⎨⎪+-=⎩ 则:a b ,为一元二次方程2x 4x 130+-=的两个根,由韦达定理得:a b 4ab 13+=-⎧⎨=-⎩,则由ab 13=-得: a b ,异号,不符合题设,即此时无解.综上,区间a b [,]为13[,]或1324[]--. 本题采用“分别讨论法”和“极值法”.9、已知:22x y 25+=,求函数f x y (,)=的最大值.解析:由22x y 25+=可知,函数f x y (,)的定义域是:x 55[,]∈-,y 55[,]∈-有均值不等式n n A Q ≤,即:≤即:f x y (,)≤=即:f x y (,)≤=当y 5=时,x 0=,f 05(,)=即可以取到不等式的等号。
高中数学求函数值域最值的10种经典例题和方法
函数的值域在函数的应用中占有非常重要的地位.因此,准确选择恰当的方法显得十分重要.本文结合具体的经典例题说明了求函数值域和最值方法.
洪老师的高考必备资料库平台针对高中数学整理了63个考点的解题方法和万能模板,对于高中生的提分学习非常的有帮助的,而今天下面的这个高中数学求函数值域最值的几种经典例题和方法均在里面。
如有需要完整的一套高中数学万能解题方法大全,可以向洪老师申请资料服务(付费),本资料编号是:063
高中数学求函数值域最值的几种经典例题和方法
方法一观察法
方法二分离常数法
方法三配方法
方法四反函数法
方法五换元法
方法六判别式法
方法七基本不等式法
方法八单调性法
方法九数形结合法
方法十导数法。
求函数值域(最值)的方法大全函数是中学数学的一个重点,而函数值域(最值)的求解方法更是一个常考点, 对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,因此能熟练掌握其值域(最值)求法就显得十分的重要,求解过程中若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文旨在通过对典型例题的讲解来归纳函数值域(最值)的求法,希望对大家有所帮助。
一、值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域. 常见函数的值域:一次函数()0y kx b k =+≠的值域为R.二次函数()20y ax bx c a =++≠,当0a >时的值域为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭,当0a <时的值域为24,4ac b a ⎛⎤--∞ ⎥⎝⎦.,反比例函数()0ky k x=≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 二、求函数值域(最值)的常用方法 1. 直接观察法适用类型:根据函数图象.性质能较容易得出值域(最值)的简单函数例1、求函数y =211x +的值域 解: 22111,011x x +≥∴<≤+ 显然函数的值域是:(]0,1例2、求函数y =2-x 的值域。
解: x ≥0 ∴-x ≤0 2-x ≤2故函数的值域是:[-∞,2 ]2 、配方法适用类型:二次函数或可化为二次函数的复合函数的题型。
配方法是求二次函数值域最基本的方法之一。
对于形如()20y ax bx c a =++≠或()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦类的函数的值域问题,均可用配方法求解.例3、求函数y=2x -2x+5,x ∈[-1,2]的值域。
高中数学求值域练习题1. 基础练习题- 求函数 \( f(x) = x^2 \) 的值域。
- 求函数 \( g(x) = 2x + 3 \) 的值域。
2. 中等难度练习题- 已知函数 \( h(x) = \sqrt{x - 1} \),求其值域。
- 求函数 \( k(x) = \frac{1}{x} \) 在 \( x > 0 \) 时的值域。
3. 高级难度练习题- 求函数 \( m(x) = \sin(x) \) 的值域。
- 求函数 \( n(x) = x^3 - 3x \) 的值域。
4. 应用题- 某公司产品的成本函数为 \( C(x) = 100 + 20x \),其中 \( x \) 表示生产数量。
求出当生产数量在 0 到 50 之间时,成本函数的值域。
- 某商品的售价与需求量成反比,即 \( P(x) = \frac{1000}{x} \),其中 \( x \) 表示需求量。
如果需求量在 10 到 100 之间,求售价函数的值域。
5. 综合练习题- 已知函数 \( f(x) = \sqrt{x + 1} + \frac{1}{x - 2} \),求其值域。
- 求函数 \( g(x) = \log_{2}(x - 1) \) 的值域。
解答提示:- 对于基础题,直接根据函数的性质判断其值域即可。
- 对于中等难度题,需要考虑函数的定义域,并利用函数的性质来求解。
- 高级难度题通常需要使用微积分知识,如导数,来找到函数的极值点,进而确定值域。
- 应用题需要结合实际情境,将函数与实际问题联系起来,求解其值域。
- 综合练习题需要综合运用以上知识,考虑函数的复合、变换等因素。
练习题答案:1. \( f(x) = x^2 \) 的值域是 \( [0, +\infty) \)。
2. \( g(x) = 2x + 3 \) 的值域是 \( (-3, +\infty) \)。
3. \( h(x) = \sqrt{x - 1} \) 的值域是 \( [0, +\infty) \)。
高二数学利用导数求最值和极值试题1.已知函数.(1)若函数在区间上存在极值点,求实数a的取值范围;(2)如果当时,不等式恒成立,求实数k的取值范围;【答案】(1)(2)【解析】(1)对函数求导,求出极值点,范围在内,得到不等式关系,解不等式即可;(2)要对恒成立问题转化,转化为求最值问题,令,求出在的最小值.试题解析:(1)当x>0时,,有;所以在(0,1)上单调递增,在上单调递减,函数在处取得唯一的极值.由题意,且,解得所求实数的取值范围为.(2)当时,令,由题意,在上恒成立令,则,当且仅当时取等号.所以在上单调递增,.因此,在上单调递增,.所以.【考点】导数运算,化归思想.2.已知是实数,函数.(1)若,求的值及曲线在点处的切线方程.(2)求在上的最大值.【答案】(1),;(2).【解析】解题思路:(1)先求导,进而求得值,利用导数的几何意义求切线方程;(2)求导,讨论的根与区间的关系,进而求得极值.规律总结:导数的几何意义求切线方程:;利用导数研究函数的单调性、极值、最值及与函数有关的综合题,都体现了导数的重要性;此类问题往往从求导入手,思路清晰;但综合性较强,需学生有较高的逻辑思维和运算能力.试题解析:(1),因为又当时所以曲线在处的切线方程为(2)令,解得,当即时,在上单调递增,从而.当即时,在上单调递减,从而当即时,在上单调递减,在单调递增,从而综上所述.【考点】1.导数的几何意义;2.利用导数研究函数的最值.3.已知函数在与处都取得极值.(1)求函数的解析式;(2)求函数在区间[-2,2]的最大值与最小值.【答案】(1);(2).【解析】(1)由已知函数在与处都取得极值,得到,求出得到:关于a,b的两个方程,联立解方程组可得到a,b的值,从而可写出函数的解析式;(2)由(1)已求出的解析式,要求函数在区间[-2,2]的最大值与最小值,只需先求出函数在区间[-2,2]的极大值与极小值,再求出两个端点的函数值,然后比较这四个数值的大小,得其中的最大者就是该函数的最大值,最小者就是该函数的最小值.试题解析:(1)f(x)=x3+ax2+bx,f¢(x)=3x2+2ax+b 1分由f¢()=,f¢(1)=3+2a+b=0 3分得a=,b=-2 5分经检验,a=,b=-2符合题意所以,所求的函数解析式为: 6分(2)由(1)得f¢(x)=3x2-x-2=(3x+2)(x-1), 7分列表如下:(-2,-)-(-,1)9分11分所以当时, 12分【考点】1.函数导数;2.函数极值;3.函数最值.4.函数.(1)求函数的极值;(2)设函数,对,都有,求实数m的取值范围.【答案】(1);(2).【解析】解题思路:(1)求导,令得,列表即可极值;(2)因为,都有,所以只需即可,即求的最值.规律总结:(1)利用导数求函数的极值的步骤:①求导;②解,得分界点;③列表求极值点及极值;(2)恒成立问题要转化为求函数的最值问题.注意点:因为,都有,所以只需即可.试题解析:(1)因为,所以,令,解得,或,则x-22+-+故当时,有极大值,极大值为;当时,有极小值,极小值为.(2)因为,都有,所以只需即可.由(1)知:函数在区间上的最小值,又,则函数在区间上的最大值,由,即,解得,故实数m的取值范围是.【考点】1.函数的极值;2.不等式恒成立问题.5.若函数在(0,1)内有极小值,则 ( )A.<1B.0<<1C.b>0D.b<【答案】B【解析】由得:,若函数在(0,1)内有极小值,则必在区间内有解,即关于的方程区间内有解,所以有,故选B.【考点】导数与函数的极值.6.要做一个圆锥形的漏斗,其母线长为,要使其体积为最大,则高为()A.B.C.D.【答案】D【解析】假设圆锥的高为,所以底面半径.所以圆锥的体积表达式为.即,所以由体积对高求导可得,由,当时,,此时单调递增,当时,,此时单调递减,所以,所以,故选D.【考点】1.圆锥的体积公式.2.最值的求法.3.实际问题考虑定义域.7.某商品一件的成本为元,在某段时间内,若以每件元出售,可卖出件,当每件商品的定价为元时,利润最大【答案】115【解析】利润为由得,这时利润达到最大.【考点】函数的最值与导数的关系8.方程x3﹣6x2+9x﹣4=0的实根的个数为()A.0B.1C.2D.3【答案】C【解析】令,则,令得或。
高二数学利用导数求最值和极值试题答案及解析1.函数在(0,1)内有最小值,则的取值范围为()A.B.C.D.【答案】B.【解析】首先对函数进行求导,即,然后根据函数在(0,1)内有最小值,讨论参数与0的大小关系,进而找到符合条件的的取值范围,即(1)若,此时,这表明在(0,1)上单调递增的,所以在处取得最小值,显然不可能;(2)若,令,解得,当时,为增函数,为减函数,所以在处取得最小值,也是最小值,故极小值点在(0,1)内,符合条件要求.综上所述,的取值范围为(0,1).故答案应选B.【考点】利用导数求闭区间上函数的最值.2.已知函数.(1)若函数在区间上存在极值点,求实数a的取值范围;(2)如果当时,不等式恒成立,求实数k的取值范围;【答案】(1)(2)【解析】(1)对函数求导,求出极值点,范围在内,得到不等式关系,解不等式即可;(2)要对恒成立问题转化,转化为求最值问题,令,求出在的最小值.试题解析:(1)当x>0时,,有;所以在(0,1)上单调递增,在上单调递减,函数在处取得唯一的极值.由题意,且,解得所求实数的取值范围为.(2)当时,令,由题意,在上恒成立令,则,当且仅当时取等号.所以在上单调递增,.因此,在上单调递增,.所以.【考点】导数运算,化归思想.3.设函数,则的极小值点为()A.B.C.D.【答案】D【解析】因为,令得解得,又因为函数的定义域为,当时,,所以时为减函数;当时,,所以时为增函数;所以当时函数取得极小值;【考点】导数在求函数极值中的应用;4.已知函数.(1)求曲线在点(1,0)处的切线方程;(2)设函数,其中,求函数在上的最小值.(其中为自然对数的底数)【答案】(1)(2)当时,的最小值为0;当时,的最小值为;当时,的最小值为.【解析】利用导数的几何意义求曲线在点处的切线方程,注意这个点的切点.(2)解决类似的问题时,注意区分函数的最值和极值.求函数的最值时,要先求函数在区间内使的点,再计算函数在区间内所有使的点和区间端点处的函数值,最后比较即得.(3)分类讨论是学生在学习过程中的难点,要找好临界条件进行讨论.试题解析:(1)由,得切线的斜率为.又切线过点,所以直线的方程为 4分(2),则令,得;令,得,所以在上单调递减,在上单调递增①当,即时,在上单调递增,所以在上的最小值为②当,即时,在上单调递减,在上单调递增.在上的最小值为③当,即时,在上单调递减,所以在上的最小值为.综上:当时,的最小值为0;当时,的最小值为;当时,的最小值为. 12分【考点】(1)利用导数求切线方程;(2)利用导数求函数的最值.5.已知是实数,函数.(1)若,求的值及曲线在点处的切线方程.(2)求在上的最大值.【答案】(1),;(2).【解析】解题思路:(1)先求导,进而求得值,利用导数的几何意义求切线方程;(2)求导,讨论的根与区间的关系,进而求得极值.规律总结:导数的几何意义求切线方程:;利用导数研究函数的单调性、极值、最值及与函数有关的综合题,都体现了导数的重要性;此类问题往往从求导入手,思路清晰;但综合性较强,需学生有较高的逻辑思维和运算能力.试题解析:(1),因为又当时所以曲线在处的切线方程为(2)令,解得,当即时,在上单调递增,从而.当即时,在上单调递减,从而当即时,在上单调递减,在单调递增,从而综上所述.【考点】1.导数的几何意义;2.利用导数研究函数的最值.6.设函数f(x)=+ln x,则()A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点【答案】D【解析】因为,所以当时,,当x>2时,,故知x=2为f(x)的极小值点.故选D.【考点】函数的极值.7.已知函数在与处都取得极值.(1)求函数的解析式;(2)求函数在区间[-2,2]的最大值与最小值.【答案】(1);(2).【解析】(1)由已知函数在与处都取得极值,得到,求出得到:关于a,b的两个方程,联立解方程组可得到a,b的值,从而可写出函数的解析式;(2)由(1)已求出的解析式,要求函数在区间[-2,2]的最大值与最小值,只需先求出函数在区间[-2,2]的极大值与极小值,再求出两个端点的函数值,然后比较这四个数值的大小,得其中的最大者就是该函数的最大值,最小者就是该函数的最小值.试题解析:(1)f(x)=x3+ax2+bx,f¢(x)=3x2+2ax+b 1分由f¢()=,f¢(1)=3+2a+b=0 3分得a=,b=-2 5分经检验,a=,b=-2符合题意所以,所求的函数解析式为: 6分(2)由(1)得f¢(x)=3x2-x-2=(3x+2)(x-1), 7分列表如下:(-2,-)-(-,1)9分11分所以当时, 12分【考点】1.函数导数;2.函数极值;3.函数最值.8.已知函数在处取得极值为(1)求的值;(2)若有极大值28,求在上的最小值.【答案】(1)(2)在上的最小值为【解析】(1)由,又知在处取得极值,,即可解得的值.(2)由(1)可得,即可求得函数在处有极大值,再由,可得,,再利用单调性易判断在上的最小值为.试题解析:(1)∵,∴又∵在处取得极值,∴且,即且,解得:.(2)由(1)得:,,令,解得:,极大值极小值∴函数在处有极大值,且,∴,此时,,在上的最小值为.【考点】利用函数极值求参数;利用导数求函数最值.9.定义在R上的函数,若对任意,都有,则称f(x)为“H函数”,给出下列函数:①;②;③;④其中是“H函数”的个数为( ).A.4B.3C.2D.1【答案】C【解析】,;令得;令得;函数在递减,在递增;又,.【考点】利用导数求闭区间上的最值.10.函数在[0,3]上的最大值和最小值分别是A.5,15B.5,-14C.5,-15D.5,-16【答案】C【解析】,;令得;令得;函数在递减,在递增;又,.【考点】利用导数求闭区间上的最值.11.函数.(1)求函数的极值;(2)设函数,对,都有,求实数m的取值范围.【答案】(1);(2).【解析】解题思路:(1)求导,令得,列表即可极值;(2)因为,都有,所以只需即可,即求的最值.规律总结:(1)利用导数求函数的极值的步骤:①求导;②解,得分界点;③列表求极值点及极值;(2)恒成立问题要转化为求函数的最值问题.注意点:因为,都有,所以只需即可.试题解析:(1)因为,所以,令,解得,或,则x-22+-+故当时,有极大值,极大值为;当时,有极小值,极小值为.(2)因为,都有,所以只需即可.由(1)知:函数在区间上的最小值,又,则函数在区间上的最大值,由,即,解得,故实数m的取值范围是.【考点】1.函数的极值;2.不等式恒成立问题.12.已知既有极大值又有极小值,则的取值范围为()A.B.C.D.【答案】D【解析】由已知得:在R上有两个不相等的实根,所以解得:,故选D.【考点】函数的极值.13.已知函数,存在,,则的最大值为。
高二数学函数的极值与最值试题一:选择题1. 函数x ax x x f ++=23)(在),0(+∞内有两个极值点,则实数a 的取值范围是( ) A .),0(+∞ B .)3,3(- C .)0,(-∞ D .)3,(--∞【答案】D2.函数f (x )=x 2+x ﹣lnx 的极值点的个数是( ) A . 0个 B . 1个 C . 2个 D . 3个解:由于函数f (x )=x 2+x ﹣lnx ,(x >0) 则==(x >0)令f ’(x )=0,则故函数f (x )=x 2+x ﹣lnx 的极值点的个数是1, 故答案为 B .3.如图所示的是函数d cx bx x x f +++=23)(的大致图象,则2221x x +等于( )A .32 B .34C .38 D .316【答案】C4.函数12)(+⋅=x ex x f ,[]1,2-∈x 的最大值为( )A.14e -B.0C. 2eD. 23e 【答案】C5.函数)0(3)(3>+-=a b ax x x f 的极大值为6,极小值为2,则)(x f 的减区间是( ) A. (-1,1) B. (0,1) C. (-1,0) D. (-2,-1)【答案】A6.右图是函数()y f x =的导函数()y f x '=的图象,xyO 1-2-3-1给出下列命题:①3-是函数()y f x =的极值点; ②1-是函数()y f x =的极小值点; ③()y f x =在0x =处切线的斜率小于零;④()y f x =在区间(3,1)-上单调递增.则正确命题的序号是( )A.①②B.①④C.②③D.②④ 【答案】B7.(2008•广东)设a ∈R ,若函数y=e ax +3x ,x ∈R 有大于零的极值点,则( ) A . a >﹣3 B . a <﹣3 C . a >﹣ D .a <﹣ 解:设f (x )=e ax +3x ,则f ′(x )=3+ae ax .若函数在x ∈R 上有大于零的极值点. 即f ′(x )=3+ae ax =0有正根.当有f ′(x )=3+ae ax =0成立时,显然有a <0, 此时x=ln (﹣).由x >0,得参数a 的范围为a <﹣3. 故选B .8.【2012高考真题辽宁理12】若[0,)x ∈+∞,则下列不等式恒成立的是 (A)21xe x x ++„ 2111241x x x<-++(C)21cos 12x x -… (D)21ln(1)8x x x +-… 【答案】C【解析】设2211()cos (1)cos 122f x x x x x =--=-+,则()()sin ,g x f x x x '==-+ 所以()cos 10g x x '=-+≥,所以当[0,)x ∈+∞时,()()()(0)0,g x g x f x g '==为增函数,所以≥同理21()(0)0cos (1)02f x f x x =∴--≥,≥,即21cos 12x x -…,故选C9.已知函数3211()2(,,)32f x x ax bx c a b c R =+++∈,且函数()f x 在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则22(3)z a b =++的取值范围为( )A. 2(,2)2 B.1(,4)2C. (1,2)D.(1,4) 【答案】B10.【2012高考真题全国卷理10】已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1 【答案】A【解析】若函数c x x y +-=33的图象与x 轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为33'2-=x y ,令033'2=-=x y ,解得1±=x ,可知当极大值为c f +=-2)1(,极小值为2)1(-=c f .由02)1(=+=-c f ,解得2-=c ,由02)1(=-=c f ,解得2=c ,所以2-=c 或2=c ,选A.11.(2012•昌图县模拟)下列关于函数f (x )=(2x ﹣x 2)e x 的判断正确的是( ) ①f (x )>0的解集是{x|0<x <2};②f (﹣)是极小值,f ()是极大值; ③f (x )没有最小值,也没有最大值.A . ①③B . ①②③C . ②D . ①② 解:由f (x )>0⇒(2x ﹣x 2)e x >0⇒2x ﹣x 2>0⇒0<x <2,故①正确; f ′(x )=e x (2﹣x 2),由f ′(x )=0得x=±, 由f ′(x )<0得x >或x <﹣, 由f ′(x )>0得﹣<x <,∴f (x )的单调减区间为(﹣∞,﹣),(,+∞).单调增区间为(﹣,).∴f (x )的极大值为f (),极小值为f (﹣),故②正确. ∵x <﹣时,f (x )<0恒成立.∴f (x )无最小值,但有最大值f () ∴③不正确. 故选D .12.(2010•安庆模拟)如果函数满足:对于任意的x 1,x 2∈[0,1],都有|f (x 1)﹣f (x 2)|≤1恒成立,则a 的取值范围是( ) A . B .C .D .解:由题意f ′(x )=x 2﹣a 2当a 2≥1时,在x ∈[0,1],恒有导数为负,即函数在[0,1]上是减函数,故最大值为f (0)=0,最小值为f (1)=﹣a 2,故有,解得|a|≤,故可得1≤a ≤当a 2∈[0,1],由导数知函数在[0,a ]上增,在[a ,1]上减,故最大值为f (a )=又f(0)=0,矛盾,a ∈[0,1]不成立, 故选A .二:填空题13.函数322()f x x ax bx a =+++在1x =时有极值10,那么,a b 的值分别为________. 【答案】4,-11 14.已知函数f (x) 的导数f ′(x)=a(x +1)(x -a),若f (x)在x =a 处取得极大值,则a 的取值范围是 。
利用导数求函数的极值例求下列函数的极值:31.f(x)x12x;2.f2x2x(x)x e;3.f(x) 2.2x1分析:按照求极值的基本方法,首先从方程f(x)0求出在函数f(x)定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值.解:1.函数定义域为R.f(x)3x2123(x2)(x2).令f(x)0,得x2.当x2或x2时,f(x)0,∴函数在,2和2,上是增函数;当2x2时,f(x)0,∴函数在(-2,2)上是减函数.∴当x2时,函数有极大值f(2)16,当x2时,函数有极小值f(2)16.2.函数定义域为R.x x2e x x x ef(x)2xe(2)x令f(x)0,得x0或x2.当x0或x2时,f(x)0,∴函数f(x)在,0和2,上是减函数;当0x2时,f(x)0,∴函数f(x)在(0,2)上是增函数.∴当x0时,函数取得极小值f(0)0,当x2时,函数取得极大值2f(2)4e.3.函数的定义域为R.f(x)2(1(2x)2x2x21)2x2(1(xx)(121)2x).令f(x)0,得x1.当x1或x1时,f(x)0,∴函数f(x)在,1和1,上是减函数;当1x1时,f(x)0,∴函数f(x)在(-1,1)上是增函数.∴当x1时,函数取得极小值f(1)3,当x1时,函数取得极大值f(1) 1.说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件综合运用,方可实现解题的正确性.解答本题时应注意()0f x只是函数f(x)在x0处有极值的必要条件,如果再加之x0附近导数的符号相反,才能断定函数在x0处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误.复杂函数的极值例求下列函数的极值:1.f(x)(5);2.f(x)x 6.3x2x2x分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数f(x)的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数f(x)在定义内可能取到极值的全部“可疑点”.22(x5)3x5(x2)32解:1..f(x)(x5)x3x333x3x3令f(x)0,解得x2,但x0也可能是极值点.当x0或x2时,f(x)0,∴函数f(x)在,0和2,上是增函数;0x2时,f(x)0,当∴函数f(x)在(0,2)上是减函数.∴当x0时,函数取得极大值f(0)0,当x2时,函数取得极小值f(2)3.34342.f(x)2x2xxx6,(x(6,22或xx3),3),2x1,(x2x3),或∴f(x)2x1,(2x3),不存在,(x2x或3).令f(x)0,得1 x.21当x2或 3x时,f(x)0,21∴函数f(x)在,2和,32上是减函数;当x3或12x时,f(x)0,2∴函数f(x)在3,和12,上是增函数.2∴当x2和x3时,函数f(x)有极小值0,当1x时,函数有极大值2254.说明:在确定极值时,只讨论满足()0f x的点附近的导数的符号变化情况,确定极值是不全面的.在函数定义域内不可导的点处也可能存在极值.本题1中x0处,2中x2及x3处函数都不可导,但f(x)在这些点处左右两侧异号,根据极值的判定方法,函数f(x)在这些点处仍取得极值.从定义分析,极值与可导无关.根据函数的极值确定参数的值例已知f(x)ax3bx2cx(a0)在x1时取得极值,且f(1)1.1.试求常数a、b、c的值;2.试判断x1是函数的极小值还是极大值,并说明理由.分析:考察函数f(x)是实数域上的可导函数,可先求导确定可能的极值点,再通过极值点与导数的关系,即极值点必为f(x)0的根建立起由极值点x1所确定的相关等式,运用待定系数法求出参数a、b、c的值.2解:1.解法一:f(x)3ax2bx c.x1是函数f(x)的极值点,2bx c∴x1是方程f(x)0,即320ax的两根,由根与系数的关系,得2b3a0,(1)c 3a 1,(2)又f(1)1,∴a b c1,(3)由(1)、(2)、(3)解得13 a,b0,c.22解法二:由f(1)f(1)0得3a2b c0,(1)3a2b c0(2)又f(1)1,∴a b c1,(3)解(1)、(2)、(3)得13 a,b0,c.221332.f(x)x x223332x x,∴f(x)x(1)(1).222当x1或x1时,f(x)0,当1x1时,f(x)0.∴函数f(x)在,1和1,上是增函数,在(-1,1)上是减函数.∴当x1时,函数取得极大值f(1)1,当x1时,函数取得极小值f(1)1.说明:解题的成功要靠正确思路的选择.本题从逆向思维的角度出发,根据题设结构进行逆向联想,合理地实现了问题的转化,使抽象的问题具体化,在转化的过程中充分运用了已知条件确定了解题的大方向.可见出路在于“思想认识”.在求导之后,不会应用f(1)0的隐含条件,因而造成了解决问题的最大思维障碍.。
通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x) 的值域。
点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为 .点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。